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Foreword 

Human activities are certainly very diverse, but one of the most 

important and most frequent activities is decision making. Decision 

making includes information gathering, data mining, modelling, and 

analysis. It includes formal calculus as well as subjective attitudes and it 

has different appearances in different situations and under different 

circumstances. It is, therefore, not surprising, that several scientific 

disciplines are concerned with this topic. Logic and Psychology, 

Management and Computer Sciences, Artificial Intelligence and 

Operations Research study this phenomenon. Since these disciplines 

often work independent of each other and very often without any 

intercommunication it is not surprising that the term ‘decision’ is 

semantically defined differently in different disciplines and that 

misunderstandings occur whenever scientists from different areas discuss 

matters of decision making with each other. For logicians, for instance, 

and mathematicians a decision is the (timeless) act of selection between 

different alternatives of actions executed by one (abstract) person and 

generally guided by one criterion. For a sociologist or empirical decision 

theoretician a decision is a special, time consuming, goal-oriented 

information processing act, which may include one person, one 

organisation, or group of persons and which may be influenced by many 

explicit and hidden criteria and objectives.  

This book focuses on one of the most complex decision making 

structures, in which  several persons are involved in the decision making 

process, of which each has not only one objective function, different 

from the objective functions of other decision makers, but several. In 

addition these criteria and objectives are not dichotomous (crisp) but 

fuzzy, which is usually the case in reality. This represents the 

combination of three classical areas of decision theory: classical formal 

and empirical-cognitive decision theory, the theory of multi-criteria 

and/or multi-objectives decision making and the theory of group decision 

making. Part I of this book gives an introduction to all three areas. In 
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addition this part of the book also offers an introduction to Fuzzy Set 

Theory and to Decision Support Systems, i.e., computer based systems, 

which  support human decision makers in their activities. 
Part II of this book combines two components of Part I, namely multi-

objective decision making and fuzzy set theory and considers in more 

detail different models and methods in this area. In analogy to Part I 

these methods are then moulded in appropriate decision support systems. 

Building on this Part III turns to fuzzy group decision making. It first 

describes the methods used to solve this type of decision problems and 

then describes a web-based decision support system, which is especially 

designed for group decisions. This is certainly the most advanced type of 

decision technology that can be found today. This is extended in Part IV 

to the last stage of sophistication of decision making modelling, namely 

fuzzy multi-objective group decision making. 

Of particular interest, not only to practitioners but also to researchers 

is Part V of this book: applications. A very strong motivation of decision 

theory has always been, not only to develop theories but to help to 

improve decision making in practice. The application of theories to real 

problems is by far not trivial but can often be one of the hardest parts of 

decision making or problems solving. It is, therefore, particularly 

valuable for the use of this book, that real applications from very 

different areas are described in detail. That may not only make other 

applications easier, but it might also facilitate the understanding of the 

theories and methods which are the contents of the first four parts of this 

book. This can only be topped by the enclosed CD, which allows readers 

to apply the methods themselves and solve problems that they might 

have or get a deeper understanding of the quite demanding theory which 

is described in this book. 

The authors of this book can be congratulated to this exceptional work 

and it can only be hoped, that many researchers, students and 

practitioners make use of the material that is offered in this book. 

 
Aachen, December 2006 

 
 

H.-J. Zimmermann
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Preface 

This book presents what a multi-objective group decision-making 

problem is and how a decision support system can support reaching a 

solution in practice.  

In this book, both fuzzy set theory and optimisation method are the 

key techniques to solve a multi-objective group decision-making 

problem under an uncertain environment. We offer several advantages 

here: 

• It combines decision making theories, tools and applications 

effectively. For each issue of fuzzy multi-objective decision making, 

fuzzy multi-criteria decision making, fuzzy group decision making, 

multi-objective group decision-making, fuzzy multi-objective group 

decision-making presented in this book, we discuss their models and 

methods in great details with the related software systems and cases 

studies.  

• It is designed  as a unified whole in which each chapter relates its 

content to what went before and is, in turn, related to what will 

follow. Some case based examples such as product planning are 

discussed in different chapters for different decision situations, 

individual and group decision makers, and the use of different 

decision support systems to get desired solutions. 

• It doesn’t attempt to provide exhaustive coverage of every fact or 

research result that exists. It mainly reflects our last ten years research 

results in this field and what is more related, and also assumes about 

what the readers have already studied. 

• As the technology is up-to-date throughout some results come from 

ours and other authors’ recent publications. 

 

Our potential readers could be organisational managers and practicing 

professionals, who can use the provided methods and software to solve 

their real decision problems; researchers in the areas of multi-objective 

decision making, multi-criteria decision making, group decision making, 
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fuzzy set applications and decision support systems; students at the 

advanced undergraduate or master’s level in management or business 

administration programs; and students at the advanced undergraduate or 

master’s level in information systems and application of computer 

science programs.  

This book is organised as follows. The first part, from Chapters 1 to  

5, covers concepts and frameworks of decision making, multi-objective 

and multi-attribute decision making, group decision making, decision 

support systems, and fuzzy systems in general. Readers will learn how to 

model a decision problem and go through all phases of decision making 

process as well as the characteristics of multi-objective decision making 

and the components of a decision support system. The second part of the 

book, from Chapters 6 to 8, presents fuzzy multi-objectives decision 

making, including its model, several methods, and an implemented 

decision support system. The third part, from Chapters 9 to 11, is about 

group decision making within an uncertain environment. The fourth part, 

from Chapters 12 to 13, covers the framework, methods and systems of 

fuzzy multi-objective group decision making, which applies the results 

developed in the first two parts of the book. The last part, from Chapters 

14 to 16, focuses on applications of the decision methods and systems 

presented in previous chapters. These applications include power market, 

team situation awareness and logistic management.  

Most of the chapters, from Part 2 to Part 5, have real case based 

examples and illustrate how to use the provided decision support 

techniques. Within five decision support systems presented in this book, 

a CD-ROM included in this book has two of them, called fuzzy multi-

objective decision support system (FMODSS) and fuzzy group decision 

support system (FGDSS). Examples illustrated in the book are mainly 

screenshots from using those two systems. Readers are encouraged to 

practice with the two systems with real world decision problems. 

We wish to thank Australian Research Council (ARC) as the work 

presented in this book was partially supported under ARC discovery 

grants DP0211701, DP0557154 and DP0559213; co-workers who have 

advised and conducted some research results of this book with us;  many 

researchers who have worked in multi-objective decision making, group 

decision making, fuzzy set application, decision support systems and 
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related areas over the past several decades, for which we have added 

their significant insight in the book and well-known publications in the 

reference list; the researchers and students at University of Technology 

Sydney (UTS) who suffered through several versions of the decision 

support systems shown in this book and whose comments improved it 

substantially; and Steven Patt, Editor at World Scientific, who helped us 

to ensure the book was as good as we were capable of making it. 

 

Jie Lu, UTS, Sydney 

Guangquan Zhang, UTS, Sydney 

Da Ruan, SCK•CEN, Mol and UGent, Gent 

Fengjie Wu, UTS, Sydney 

December 2006 
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 3 

Chapter 1 

Decision Making  

This chapter presents basic concepts and methodologies of decision 

making, which will be used in describing fuzzy multi-objective group 

decision-making models, methods, systems, and applications presented 

in this book. We will briefly explain what the word decision means, what 

the particular characteristics of decision making are, how to model a 

decision problem, and what is involved in applying computerised support 

systems for a decision problem. 

1.1 Decision and Decision Makers  

Each organisation has its goals and achieves these goals through the use 

of resources such as people, material, money, and the performance of 

managerial functions such as planning, organising, directing, and 

controlling. To carry out these functions, managers are engaged in a 

continuous process of making decisions. Each decision is a reasoned 

choice among alternatives. The manager is thus a decision maker.  

However, decision makers can be managers at various levels, from a 

software development project manager to a CEO of a large company, and 

their decision problems can be various. Simple examples include 

deciding what to buy, when to visit a place, how to arrive there, who to 

employ, which grant to apply for, and deciding whom or what to vote for 

in an election. These problems can be in various logistics management, 

customer relationship management, marketing, and production planning. 

Decisions can be made by individuals or groups. Individual decisions 

are often made at lower managerial levels and in small organisations, and 

group decisions are usually made at high managerial levels and large 
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organisations. There may be conflicting preferences for a group of 

decision makers, and may be conflicting objectives even for a sole 

decision maker. For example, in a product planning decision, an 

individual planner may consider profit, cost, and labour satisfaction as 

objectives. Obviously, the three objectives here are conflict with each 

other. When this problem is put in a group, except the confliction among 

the three objectives, some members may have more concern on profit 

and others may be on labour satisfaction. The decision making becomes 

more complicated as each individual preference needs to be considered 

in achieving an aggregated group decision. 

The decision making is more complicated and difficult because the 

number of available alternatives is much larger today than ever before. 

Due to the availability of information technology and communication 

systems, especially the availability of the Internet and its search engines, 

we can find more information quickly and therefore generating more 

alternatives. Second, the cost of making errors can be very large because 

of the complexity of operations, automation, and the chain reaction that 

an error can cause in many parts, in both vertical and horizontal ways, of 

the organisation. Third, there are continuous changes in the fluctuating 

environment and more uncertainties in impacting elements, including 

information sources and information itself. More importantly, the rapid 

change of the decision environment requires decisions to be made 

quickly. These reasons cause organisational decision makers to require 

increasing technical support to help making high quality decisions. A 

high quality decision is expected to bring, such as in bank management, 

greater profitability, lower costs, shortening distribution times, increasing 

shareholder value, attracting more new customers, or having a certain 

percentage of customers respond positively to a direct mail campaign. 

Many standard methods can be used to classify decision problems. 

One of the important classifications is based on a given problem 

structure: structured, semi-structured, or unstructured, the latter two are 

also called ill-structured. Different classes of decision problems may 

require different modelling and solution methods. 

In a structured problem, the procedures for obtaining the best or the 

most satisfactory solution are known by standard solution methods. In 

general, such problems can be described by existing classic mathematical 
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models. For example, statistics is used to compare several products and 

to select one with the lowest cost. 

An unstructured problem is fuzzy, for which there is no standard 

solution method. Human intuition is often the basis for decision making 

in an unstructured problem. Typical unstructured problems include 

planning new services, hiring an executive, or choosing a set of research 

and development projects for the next year. 

Semi-structured problems fall between structured and unstructured 

problems, having both structured and unstructured elements. Solving 

them involves a combination of both standard solution procedures and 

human judgment. 

1.2 Decision Making Process 

Decision making is the cognitive process leading to the selection of a 

course of action among alternatives. Every decision-making process 

produces a final choice (sometimes called a solution). In general, a 

decision process begins when we need to find a solution but we do not 

know what and when a solution is accepted by decision makers. Decision 

making can be also seen as a reasoning process, which can be rational or 

irrational, and can be based on explicit assumptions or tacit assumptions.  

A systematic decision-making process proposed by Simon (1977) 

involves three phases: Intelligence, Design, and Choice. A fourth phase, 

Implementation, was added later. Fig. 1.1 shows a conceptual picture of 

the four-phase decision-making process. 

 The decision making process starts with the intelligence phase, where 

the reality is examined, the problem is identified, and the problem 

statement is defined. In the design phase, a model that represents the 

system is constructed. This is done by making assumptions that simplify 

reality and by writing down the relationships among all variables. The 

model is then validated, and criteria are set for evaluation of the 

alternative courses of action that are identified. Often the process of 

model construction identifies potential alternative solutions, and vice 

versa. The choice phase includes selection of a proposed solution to the 

model. This solution is tested to determine its viability. Once the 
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Outcome 

proposed solution seems to be reasonable, we are ready for the last 

phase: implementation. Successful implementation results in solving the 

real problem. Failure leads to a return to an earlier phase of the process.  

 
 
 

 
              Assumptions 

 
            Problem statement 

       
           

              Model validation 

 
 
 
         Alternatives 

                
               Solution testing 

 
 
 

              Solution 

 
 
 
 
 
          Failure          Success 

 
 
 

Fig. 1.1: Decision making process framework 

Under the general decision process framework, different decision 

makers may emphasise one phase or another. Different decision-making 

problems may also require more details or sub-phases and support 

techniques in one or more phases. Literature on this subject shows many 

theories and results about how a decision is made, with some detailed 

and specific analysis and suggestions. To efficiently help decision 

Implementation Phase  

Reality of 

Situation 

Intelligent Phase 

Problem identification 
Data collection  
Requirement analysis 

 

Design Phase 

Model formulation 
Alternatives generation 
Criteria determination 

 

Choice Phase 

Alternatives evaluation 
Result analysis 
Solution to the model 
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makers understand and easily follow a decision-making process, we list 

nine steps as an extension of the framework in Fig. 1.1. 

 
Step 1: Identify decision problems 

To identify a decision problem includes good understanding on 

managerial assumptions, organisational boundaries, and any related 

initial and desired conditions. It aims to express the decision problem in 

a clear way and prepare a clear problem statement. This step, with Step 2 

together, corresponds to the intelligent phase of the decision-making 

process framework. One example used here is to select an IT company 

for the development of an online consumer service (OCS) system for a 

business. 

 
Step 2: Analyse requirements 

Requirements are conditions in which any acceptable solution to the 

problem must meet. In a mathematical form, these requirements are the 

constraints describing the set of the feasible solutions of the decision 

problem. Requirements can be obtained by collecting data and analysing 

the decision situation. The requirements for this example include the cost 

and the deadline of the OCS system development, and the connection 

with the current business information system. 

 
Step 3: Establish objectives and goals 

The design phase of decision-making process starts from here and 

continues through to Step 6. This step identifies the important objectives 

of the decision problem and their goals. The objectives may be conflict 

but this is a natural concomitant of practical decision situations. The 

goals are the statements of intent and desirable programmatic values. In 

the mathematical form, the goals are objectives contrary to the 

requirements that are constraints. Not all objectives are of equal 

importance. Some are essential; whereas others are not absolutely 

necessary. For this example, the objective is to attract more customers 

through developing the OCS system.  
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Step 4: Generate alternatives 

Objectives obtained will be used to help generating alternatives. But 

any alternative must meet the requirements. If the number of the possible 

alternatives is finite, we can check one by one if it meets the 

requirements. The infeasible ones must be deleted from the further 

consideration, and we obtain the explicit list of the alternatives. If the 

number of the possible alternatives is infinite, the set of alternatives is 

considered as that of the solutions fulfilling the constraints in the 

mathematical form of the requirements. In our example, three IT 

companies’ responses are interested in the OCS system development and 

all can meet the cost and the deadline requirements, they are all as 

alternatives. 
 
Step 5: Determine criteria if needed 

To choose the best alternative, we need to evaluate all alternatives 

against objectives (Step 7). We may need some criteria to compare 

alternatives and to discriminate among alternatives, based on the 

objectives and goals. It is necessary to define discriminating criteria as 

objective measures of the goals to measure how well each alternative 

achieves the goals. In our example, to achieve the objective, to attract 

more customers, the OCS system developed should be user friendly, 

security, and easy to maintain, etc. This list of features can be used as 

criteria.  
 
Step 6: Select a decision-making method or tool 

In general, there are always several methods or tools available for 

solving a decision problem. The selection of an appropriate method or 

tool depends on the concrete decision problem and the preference of 

decision makers. Some methods are more suitable than others for a 

particular decision problem by a particular decision maker. Expertise and 

experience will help this selection. However, a principle is the simpler 

the method, the better. But complex decision problems may require more 

complex methods. In our example, as the decision is made in a group and 

linguistic terms may be used to express individual preference, a fuzzy 

Analytic Hierarchy Process (AHP) method (see Chapter 9) may be more 

suitable.  
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Step 7:  Evaluate alternatives against criteria 

 The choice phase of decision making begins with this step. A 

tentative decision will be made in this step through the evaluation of the 

alternatives against the objectives by using the determined criteria 

supported by the selected method or tool. With respect to some 

commonly shared and understood scale of measurement and the 

subjective assessment of the evaluation, the selected decision-making 

tool can be applied to rank the alternatives or to choose a subset of the 

most promising alternatives. In our example, by applying the selected 

method, one IT company is chosen to take the development of the OCS 

system. 
 
Step 8: Validate solutions against problem statements 

If the tentatively chosen alternative has no significant adverse 

consequences, the choice is made. However, the alternatives selected by 

the applied decision-making method or tool have always to be validated 

against the requirements and goals of the decision problem. It may 

happen that the decision-making tool was misapplied. In complex 

problems the selected alternatives may also call the attention of decision 

makers that further goals or requirements should be added to the decision 

model.  
 
Step 9: Implement the problem 

This step is to use the obtained solution to the decision problem.  
 

From the process, we can see that the decision is a choice among 

various alternatives. Each decision can be characterised by a problem 

statement, a set of alternatives, and decision criteria. Decision makers go 

through all these phases in the process of reaching a decision. There is no 

any unified description of decision-making process. But a systematic 

decision-making process can help ensure that all aspects of decision 

making receive proper consideration and lends to computerised support.  
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1.3 Problem Modelling and Optimisation  

From the decision-making process we have found that the core of the 

decision process is design phase, which is to formulate a model for an 

identified decision problem. In general, different types of models will 

require different kinds of decision-making methods. We list here some 

popular decision-making models, which will be used for one phase or the 

whole decision-making process. 

Analytic Hierarchy Process (AHP) is a decision modelling technique 

that allows consideration of both qualitative and quantitative aspects of 

decisions. It reduces complex decisions to a series of one-on-one 

comparisons, and then synthesises the results. To use it, a detailed 

description of a hierarchy diagram will be given in Section 2.5. 

Paired Comparison Analysis is used for working out the importance 

of a number of options related to each other. This makes it easy to 

choose the most important problem to solve, determine more important 

criteria to use, or select the solution that will give the greatest advantage. 

It also helps decision makers set priorities where there are conflicting 

demands on the resources.  

Grid Analysis, also known as decision matrix analysis or multi-

attribute utility theory, is a technique for supporting decision making. 

Decision matrices are most effective in which we have many alternatives 

and factors (criteria) to take into account. The first step is to list decision 

makers’ alternatives and factors (criteria). Then it will work out the 

relative importance (weight) of factors in the decision. The weights will 

be used to decision makers’ preferences by the importance of the factor.  

Decision Tree is a graph of decisions and their possible consequences, 

used to create a plan to reach a goal. A decision tree, as a special form of 

tree structure, is a predictive model to map observations about an item 

with conclusions about the item’s target value. Each interior node 

corresponds to a variable; an arc to a child represents a possible value of 

that variable. A leaf represents the predicted value of the target variable 

given the values of the variables represented by the path from the root. 

Optimisation model is a more sophisticated approach to solving 

decision problem. Optimisation, also called mathematical programming, 
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refers to the study of decision problems in which one seeks to minimise 

or maximise a function by systematically choosing the values of 

variables from within an allowed set. An optimisation model includes 

three sets of elements: decision variables, objective function(s), and 

constraint(s). Many real-world decision problems can be modelled  

by an optimisation framework. There are many types of optimisation 

models such as linear programming, non-linear programming, multi-

objective programming, multi-attribute programming, and multi-level 

programming. 

Linear Programming is an important type of optimisation in which 

the objective function and constraints are all linear. Linear programming 

problems include specialised algorithms for their solution and for other 

types of optimisation problems by solving linear programming problems 

as sub-problems. Linear programming is heavily used in various 

management activities, either to maximise the profit or minimise the 

cost. 

To model a decision problem by optimisation, we, in general, need 

three basic components: decision variables, uncontrollable variables 

(and/or parameters), and result variables. 

Decision Variables describe alternative courses of action. The levels 

of these variables are determined by decision makers. For example, for a 

product planning problem, the amount to products produced is a decision 

variable.   

Uncontrollable Variables or Parameters are the factors that affect the 

result variables but are not under the control of decision makers. Either 

of these factors can be fixed, in which they are called parameters, or they 

can vary, variables. These factors are uncontrollable because they are 

determined by elements of the system environment. Some of these 

variables limit decision makers and therefore form what are called the 

constraints of the problem. Examples are each product’s produce cost, 

each product’s marketing requirement and so on in a product planning 

problem. 

Result Variables are outputs, reflecting the level of effectiveness of 

the system. The results of decisions are determined by decision makers 

(value of the decision variables), the factors that cannot be controlled by 
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decision makers, and the relationships among the variables. They can be 

the total profit and risk, rate of return in a product planning problem. 

Now we use a linear programming model to explain how to build a 

model for a practical decision problem. A company produces two kinds 

of products: A1 and A2. Each A1 can yield a profit of 4000 dollars per unit, 

and each A2 6000 dollars per unit. The decision problem is how many A1 

and A2 should be produced in the first season of 2007. The objective is to 

obtain the maximised profit from producing the two products. However, 

the company has limitations in its labour, material, and marketing 

requirements. It needs 100 hours to produce one unit of A1, and 200 

hours to one unit of A2, but it has only 100,000 hours labour available. 

The material costs of one unit of A1 and A2 are $2000 and $3000 

respectively, and the total material budget is $4,000,000. Also, it needs to 

produce at least 100 units of A1 and 200 units of A2 as marketing 

requirements. Within this product statement, we can determine the 

following:  
 

Decision variables: 

x1 = units of A1 to be produced; 

x2 = units of A2 to be produced. 

 

Result variable (objective function): 

Maximise total profit: z = 4,000 x1 + 6,000 x 2. 
 

Uncontrollable variables (constraints): 

Labour constraint: 100 x1 + 200 x2 ≤ 100,000 (hours); 

Material constraint: 2,000 x1 + 3,000 x2 ≤ 4,000,000 (dollars); 

Marketing requirement for A1: x1 ≥100 (units); 

Marketing requirement for A2: x2 ≥200 (units). 

 

This is a linear programming problem. Its formal model can be 

described as 

21 60004000zMax   xx +=  
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By using a linear programming function of FMODSS in the attached 

CD, we can have the following result: 

)( 6001 unitsx =  

)( 2002 unitsx =  

dollars)z ( 000,600,3=  

We can learn from this example on how to model a real-world 

problem. The existing decision models can help us find a way to model it 

and the existing decision support tools can support to generate a solution 

quickly. 

We can find that optimisation is an ideal model for decision making. 

The only limitation is that it works only if the problem is structured and, 

for the most part, deterministic. An optimisation model defines the 

required input data, the desired output, and the mathematical 

relationships in a precise manner. Obviously, if the reality differs 

significantly from the assumptions used in developing the model, such a 

classic optimisation model cannot be used. However, a non-classical 

optimisation model (such as a fuzzy optimisation model) can be used.  

As already discussed, many decisions are semi-structured or 

unstructured problems. This does not preclude using optimisation 

because many times a problem can be decomposed into sub-problems, 

some of which are structured enough for applying optimisation models. 

Also, optimisation can be combined with simulation and intelligent 

techniques, such as fuzzy logic and machine learning, for the solution of 

complex problems. 

1.4 Computerised Decision Support 

Due to the large number of elements including variables, functions, and 

parameters involved in many decisions, computerised decision support 
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has become a basic requirement to assist decision makers in considering 

and coducting the implications of various courses of decision making. In 

the meantime, the impact of computer technology, particularly Internet in 

recent years, on organisational management is increasing. Interaction and 

cooperation between users and computers are rapidly growing to cover 

more and more aspects of organisational decision activities. Internet or 

Intranet-based computerised information systems have now become vital 

to all kinds of organisations, including businesses and governments.  

Therefore computer applications in organisations are moving from 

transactions processing and monitoring activities to problem analysis  

and solution finding. Web-based services are changing from online 

information presentation and data access to intelligent and personalised 

information delivery and product customization and recommendation. 

Internet or intranet-based online analytical processing and real-time 

decision support are becoming the cornerstones of modern management 

within the development of e-commerce, e-business and e-government. 

There is a trend toward providing managers with information systems 

that can assist them directly in their most important task: making 

decisions. 

Computerised decision support technologies (models, methods, and 

systems) can help decision making in several aspects. First, computerised 

system allows decision makers to perform large numbers of 

computations, such as complex optimisation models, very quickly. It 

therefore makes many complex models be used in real decision problem 

solving, including some emergency situations, which needs to be 

responded in a very short time. Second, many decision problems involve 

data, which is stored in different databases, data warehouses, and at 

websites possibly outside the organisation. Also data may have different 

types, such as sound and graphics, and with complex relationships. 

Computerised technology can search, store, and transmit needed data 

quickly and economically for helping decision making. Third, 

computerised technology can help reduce the risk of human errors and 

improve decision results’ reliability. Fourth, computerised support 

technique can improve the quality of the decisions made. Using 

computerised support, decision makers can understand the nature of the 

problem better, can perform complex simulations, check many possible 
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alternatives, and assess diverse impacts. For example, for a complex 

multi-objective programming problem, more alternatives can be obtained 

and evaluated, more uncertain data can be dealt with, more times of 

complex situations can be analysed and knowledge can be applied 

through linking with expert systems. All these capabilities lead to better 

decisions. Finally, computerised support can reduce decision cost. A 

good example is with the support of web-based systems, group members 

can be at different locations to have decision meetings.  

The important issue is that with computerised technology, many 

complex decision-making tasks can be handled effectively now. 

However, computer based decision support techniques can be better 

useful in a structured decision problem than semi-structured and 

unstructured decision problems. In an unstructured problem only part of 

the problem can by supported by advanced decision support tools such as 

intelligent decision support systems. For semi-structured decision 

problems, the computerised support technology can improve the quality 

of the information on which the decision is based by providing not only a 

single solution but a range of alternative solutions. These capabilities 

will be further described in Chapter 4. 
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Chapter 2 

Multi-Objective and Multi-Attribute Decision 

Making  

Decisions in the real world contexts are often made in the presence of 

multiple, conflicting, and incommensurate criteria. Particularly, many 

decision problems at tactical and strategic levels, such as strategic 

planning problems, have to consider explicitly the models that involve 

multiple conflicting objectives or attributes. In this chapter, we introduce 

models and methods of multi-objective and multi-attribute decision 

making. We first present basic concepts related to criteria, objectives, 

and attributes used in decision making, and then introduce multi-

objective decision-making models, features, and relevant methods. 

Following these, we will further introduce multi-attribute decision-

making models and methods respectively. 

2.1 Criteria, Objectives, and Attributes 

Managerial problems are seldom evaluated with a single or simple goal 

like profit maximisation. Today’s management systems are much more 

complex, and managers want to attain simultaneous goals, in which some 

of them conflict. Therefore, it is often necessary to analyse each 

alternative in light of its determination of each of several goals. For a 

profit-making company, in addition to earning money, it also wants to 

develop new products, provide job security to its employees, and serve 

the community. Managers want to satisfy the shareholders and, at the 

same time, enjoy high salaries and expense accounts; employees want to 

increase their take-home pay and benefits. When a decision is to be 
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made, say, about an investment project, some of these goals complement 

each other while others conflict. 

Multi-criteria decision making (MCDM) refers to making decision in 

the presence of multiple and conflicting criteria. Problems for MCDM 

may range from our daily life, such as the purchase of a car, to those 

affecting entire nations, as in the judicious use of money for the 

preservation of national security. However, even with the diversity, all 

the MCDM problems share the following common characteristics 

(Hwang and Yoon, 1981): 
  

• Multiple criteria: each problem has multiple criteria, which can be 

objectives or attributes. 

• Conflicting among criteria: multiple criteria conflict with each other. 

• Incommensurable unit: criteria may have different units of 

measurement. 

• Design/selection: solutions to an MCDM problem are either to design 

the best alternative(s) or to select the best one among previously 

specified finite alternatives. 
 

There are two types of criteria: objectives and attributes. Therefore, 

the MCDM problems can be broadly classified into two categories:  
 

• Multi-objective decision making (MODM)  

• Multi-attribute decision making (MADM)  
 

The main difference between MODM and MADM is that the former 

concentrates on continuous decision spaces, primarily on mathematical 

programming with several objective functions, the latter focuses on 

problems with discrete decision spaces. 

For the further discussion about MODM and MADM, some basic 

solution concepts and terminologies are supplied by Hwang and Masud 

(1979) and Hwang and Yoon (1981). 

Criteria are the standard of judgment or rules to test acceptability. In 

the MCDM literature, it indicates attributes and/or objectives. In this 

sense, any MCDM problem means either MODM or MADM, but is 

more used for MADM. 
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Objectives are the reflections of the desire of decision makers and 

indicate the direction in which decision makers want to work. An 

MODM problem, as a result, involves the design of alternatives that 

optimises or most satisfies the objectives of decision makers. 

Goals are things desired by decision makers expressed in terms of a 

specific state in space and time. Thus, while objectives give the desired 

direction, goals give a desired (or target) level to achieve. 

Attributes are the characteristics, qualities, or performance parameters 

of alternatives. An MADM problem involves the selection of the ‘best’ 

alternative from a pool of pre-selected alternatives described in terms of 

their attributes. 

We also need to discuss the term alternatives in detail. How to 

generate alternatives is a significant part of the process of MODM and 

MADM model building. In almost MODM models, the alternatives can 

be generated automatically by the models. In most MADM situations, 

however, it is necessary to generate alternatives manually. Issues on how 

and when to stop generating alternatives can be very important. 

Generating alternatives is heavily dependent on the availability and the 

cost of information, and requires expertise in the problem area. 

Alternatives can be generated with heuristics as well, and be from either 

individuals or groups. The generation of alternatives usually comes 

before the criteria for evaluating the alternatives are determined, but the 

selection of alternatives comes after that. 

2.2 MODM Models 

Multi-objective decision making is known as the continuous type of the 

MCDM. The main characteristics of MODM problems are that decision 

makers need to achieve multiple objectives while these multiple 

objectives are non-commensurable and conflict with each other.  

An MODM model considers a vector of decision variables, objective 

functions, and constraints. Decision makers attempt to maximise (or 

minimise) the objective functions. Since this problem has rarely a unique 

solution, decision makers are expected to choose a solution from among 

the set of efficient solutions (as alternatives), which will be explained 
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later on in this section. Generally, the MODM problem can be 

formulated as follows: 

(MODM) 
( )

( ){ }



≥≤∈=∈    0,|      s.t.

max    

xbxgRxXx

xf

n
 (2.2.1) 

where ( )xf  represents n conflicting objective functions, ( ) bxg ≤  

represents m constraints, and x is an n-vector of decision variables, 
n

Rx ∈ . 

Multi-objective linear programming (MOLP) is one of the most 

important forms to describe MODM problems, which are specified by 

linear objective functions that are to be maximised (or minimised) 

subject to a set of linear constraints. The standard form of an MOLP 

problem can be written as follows: 

(MOLP)  
( )

{ }

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≥≤∈=∈

=

   0,  |    s.t.

max  

xbAxRxXx

Cxxf

n
 (2.2.2) 

where C  is a nk ×  objective function matrix, A  is an nm ×  constraint 

matrix, b  is an m-vector of right hand side, and x is an n-vector of 

decision variables. 

We have the following notion for a complete optimal solution. 
 

Definition 2.1 (Sakawa, 1993) *x  is said to be a complete optimal 

solution, if and only if there exists an Xx ∈*  such that ( ) ( )xfxf ii ≥* , 

,k,i …1= , for all Xx ∈ .  

Also, ideal solution, superior solution, or utopia point are equivalent 

terms indicating a complete optimal solution. 

In general, such a complete optimal solution that simultaneously 

maximises (or minimises) all objective functions does not always exist 

when the objective functions conflict with each other. Thus, a concept of 

Pareto-optimal solution is introduced into MOLP. 

 

Definition 2.2 (Sakawa, 1993) *x  is said to be a Pareto optimal solution, 

if and only if there does not exist another Xx ∈  such that ( ) ( )*
xfxf ii ≥  

for all i and ( ) ( )*
xfxf jj ≠  for at least one  j. 

 



Multi-Objective and Multi-Attribute Decision Making 21 

The Pareto optimal solution is also named differently by different 

disciplines: non-dominated solution, non-inferior solution, efficient 

solution, and non-dominate solution. 

In addition to the Pareto optimal solution, the following weak Pareto 

optimal solution is defined as a slight weak solution concept than the 

Pareto optimality. 
 

Definition 2.3 (Sakawa, 1993) *x  is said to be a weak Pareto optimal 

solution, if and only if there does not exist another Xx ∈  such that 

( ) ( )*
xfxf ii > , ki ,,1…= . 

 

Here, let CO
X , P

X or WP
X  denote complete optimal, Pareto optimal, 

or weak Pareto optimal solution sets, respectively. Then from above 

definitions, we can easily get the following relations: 

 WPPCO XXX ⊆⊆  (2.2.3) 

A satisfactory solution is a reduced subset of the feasible set that 

exceeds all of the aspiration levels of each attribute. A set of satisfactory 

solutions is composed of acceptable alternatives. Satisfactory solutions 

do not need to be non-dominated. And a preferred solution is a non-

dominated solution selected as the final choice through decision makers’ 

involvement in the information processing. 

This book mainly focuses on MOLP, the linear form to describe 

MODM. Therefore, MODM means its linear form here.  

2.3 MODM Methods 

2.3.1 Classifications 

During the process of decision making, some preference information 

articulation from decision makers may be required, and what type of 

information and when it is given play a critical role in the actual 

decision-making method. Under this consideration, the methods for 

solving MODM problems have been systematically classified into four 
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classes by Hwang and Masud (1979) and Lai and Hwang (1994) in Table 

2.1. 

Table 2.1: A classification of MODM methods 

 Stage at which 

information is 

needed 

Type of 

information 
Typical methods 

1 

No articulation of 

preference 

information 

 
• Global Criteria Method (Hwang and Masud, 

1979, Salukvadze, 1974) 

Cardinal  
• Weighting Method (Hwang and Masud, 

1979) (Sakawa, 1993) 
2 

A priori 

articulation of 

preference 

information 
Ordinal & 
cardinal  

• Goal Programming (GP) (Ignizio, 1976) 

Explicit 
trade-off 

• Efficient Solution via Goal Programming 
(ESGP) (Ignizio, 1981) 

• Interactive Multiple Objective Linear 
Program (IMOLP) (Quaddus and Holzman, 
1986) 

• Interactive Sequential Goal Programming 
(ISGP) (Hwang and Masud, 1979) 

• Zionts and Wallenius (ZW)  (1975)  

3 

Progressive 

articulation of 

preference 

information 

(interactive  

method) 

Implicit 
trade-off 

• STEP Method (STEM) (Benayoun et al., 
1971) 

• STEUER (1977)  

4 

A posterior 

articulation of 

preference 

information (non-

dominated solutions 

generation method) 

Implicit/ 
explicit 
trade-off 

• Parametric method (Hwang and Masud, 
1979) 

• Constraint method (Hwang and Masud, 
1979) (Sakawa, 1993) 

As shown in Table 2.1, basically, the first class of methods does not 

require any information from decision makers once the objective 

functions and constraints have been defined. The solution to an MODM 

problem is presented on the assumptions about decision makers’ 

preference. 

The second class of methods assumes decision makers have a set of 

goals to achieve and these goals will be given before formulation of a 

mathematical model. The goal programming (GP) assumes that decision 



Multi-Objective and Multi-Attribute Decision Making 23 

makers can specify goals for the objective functions. The key idea behind 

GP is to minimise the deviations from goals or aspiration levels set  

by decision makers. GP therefore, in most cases, seems to yield a 

satisfactory solution rather than an optimisation one. By introducing the 

auxiliary variables, the Linear GP (LGP) problem can be converted to an 

equivalent linear programming problem. 

The third class, interactive methods, requires more decision makers 

involvement in the solution process. The interaction takes place through 

decision makers-computer interface at the each iteration. Trade-off or 

preference information from decision makers at each of iterations is used 

for determining a new solution. Therefore, decision makers actually gain 

insights into the problem. The interactive programming was first initiated 

by Geoffrion et al. (1972) and further developed by many researchers. 

Specially, the STEP method seems to be known as one of the first 

interactive MOLP techniques, and there have been some modifications 

and extensions. The interactive GP method was also proposed (Dyer, 

1972). It attempts to provide a link between GP and interactive 

approaches. Since then, several GP-based interactive methods that 

combine the attractive features from both GP and interactive approaches 

have been supplied. 

Finally, the fourth class is just for determining a subset of the 

complete set of non-dominated solutions to MODM problem. It deals 

strictly with constraints and does not consider the preference of decision 

makers. The desired outcome, however, is to narrow the possible courses 

of actions and select the preferred course of action easier.  

Interaction is one of the most important features for MODM. There 

are three types of interaction in the MODM process: pre-interaction, 

pro-interaction, and post-interaction. The seven MODM methods 

selected from Table 2.1, ESGP, IMOLP, ISGP, LGP, STEM, STEUER, 

and ZW, have obvious differences in interaction processes with decision 

makers. Table 2.2 shows the situation of the seven methods taking the 

three types of interaction. For example, LGP takes a pre-interaction with 

users before the solution process starts through collecting the weights, 

goals, and priorities of objectives. The IMOLP and ISGP also take a pre-

interaction respectively. The method STEM takes a pro-interaction 

during the solution process. The principle of it is to require decision 



Multi-Objective Group Decision Making 24 

makers to give the amounts to be sacrificed of some satisfactory 

objectives until all objectives become satisfactory. It first displays a 

solution and the ideal value of each objective. It then asks decision 

makers to accept or reject this solution. If accepted, this solution is taken 

as the final satisfactory solution. However, decision makers may have 

different choices. They often like to further search so that more 

alternatives solutions can be generated. If the current solution is rejected, 

a relaxation process starts. Decision makers will accept a certain amount 

of relaxation of a satisfactory objective to allow an improvement of the 

unsatisfactory ones. When the relaxation fails, the system enables 

decision makers to continue re-entering a set of relaxation values. The 

second solution is then found. If decision makers accept it, it is the final 

satisfactory solution. Otherwise the system repeats the above process. 

Post-interaction is used in all these seven methods. After a set of 

candidate solutions has been generated, decision makers are required to 

choose the most satisfactory one. 

Table 2.2: Types of interaction of MODM methods 

Type ESGP IMOLP ISGP LGP STEM STEUER ZW 

Pre-interaction  * * *    

Pro-interaction * * *  *  * 

Post-interaction * * * * * * * 

‘*’ means ‘yes’ 

Decision makers have different preferences in interactive types and 

some decision-making problems may require a particular type of 

interaction. These MODM methods may be suitable for different 

decision makers and applications. 

In the following two sub-sections, we will give more details on two 

typical MOLP methods: Weighting method and GP method from Table 

2.1. 
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2.3.2 Weighting method 

The key idea of the weighting method is to transform the multiple 

objectives in the MOLP (2.2.2) problem into a weighted single objective 

functions, which are described as follows (Kuhn and Tucker, 1951, 

Zadeh, 1963): 

( ) ( )


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

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∈

=∑
=

     s.t.

max  w
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i
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where ( ) 0,,, 21 ≥= kwwww …  is a vector of weighting coefficients 

assigned to the objective functions. 
 

Let us consider the following example of MOLP problem. 
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When 5.0,5.0 21 == ww , the weighting problem is formulated as  

( )





∈

+=

     s.t.

3max  w 21

Xx

xxxf  (2.3.3) 

The optimal solution is ( ) ( )8 ,3, *

2

*

1 =xx , and the optimal objective 

function values are ( ) ( ) ( )( ) ( )TT
xfxfxf 13,14, *

2

*

1

* == . 

When 0,1 21 == ww , the optimal solution is ( ) ( )3 ,9, *

2

*

1 =xx , and the 

optimal objective function values are ( ) ( ) ( )( ) ( )TT
xfxfxf 3,21, *

2

*

1

* −== . 

When 1,0 21 == ww , the optimal solution is ( ) ( )7 ,0, *
2

*
1 =xx , and the 

optimal objective function values are ( ) ( ) ( )( ) ( )TT
xfxfxf 14,7, *

2

*

1

* == . 

2.3.3 Goal programming 

Goal programming was originally proposed by Charnes and Cooper 

(1961) and has been further developed by Lee (1972), Ignizio (1976 and 
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1983), and Charnes and Cooper (1977). The method requests decision 

makers to set goals for each objective that they wish to attain. A 

preferred solution is then defined as the one that minimises the 

deviations from the goals. 

Based on the MOLP model (2.2.2), some goals ( )T

kgggg ,,, 21 …=  

are specified for objective functions ( ) ( ) ( )( )T

k xfxfxff ,,, 21 …= by 

decision makers, and a decision variable Xx ∈*  in the MOLP problem is 

sought so that the objective functions ( ) ( ) ( ) ( )( )T

k xfxfxfxf **

2

*

1

* ,,, …=  are 

as close as possible to the goals ( )T

kgggg ,,, 21 …= .  

The difference between ( ) ( ) ( ) ( )( )T

k xfxfxfxf **

2

*

1

* ,,, …=  and 

( )T

kgggg ,,, 21 …=  is usually defined as a deviation function ( )( )gxfD , . 

Then the GP may be defined as an optimisation problem: 

( )( )

{ }

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≥≤∈=∈ 0,  |  s.t. 

 ,min 

xbAxRxXx

gxfD

n
 (2.3.4) 

that is, find an Xx ∈* , which minimises ( )( )gxfD ,  or  

( )( )gxfDx
Xx

,minarg*

∈
= . (2.3.5) 

Normally, the deviation function ( )( )gxfD ,  is a maximum of 

deviation of individual goals, 

( )( ) ( )( ) ( )( ){ }kkk gxfDgxfDgxfD ,,,,max, 111 …=  (2.3.6) 

From (2.3.4) and (2.3.6), the minimax approach is applied to the GP 

problem: 

( )( ) ( )( ){ }

{ }



≥≤∈=∈ 0,  |    s.t.

,,,,maxmin 111

xbAxRxXx

gxfDgxfD

n

kkk…
 (2.3.7) 

By introducing the auxiliary variable γ, (2.3.7) can then be transferred 

to the following linear programming problem: 
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Let us look at the following example of MOLP problem again: 
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Suppose the goals are specified as ( )T
g 10 ,10= . The original MOLP 

problem can be converted as the following LP problem with the auxiliary 

variable γ:  
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Then, the optimal solution is ( ) ( )6 ,2, *

2

*

1 =xx , and the optimal objective 

function values are ( ) ( ) ( )( ) ( )TT
xfxfxf 10,10, *

2

*

1

* == . 

When the goals are specified as ( )T
g 15 ,15= , the optimal solution is 

( ) ( )7.622 ,865.1, *

2

*

1 =xx , and the optimal objective function values are 

( ) ( ) ( )( ) ( )TT
xfxfxf 378.13 ,351.11, *

2

*

1

* == . From this optimal objective 

function value, we can find that it does not attain the goals. The reason is 

that the goals specified are beyond the feasible constraint area. The point 
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of ( ) ( )7.622 ,865.1, *

2

*

1 =xx  is on the boundary of the feasible constraint 

area. 

2.3.4 A case-based example 

A manufacturing company has six machine types - milling machine, 

lathe, grinder, jig saw, drill press, and band saw - whose capacities are to 

be devoted to produce three products x1, x2, and x3. Decision makers have 

three objectives of maximising profits, quality, and worker satisfaction. It 

is assumed that the parameters and the goals of the MOLP problem are 

defined precisely in this example. For instance, to produce one unit of x1 

needs 12 hours of milling machine, as listed in Table 2.3 (Lai, 1995). 

Table 2.3: Production planning data 

Machine 

Product 

x1 

(unit) 

Product x2 

(unit) 

Product x3 

(unit) 

Machine 

(available 

hours)  

Milling 

machine 
12 17 0 1400 

Lathe 3 9 8 1000 

Grinder 10 13 15 1750 

Jig saw 6 0 16 1325 

Drill press 0 12 7 900 

Band saw 9.5 9.5 4 1075 

     

Profits 50 100 17.5  

Quality 92 75 50  

Worker 

Satisfaction 
25 100 75  

This problem can be described by an MOLP model as follows: 
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We can see that this is a typical MODM problem. 

2.4 MADM Models 

Multi-attribute decision making refers to making preference decision 

(e.g., evaluation, prioritisation, and selection) over the available 

alternatives that are characterised by multiple, usually conflicting, 

attributes.  The main feature of MADM is that there are usually a limited 

number of predetermined alternatives, which are associated with a level 

of the achievement of the attributes. Based on the attributes, the final 

decision is to be made. Also, the final selection of the alternative is made 

with the help of inter- and intra-attribute comparisons. The comparison 

may involve explicit or implicit trade-off. 

Mathematically, a typical MADM (or called MCDM) problem can be 

modelled as follows: 

(MADM) 





n

m

C

AAA

C ,,C ,  :.t.s

 ,, , :Select

21

21

…

…
 (2.4.1) 

where ( )mAAAA ,,, 21 …=  denotes m alternatives, ( )nCCCC ,,, 21 …=  

represents n attributes (often called criteria) for characterising a decision 

situation. The select here is normally based on maximising a multi- 

attribute value (or utility) function elicited from the stakeholders. The 

basic information involved in this model can be expressed by the matrix: 



Multi-Objective Group Decision Making 30 

nCCC ⋯   21
 

m
A

A

A

D
⋮

2

1

=



















mnmm

n

n

xxx

xxx

xxx

⋯

⋮⋱⋮⋮

⋯

⋯

21

22212

11211

 (2.4.2) 

[ ]nwwwW     21 …=  

where 
mAAA ,,, 21 …  are alternatives from which decision makers choose; 

nCCC ,,, 21 …  are attributes with which alternative performances are 

measured; 
ijx , mi ,,1…= , nj ,,1…= , is the rating of alternative 

iA  with 

respective to attribute Cj; and 
jw  is the weight of attribute Cj. 

 

Some critical issues of MADM are explained as follows for the later 

MADM method discussion. 
 

• Quantification of qualitative ratings 

An alternative in an MADM problem is usually described by some 

qualitative attributes. For the comparison between any two of this kind of 

attributes, assigning numerical values to qualitative data by scaling is the 

preferred approach. The Likert-type scale (Spector, 1992), which is 

probably the most suitable for the purposes, is described as follows. 

A set of statements covering qualitative attributes is constructed. For 

example, the performance of an IT company for developing an E-

business system can be described on a five-point scale as ‘very low,’ 

‘low,’ ‘medium,’ ‘high,’ and ‘very high.’ To score the scale, a five-point 

scale with 1, 2, 3, 4, or 5 is credited, which is corresponding from ‘very 

low’ to ‘very high.’ Sometimes, a more detailed scale such as seven-point 

or nine-point scale might be applied depending on the decision problem 

context. Since the Likert-type scale is an interval scale, the intervals 

between statements are meaningful but scale scores have no meaning. 

For example, a scale system of (3, 5, 7, 9 and 11) can be utilised instead 

of (1, 2, 3, 4, and 5). More examples to use this scale system are shown 

in Chapters 9 and 10. 
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• Normalisation of attribute ratings 

Attribute ratings are usually normalised to eliminate computational 

problems caused by different measurement units in a decision matrix. It 

is however not always necessary but essential for many compensatory 

MADM methods. The procedure of normalisation aims at obtaining 

comparable scales, which allows inter-attribute as well as intra-attribute 

comparisons. Consequently, normalised ratings have dimensionless 

units, and the larger the rating becomes, the more preference it has. 

There are two popular normalisation methods used in the MADM 

methods: 

(1) Linear normalisation 

This procedure is a simple procedure that divides the ratings of a 

certain attribute by its maximum value. The normalised value of 
ijx  is 

given as 
*

jijij xxr =        njmi ,,1;,,1 …… ==    

where *

jx  is the maximum value of the jth attribute. Clearly, the attribute 

is more satisfactory as 
ijr  approaches 1, ( 10 ≤≤ ijr ). 

(2) Vector normalisation 

This procedure divides the ratings of each attribute by its norm, so 

that each normalised rating of 
ijx  can be calculated as 

∑
=

=
m

i

ij

ij

ij
x

x
r

1

2

       njmi ,,1;,,1 …… ==  

2.5 MADM Methods 

Multi-attribute decision-making methods have been developed for 

mainly evaluating completing alternatives defined by multiple attributes. 

Hwang and Yoon (1981) classified 17 typical MADM methods 

according to the type and salient features of information received from 

decision makers. Furthermore, Yoon and Hwang (1995) supplied a 

modified taxonomy of 13 MADM methods. In this classification, 

methods are firstly categorised by the type of information received by 



Multi-Objective Group Decision Making 32 

decision makers. If no information is given, the dominance method is 

applicable. If information on the environment is as either pessimistic or 

optimistic, the Maximin or Maximax method is applicable. If information 

on attributes is given, a subcategory is used to further group the methods. 

The information given could be a standard level of each attribute, which 

involves conjunctive and disjunctive methods, or may be attribute 

weights assessed by ordinal or cardinal scales, which include Simple 

Additive Weighting method (Farmer, 1987), TOPSIS method (Hwang and 

Yoon, 1981), ELECTRE method (Roy, 1971), and AHP method (Saaty, 

1980), etc. This section will particularly introduce two popular MADM 

methods, TOPSIS and AHP, in detail.  

2.5.1 TOPSIS 

Hwang and Yoon (1981) developed the Technique for Order Preference 

by Similarity to Ideal Solution (TOPSIS) method based on the concept 

that the chosen alternatives should have the shortest distance from the 

positive-ideal solution and the longest distance from the negative-ideal 

solution. Formally, for an MADM problem with m alternatives that are 

evaluated by n attributes (or called criteria), the positive-ideal solution is 

denoted as  

( )***

1

* ,,,, nj xxxA ……=  

where *

jx  is the best value for the jth attribute among all available 

alternatives. Then the negative-level solution is given as 

( )−−−− = nj xxxA ,,,,1 ……  

where −
jx  is the worst value for the jth attribute among all available 

alternatives. 
The method is presented as the following steps: 

 

Step 1: Calculate normalised ratings  

The vector normalisation is used for computing 
ijr  as 

∑
=

=
m

i

ij

ij

ij
x

x
r

1

2

, njmi ,,1;,,1 …… ==  
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Step 2: Calculate weighted normalised ratings  

The weighted normalised value is calculated as 

ijjij rwv = , njmi ,,1;,,1 …… ==  

where 
jw  is the weight of jth attribute. 

 

Step 3: Identify positive-ideal and negative-ideal solutions  
*

A  and −
A  are defined in terms of weighted normalised values: 

{ }






 =





 === minjvvvvA ij

j
nj ,1|,,1|max,,,, ***

1

*
…………  

{ }






 =





 === −−−−

minjvvvvA ij
j

nj ,1|,,1|min,,,,1 …………  

Step 4: Calculate separation measure  

The separation of each alternative from the positive-ideal solution, 
*

A , is given by 

( )∑
=

−=
n

j

jiji vvS
1

2** , mi ,,1…=  

Similarly, the separation from the negative-ideal solution, −
A , is 

given by 

( )∑
=

−− −=
n

j

jiji vvS
1

2 , mi ,,1…=  

Step 5: Calculate similarities to positive-ideal solution 

( )−− += jiii SSSC **  , mi ,,1…=       

Note that 10 * ≤≤ iC , where 0* =iC  when −= AAi
, and 1* =iC  when 

*
AAi = . 

Step 6: Rank preference order  

Choose an alternative with the maximum *

iC  or rank alternatives 

according to *

iC  in descending order. 
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2.5.2 AHP 

The analytic hierarchy process (AHP) is essentially to formulise out the 

intuitive understanding of a complex problem using a hierarchical 

structure. The core of the AHP is to enable decision makers to structure 

an MADM problem in the form of an attribute hierarchy. A hierarchy has 

at least three levels: the focus or overall goal of the problem at the top, 

multiple attributes (criteria) that define alternatives in the middle, and 

competing alternatives at the bottom. When attributes are highly abstract, 

sub-attributes are generated sequentially through a multi-level hierarchy. 

The AHP method has the following general steps: 
 

Step 1: Construct a hierarchy for an MADM problem 

 

Step 2: Make the relative importance among the attributes (criteria) by 

pairwise comparisons in a matrix 

To help decision makers access the pairwise comparison, a Likert-

type scale (for instance, nine-point scale) of importance between two 

elements is crested. The suggested numbers to express the degrees of 

preference between the two elements are shown in Table 2.4 (Yoon and 

Hwang, 1995). Intermediate value (2, 4, 6, and 8) can be used to 

represent the compromises between the preferences. 

 

Step 3: Make pairwise comparisons of alternatives with respect to 

attributes (criteria) in a matrix 

 

Step 4: Retrieve the weights of each element in the matrix generated 

in Steps 2 and 3 

In this step, Saaty (1980) suggested the geometric mean of a row: (a) 

multiply the n elements in each row, take the nth root, and prepare a new 

column for the resulting numbers, then (b) normalise the new column 

(i.e., divide each number by the sum of all numbers). 

 

Step 5: Compute the contribution of each alternative to the overall 

goal by aggregating the resulting weights vertically  
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The overall priority for each alternative is obtained by summing the 

product of the attributes weight and the contribution of the alternative 

with respect to that attribute. 

Table 2.4: Nine-point intensity scale for pairwise comparison 

Preference on pairwise comparison Preference number 

Equally important 1 

Moderately more important 3 

Strongly more important 5 

Very strong more important 7 

Extremely more important 9 

2.5.3 A case-based example 

The following example illustrates the process of solving an MADM 

problem by the AHP method. 

A financial company plans to develop its E-business systems and 

needs to select one from three IT companies as alternatives: company A1, 

company A2, and company A3. Four attributes (criteria) that are cost (C), 

security (S), development period (P), and maintenance (M) are generated 

to evaluate these IT companies. 

Step1: A hierarchy for the MADM problem is created as in Fig. 2.1 

 
Level 1                                                        IT company evaluation 
(Focus) 
 
 
 
Level 2                       Cost                     Security              Period             Maintenance 
(Attributes) 
 
 
 
Level 3                       Company A1                  Company A2                     Company A3 
(Alternatives)                                             

Fig. 2.1: A hierarchy for the IT company selection 
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Step 2: A matrix is made to express the relative importance among 

these attributes, that is, 
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Here, ‘1’ means ‘equally important,’ and ‘C/S = 5’ means that C 

(Cost) is ‘strongly more important’ than S (Security). 
 

Step 3: Four matrixes are made for pairwise comparisons of the three 

companies with respect to four attributes, that is, 
For C                For S                 For P                 For M 
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Step 4: Retrieve the weights of each element in the matrix generated 

in Steps 2 and 3 

From (2.5.1), we have 
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From (2.5.2), we have 
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Step 5: We now compute the contribution of each alternative to the 

overall goal: 
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The result shows that company A2 has the highest score, and therefore 

it can be selected for the E-business system development. 

2.6 Summary 

Both MODM and MADM issues are the main focuses of the book.  

Both MODM and MADM methods will be extended to group decision 

making, and deal with uncertainty by fuzzy techniques. Furthermore, 

these fuzzy MODM and fuzzy MADM methods are built in the fuzzy 

multi-objective and fuzzy multi-criteria decision support systems and 

applied in real world applications in the rest chapters of the book. 
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Chapter 3 

Group Decision Making  

Group decision making is defined as a decision situation in which there 

are more than one individual involved. These group members have their 

own attitudes and motivations, recognise the existence of a common 

problem, and attempt to reach a collective decision. In this chapter, we 

will first discuss the concepts and characteristics of group decision 

making, and then review some popular group decision-making methods, 

which have been used in the development of fuzzy group decision 

support systems. These group decision-making techniques and their 

applications will be presented in Chapters 10, 11, 12, and 13. 

3.1 Decision Groups 

Decision making requires multiple perspectives of different people as 

one decision maker may have not enough knowledge to well solve a 

problem alone. This is particularly true when the decision environment 

becomes more complex. Therefore, more organisational decisions are 

made now in groups than ever before. These decisions could be 

designing products, developing policies and strategies, selecting 

employees, and arranging various resources. Such groups are called 

decision groups. In an organisation, a decision group is a self-regulating, 

self-contained task-oriented work group such as a committee. Group-

based decision making has become a key component to the functioning 

of an organisation. 

Group decision making (GDM) is the process of arriving at a 

judgment or a solution for a decision problem based on the input and 

feedback of multiple individuals. It is a group work cooperatively to 
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achieve a satisfactory solution for the group rather than the best solution 

as it almost does not exist. In general, a group satisfactory solution is one 

that is most acceptable by the group of individuals as a whole. Since the 

impact of the selection of the satisfactory solution affects organisational 

performance, it is crucial to make the group decision-making process as 

efficient and effective as possible. It therefore is very important to 

determine what makes a decision making effective and to increase the 

level of overall satisfaction for the solution across the group.  

We need to distinguish between non-cooperative multi-member 

decision making and cooperative group decision making. In the former 

decision-making situation, decision makers play the role of antagonists 

or disputants. Conflict and competition are common forms of this non-

cooperative decision making. In the group decision-making environment, 

decision makers recognise the existence of a common problem, attempt 

to reach a common decision in a friendly and trusting manner, and share 

the responsibility. Consensus, negotiation, voting schemes, and even 

resource to a third party to dissolve differences are examples of this type 

of group decision making. Within the cooperative group decision making 

category, there are still two different situations. One class is under a team 

decision structure. For example, an individual manager has the authority 

to make a particular decision, but several support assistants work 

together with the manager toward the same goal to the decision. In 

contrast to the team decision structure, in a group decision structure, 

group members share a similar rested interest in the decision outcome 

and an equal say in its formation. Group members generally work in a 

formal environment, an example of which is an organisational 

committee. This book mainly focuses on this group decision structure. 

3.2 Characteristics 

To understand how effective support can be provided to decision makers 

who work in groups for making decisions for their organisations, we 

need to analyse the main characteristics of group decision as follows: 

 
• The group performs a decision-making task. 
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• The group decision covers the whole process of transfer from 

generating ideas for solving a problem to implementing solutions. 

• Group members may be located in the same or different places. 

• Group members may work at the same or different times.  

• Group members may work for the same or different departments or 

organisations.  

• The group can be at any managerial levels. 

• There can be conflict opinions in group decision process among group 

members. 

• The decision task might have to be accomplished in a short time. 

• Group members might not have complete information for decision 

tasks.  

• Some required data, information or knowledge for a decision may be 

located in many sources and some may be external to the 

organisation. 

 
From the above characteristics, the group members are allowed in 

different locations and may be working at different times. They need to 

communicate, collaborate, and access a diverse set of information 

sources, which can be met with the development of the Internet and its 

derivatives, intranets and extranets. The Internet, as the platform on 

which most group online communications for collaboration occur, 

supports the inter-organisational decision making through online group 

collaboration tools and access to data, information and knowledge from 

inside and outside the organisation. In Chapter 11, we will present a web-

based group decision support system and explore these issues in depth. 

The intranet, basically an internal Internet, can effectively support Intra-

organisational networked group decision making. It allows a decision 

group within an organisation to work with Internet tools and procedures.  

An extranet can link a decision group like an intranet for group members 

from several different organisations. For example, some automobile 

manufacturers have involved their suppliers and dealers in extranets to 

help them deal with customer complaints about their products.  

Another key issue for these characteristics is about information 

sharing in a decision group. Even in hierarchical organisations, decision 

making is usually a shared process within a decision group. In the 
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decision group, group members are typically in equal or near-equal 

status. The outcome of the decision meeting depends not only on their 

knowledge, opinions, and judgments, but also on the composition of the 

group and the decision-making method and process used by the group. 

Differences in opinions are settled either by the ranking person present 

or, more often, by negotiation or arbitration. Although it may be too 

expensive for all group members to have complete information for their 

decision tasks, information sharing is the most important element to 

improve the quality of group decision.  

Another related issue is about bargaining and negotiation in group 

decision process. A decision group should be negotiable in order to 

achieve a consensus-based solution. When a common decision fails, it 

becomes necessary for group members to start bargaining or negotiating 

until a consensus is reached. While bargaining involves discussions 

within a specific criterion or issues, negotiation includes many criteria or 

issues in the discussion and search for consensus. 

3.3 Models  

Due to the importance and complexity of group decision making, 

decision making models are needed to establish a systematic means of 

supporting effective and efficient group decision making. 

There are two kinds of basic models of group decision making. The 

first one, the rational model, is grounded on objectives, alternatives, 

consequences, and optimality. This model assumes that complete (or 

most) information regarding the decision to be made is available and one 

correct conception of the decision can be determined. It further assumes 

that decision makers consistently assess the advantages and 

disadvantages of any alternatives with goals and objectives in mind. 

They then evaluate the consequences of selecting or not selecting each 

alternative. The alternative that provides the maximum utility (i.e., the 

optimal choice) will be selected. Another basic decision-making model is 

the political model. In contrast to the rational model, the individuals 

involved do not accomplish the decision task through the rational choice 

in regard to organisational objectives. Decision makers are motivated by 
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and act on their own needs and perceptions. This process involves a 

cycle of negotiation and discussion among group members in order, for 

each one, to get their perspective to be the one of choices. More 

specifically, this process involves all decision makers trying to sway 

powerful people within the situation to adopt their viewpoints and 

influence the remaining members. 

The rational model utilises a logical and sequential approach to make 

group decisions by evaluating alternatives based on the information at 

hand and then choosing the optimal alternative. But, assumptions of this 

model may not be totally realistic. In real environments, group decision 

making has to confront many conditions. Due to different experiences 

and opinions for decision objectives and assessment-criteria, individuals 

involved in the process may bring their own perceptions and mental 

models into a decision situation. They may have different information at 

hand and share only partially overlapping goals. Therefore, information 

incompleteness, conflicts of interest, and inconsistence of assessing 

criteria are inevitable. The decision-making procedure has to be 

performed through negotiation and discussion among group members to 

individual goals, powers, or favors. The rational model is hard to handle 

such a situation. The political model does not involve making full 

information available or a focus on the optimal viewpoint. It operates 

based upon negotiation that is often influenced by individual powers and 

favors. Thus, such a model is suitable to deal with a situation where 

information is withheld and subsequently incomplete and individual 

favors are uncertain or inaccurate. But its risk is that the ‘best’ solution 

or decision may not be selected. Furthermore, the nature of negotiation 

can produce effects that are long-lasting and detrimental. Once they 

discover it, individuals involved in the decision may not appreciate the 

duplicity inherent in the process. Therefore, a combination of both 

models could be a better way in practice, particularly, when the 

environment has more uncertain factors. In Chapter 10, we will present a 

rational-political model for group decision making in an uncertain 

environment, which takes advantage of both rational and political models 

of group decision making. 

In Chapter 2, we introduced MODM and MADM methodologies and 

applications where they mostly address a single decision maker. When a 
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group decision involves an MODM or MADM problem, it is called 

multi-objective group decision making (MOGDM) or multi-attribute 

group decision making (MAGDM), which is also called MCGDM in 

many situations. In an MOGDM, some decision makers may generate 

relevant objectives for the problem. Others may share some, but none or 

all of their objectives. When some selected objectives are accepted, the 

group members are allowed to use related MODM methods to arrive at a 

solution.  The problem is no longer the design of the most preferred 

objective according to one individual’s preference structure. The analysis 

must be extended to account for the conflicts and aggregation among 

different group members who have different preference on the objectives 

and different values on the goals. We will discuss this issue in depth in 

Chapters 12 and 13. Similarly, MAGDM decision makers within the 

group should agree with certain rules to follow for achieving a solution. 

In general, the group’s decision is usually understood to be the reduction 

of different individual preferences among alternatives and criteria in a 

given set to a single collective preference or group preference. This issue 

will be discussed in depth in Chapter 10. 

3.4 Process 

Because the performance of group decision making involves taking into 

account the needs and opinions of group members, the ability and the 

process of reaching a consensus decision effectively and even efficiently 

are critical to the functioning of the group. There are a variety of ways to 

make decisions as a group. Here we only indicate the main differences 

between group decision making and individual decision making in the 

decision-making process. Comparing with the decision-making process 

presented in Section 1.2, the analysis presented below offers an effective 

structure for choosing an appropriate course of action for a particular 

group task. 
 

Step 1: Define the decision problem  
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It is important for group decision makers to understand clearly what 

they are trying to decide so that they have a common goal to focus 

discussions on and form a problem statement. 
 

Step 2: Determine requirements   

Once group decision makers have defined their decision problem, 

they will examine the data and resources that they already have, and 

identify what additional information they may need. Discussion based on 

information sharing is very important. 

 

Step 3: Establish objectives and goals 

When some opinions on objectives are conflicted with each other in a 

group, discussion, negotiation, even a voting will be made until an 

agreement for objectives and goals are accepted by the group. 

 

Step 4: Generate alternatives 

Following the above requirements and objectives, we can generate 

alternatives for potential solutions to the problem. This involves 

collecting as many alternatives as possible to make sure group members 

participate in the generation process. But some similar alternatives 

proposed by different members should be merged, and a set of 

alternatives will be finally accepted by the group.   
 

Step 5: Determine criteria  

To identify the criteria would determine whether a chosen solution is 

successful.  Ideally, a solution will be feasible, move the group forward, 

and meet the needs of group members. Similar criteria will be merged 

and weights may be given by all members through discussion and 

negotiation. The individual group member may want to rank the criteria 

in order of the importance, and an agreement on the weights of the 

criteria may be needed. 
 

Step 6: Select a group decision-making method or tool 

Based on the situation of the decision group (for example, at the same 

place or different locations, has a leader or not), a method or tool can be 

chosen.  
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Step 7: Evaluate alternatives and select the best one  

Now, decision makers are ready to evaluate alternatives according to 

the criteria identified in Step 5. They may be able to combine their ideas 

to create a solution.  Ideally, everyone would agree with a solution (a 

consensus), but not everyone may agree. In this case, the group will need 

to use a different decision-making method. 
 

Step 8: Validate solutions  

Based on the criteria identified in Step 5, this group will evaluate if 

the decision was successful. Failure will lead to a return to an earlier 

step. 
 

Step 9: Implement the solution  

This involves identifying the resources necessary to implement the 

group decision.  

3.5 Methods 

There are several kinds of decision-making methods that a group may 

use. In general, each kind of methods follows a rule or a principle. We 

briefly describe some popular ones, with their advantages and 

disadvantages. 
 

• Authority rule 

Most groups have a leader who has an authority to make the ultimate 

decision for a group. The group can generate ideas and hold open 

discussions, but at any time the leader may make a decision upon a given 

plan. The effectiveness of the kind of methods depends a great deal upon 

whether the leader is a sufficiently good listener to have culled the right 

information on which to make the decision. Obviously, the method can 

generate a final decision fast. But, this method does not maximise the 

strengths of the individuals in the group. 

 

• Majority rule  

Some group decisions are made based on a vote (maybe in an 

informal way) for alternatives or individual opinions following a period 
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of discussions. The majority’s opinion is as the solution of the group for 

the decision problem. This method can make a group decision fast, and 

follows a clear rule of using democratic participation in the process. But 

sometimes decisions made by this method are not well implemented due 

to an insufficient period of discussions.   
 

• Negative minority rule  

A common form of negative minority rule is that the group has a 

number of alternatives.  It holds a vote for the most unpopular alternative 

and eliminates it.  It then repeats this process until only one alternative is 

left. This is also a democratic method and will be very useful when there 

are many ideas and few voters. But obviously this method is slow and 

sometimes, group members may feel resentful at having their ideas voted 

as unpopular. 
 

• Ranking rule 

Several similar ranking methods have been used in practice and all 

assume the group has a number of alternatives. One is to let group 

members individually give a score to each alternative. Suppose the group 

has five alternatives, each member ranks each alternative from 1 (lowest) 

to 10 (highest).  The votes are then calculated and the alternative with the 

highest total score is selected. This method includes a voting procedure 

and, therefore, gives the impression that the final decision represents 

each person’s opinion. But it takes time and can result in a decision that 

no one fully supports. 
 

• Consensus rule 

Consensus in decision making means that all members genuinely 

agree that the decision is acceptable. With this rule, the decision is 

discussed and negotiated in the group until everyone affected by 

understandings and agreements with what will be done. Therefore, all 

members feel that they have had an equal opportunity to influence the 

decision and will continue to support the group. Because there are time 

constraints in coming to a group decision and there is no perfect system, 
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a decision by consensus rule is one of the most effective methods. To 

successfully use this method, communications have been sufficiently 

open in such a way that everyone in the group feels that they have had 

their fair chance to influence the decision. However, it is one of the time-

consuming techniques for group decision making, and some times it may 

be difficult to reach a consensus in a group. To overcome the 

disadvantages, some other methods are developed by combining this rule 

with other ones.  

In this book, the fuzzy group decision-making method and fuzzy 

group decision support system to be presented in Chapters 10 and 11 are 

mainly based on the ‘consensus’ rule, which also combines with the 

ranking and majority rules.  

Researchers have developed some detail methods and techniques for 

improving the processes of group decision making by using the above-

mentioned rules. Two most popular and representative techniques are the 

Delphi technique (also called Delphi method) and the nominal group 

technique (also called multi-voting technique). 

The Delphi technique was developed by Gordon and Helmer in 1953 

at RAND. It aims at building an interdisciplinary consensus about an 

opinion, without necessarily having people meet face to face, such as 

through surveys, questionnaires, e-mails etc. Many applications have 

shown that the technique is effective in allowing a group of individuals, 

as a whole, to deal with a complex problem. It is particularly appropriate 

when decision making is required in a political or emotional 

environment, or when the decisions affect strong factions with opposing 

preferences. It comprises a series of questionnaires to a pre-selected 

group of experts. These questionnaires are designed to elicit and develop 

individual responses to the problems posed and to enable experts to 

refine their views as the group’s work progresses in accordance with the 

assigned task. For example, with a number of research grant applications, 

the research office will ask a group of experts to fill up an evaluation 

form (questionnaire) to put their review results on. The research office 

will then collect these experts’ evaluation results for getting a decision 

on these applications. 

The Nominal Group Technique is for achieving team consensus 

quickly when the team is ranking several alternatives or selecting the 
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best choice among them.  The technique basically consists of having 

each team member come up with their personal ranking of the options or 

choices, and collation of everyone’s rankings into the team consensus. It 

can build every member’s commitment to whatever choice or ranking  

the team makes because every member was given a fair chance to 

participate. It can therefore eliminate peer pressure in the team’s selection 

or ranking process and make the team’s consensus visible. Defining a 

problem statement, generating a list of alternatives, and finalising the list 

of alternatives are the three main steps to apply for within this technique. 

3.6 Group Support Systems and Groupware 

Many computerised tools have been developed to provide group work 

support. These tools are called groupware because their primary 

objective is to support group work. The work itself may be known as 

computer-supported cooperative work (CSCW). Groupware continues to 

evolve to support effective group work. Most group work takes place in 

meetings. The goal of groupware, as it was specifically developed as 

group support systems (GSS), is to support the work of groups 

throughout every work activity such as idea generation, consensus 

building, anonymous ranking, voting, and so on, normally occurring at 

meetings. 

Group support systems represent a class of computer-based 

technologies and methodologies that are developed to support group 

work and to improve the efficiency and effectiveness of group meetings. 

GSS can particularly enhance creativity in the decision-making process 

when it is specifically developed as group decision support systems 

(GDSS), which will be discussed in Chapter 4. Numerous authors have 

described applications of GSS in a variety of areas, including 

telecommuting, teleconferencing, supply chain management, and 

electronic commerce. 

Though many types of GSS have been developed, two fundamentally 

different viewpoints have underpinned most of the systems. One view 

assumes that the task of a group is to exercise discretion, which implies 

that the support provided must allow group members to consider 
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uncertainty, form preferences, make tradeoffs, and take decisions. This 

approach recognises that most group decision making should rely on the 

application of modelling and decision theory, an understanding of group 

processes, and the use of information technology. This has been called 

Decision Conference (DC). Another view is driven by communication 

needs and utilises computer-based information technology as a means of 

facilitating group communication. This kind of systems assumes that 

interpersonal communication is the primary activity of group decision 

making and that the function of GSS is to improve the group’s 

communication through the application of information technology. 

Systems supporting this view are usually called Electronic Meeting 

Systems (EMS).  

However, a change has occurred in GSS, in particular GDSS, research 

and applications. In the 1980’s, GSS research largely was concerned with 

decision rooms and suggestions of the impact that GSS could have. The 

recent research has recognised a much broader application and role for 

GSS, which are now viewed as organised searching for alternatives, 

communication, deliberation, planning, problem solving, negotiation, 

consensus building, and vision sharing, as well as decision making for 

group members, not necessarily in the same place or at the same time. 

With the Internet development, both kinds of commercially GSS systems 

offer business users a structure within which they can make group work 

more quickly, with more inputs from a wide network of experts, and with 

vastly improved coordination. 

Gray and Mandviwalla (1999) indicated that we have reached a point 

where we need to expand what we can do with GDSS. The growth of 

GDSS can come in: (1) increasing the capabilities available to groups so 

that they match all aspects of meeting; (2) increasing the range of 

applications so that they can support more organisational decision-

making task; and (3) improving the effectiveness of group so as to 

achieve more productive and effective group decision making. In 

Chapters 4 and 11, these issues will be further explored and presented. 

A GSS is a generic term that includes all forms of collaborative 

computing that enhances group work. Though a complete GSS is still 

considered a specially designed information system, many of the special 

capabilities of GSS have been embedded in productivity tools. More 
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commercial software, for example, Microsoft NetMeeting Client (part of 

Windows) has been developed. And more and more GSS are easy to use 

because they have a Windows GUI or a Web browser interface.  

3.7 Summary 

Individuals, organisations, and community groups are often faced with 

important decisions to make. For a group decision to be successful, it 

must find a suitable group decision model and method to creatively solve 

their problems and focus on reaching their goals. In this chapter, we 

introduce some popular models and discuss related methods for group 

decision making. We present content-oriented group decision-making 

issues and analyse how to find an optimal or a satisfactory solution given 

certain group constraints, or objectives. We also discuss process-oriented 

group decision issues, which are based on the observation that the group 

goes through certain phases in the group decision-making process, and 

on the belief that there could be an arranged way to effectively deal with 

these phases. These contents will be used in Chapters 4, 10, and 11. 



 

This page intentionally left blankThis page intentionally left blank



 53 

Chapter 4 

Decision Support Systems  

The central purpose of Decision Support Systems (DSS) is to improve 

the quality and effectiveness of decision making. DSS have been widely 

used by managers as a specific management tool and approach, and have 

become a means of reducing the uncertainty and risk traditionally 

associated with decision making. The term DSS has been sometimes 

used as an umbrella term to describe any and every computerised system 

used to support decision making in an organisation. 

We first briefly introduce concepts of DSS and discuss major 

characteristics of DSS in the chapter. We then present the main types of 

DSS and particularly discuss multi-objective DSS, multi-attribute DSS, 

group DSS, intelligent DSS, and Web-based DSS, respectively. Finally, 

we explain the components of DSS and their functions. 

4.1 Concepts 

Since the term DSS was coined in the early 1970s, the topic of DSS has 

stimulated great interest in both its research and applications. The classic 

definitions of DSS identified it as a system intended to support 

managerial decision makers in organisations for ill-structured (semi-

structured or un-structured) decision situations. For example, Gorry and 

Scott Morton (1971) defined DSS as interactive computer-based systems, 

which help decision makers utilise data and models to solve ill-structured 

problems. Another classic definition of DSS, provided by Keen and Scott 

Morton (1978), is that DSS couple the intellectual resources of 

individuals with the capabilities of the computer to improve the quality 

of decisions. A DSS is a computer-based support system for management 
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decision makers who deal with ill-structured problems. However, the 

term DSS is a content-free expression; that is, it means different things to 

different people. Therefore, there is no universally accepted definition of 

DSS. Not specifically stated, but implied in these definitions, is the 

notion that the system would be computer-based, would operate 

interactively online, and preferably would have graphical output 

capabilities (Turban and Aronson, 1998).  

From the application point of view, a DSS can be seen as an approach 

for supporting decision making. It uses an interactive, flexible and 

adaptable system especially developed for supporting the solution for a 

specific ill-structured management problem. It uses data, provides an 

easy user interface, and can incorporate decision makers’ own insights. 

In addition, a DSS usually uses models, which are built by an interactive 

and iterative process. 

In summary, the definition of DSS that we will use in this book is 

described as follows: A DSS is a computer-based information system, 

which supports decision makers and confronts ill-structured problems 

through direct interaction with data and analysis models. 

Each part of this definition has a key concept that contributes to the 

unique character of DSS. A further discussion for the balance between D, 

S, and S of DSS has also been made by Keen and Scoot-Morton (1978). 

‘Decision (D)’ relates to the non-technical, functional and analytic 

aspects of DSS and to criteria for selecting applications. ‘Support (S)’ 

focuses on the implementation and understanding of the way real people 

operate and how to help them. ‘System (S)’ directly emphasises the 

design and development of technology. Therefore, the relevant research 

problems have been identified in this area, such as different approaches 

to the building of DSS, different methods implemented in DSS, and 

different tools used by DSS.  

A DSS is intended to support, rather than replace, managerial decision 

making; to be an adjunct to decision makers to extend their capabilities 

but not to replace their judgment in ill-structured decisions; and to be 

with a view to improving decision making effectiveness, rather than 

efficiency. Sometime, there may be no optimum solution for some 

decision problems because these are ill-structured situations. The 
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decision therefore must evolve through the interaction of decision 

makers with resources such as data and analysis models. 

The literature on DSS has always had an emphasis on increased 

effectiveness of decision making, that is, an increase in quality of the 

decision, as the main benefit of DSS. Some evaluation researches have 

proposed the effects of DSS on decision outcomes development. These 

studies evaluated the improvements in decision quality typically 

associated with DSS which are due primarily to ‘development’ or 

‘reliance’ effects. Some researches also examined how the introduction 

of DSS contributes to decision quality after controlling for task 

familiarity. Also, a good DSS environment improves the decision 

making process, by speeding up the learning process of decision makers 

and providing reliable methods. 

4.2 Characteristics 

The technology for DSS should consist of three sets of capabilities in the 

areas of dialog (D), data (D) and modelling (M), what Sprague and 

Watson (1980) called the DDM paradigm. They also pointed out that a 

good DSS should have a balance among the three capabilities. The first 

‘D’ means that DSS should be easy to use to allow non-technical 

decision makers to interact fully with it. The second ‘D’ indicates that 

DSS should have access to a wide variety of data sources, bases, formats, 

and types adapted in it. The ‘M’ indicates that DSS should provide 

modelling. However, in practice, a DSS may be strong in only one area 

and weak in the others of the three, which is based on the requirements 

of decision makers.  

A DSS can be employed as a stand-alone tool used by an individual 

decision maker in one location, or it can be distributed throughout an 

organisation and in several organisations. It can be integrated with other 

DSS or information system applications, and it can be distributed 

internally and externally, using networking and Web technologies. 

Turban and Aronson (1998) listed some ideal characteristics and 

capabilities of DSS: 
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• ill-structured decision programs 

• for managers at different levels 

• for groups and individuals, but humans control the machine 

• support intelligence, design, choice phases 

• support variety of decision styles and processes 

• adaptability and flexibility in carrying out a decision support task and 

approach of the users 

• interactive and extremely user friendly so as to be easy for non-

computer people 

• combine the use of models and analytic techniques 

• data access and retrieval 

• integration and Web connection 
 

With these characteristics, DSS can improve decision makers’ 

efficiency, effectiveness, and productivity in decision making. It also can 

improve decision problem solving and facilitate communication within 

an organisation. This book will particularly show some characteristics in 

the list of ‘for group and individuals,’ ‘support a variety of decision 

processes,’ ‘flexibility in carrying out a decision task,’ ‘interactive and 

extremely user friendly so as to be easy for non-computer people,’ 

‘combine the use of models and analytic techniques,’ and ‘integration 

and Web connection’ in those DSS we developed and discussed in this 

book. These characteristics are provided by the DSS major components, 

which will be discussed in Section 4.9. 

4.3 Types  

Based on these characteristics, we can identify five main types of DSS. 
 

(1) Model-driven DSS 

This type of DSS is the milestone of the beginning of DSS. 

Nowadays, it emphasises on the access to various models, such as 

statistical and optimisation models. In addition, some advanced model-

driven DSS can simulate a situation, which is programmed by the user or 

developer to support decision making. Therefore, model-driven DSS can 
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be used to analyse business or other situations and generate a solution to 

help decision makers’ right decision. Multi-criteria DSS (MCDSS), 

which includes multi-objective DSS (MODSS) and multi-attributes DSS 

(MADSS) here, is a typical model-driven DSS where MCDM models are 

adopted in the DSS. 

Both DSS and MCDM seek to support all phases of decision making, 

although these two disciplines are different in offering relative support 

roles and in support mechanisms. The similarity of decision making 

problems addressed by the fields of DSS and MCDM would suggest that 

they could borrow and build from each other. A marriage between DSS 

and MCDM promises to be practical and intellectually fruitful. 

Therefore, an integration of MCDM and DSS – MCDSS was proposed as 

a ‘specific’ type of systems within the broad family of DSS. 

Even though they include much the same components as classical 

DSS, MCDSS have special characteristics, including: 
 

• they allow analysis of multiple criteria (objectives or attributes);  

• they use a variety of multi-criteria decision models (methods) to 

compute efficient solutions; and most importantly, 

• they incorporate users’ input (interaction) in various phases of 

modelling and getting. 
 

Decision makers can make interaction in various stages of model 

management, model development, and problem solving. MCDSS intend 

to provide the necessary computerised assistance to decision makers to 

solve multi-criteria decision problems. Decision makers are encouraged 

to explore the support tools available in an interactive fashion with the 

aim of further defining the nature of the problem. The ultimate success of 

DSS lies in their ability to help decision makers solve ill-structured 

problems through the direct interaction with analytical models. Such 

ability can be enhanced by combining the various features of MCDM 

with DSS.   

In MCDSS, MCDM complements DSS and vice versa due to the 

differences in underlying philosophies, objectives, support mechanisms, 

and relative support roles. MCDSS, as the integration of DSS and 

MCDM, is construed to be the application of ideas, concepts, and 
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strategies initially developed in one area, to problems better addressed  

in the other domain. Researchers of both areas have accepted this 

standpoint. 

 

(2) Data-driven DSS 

This type of DSS collects and provides real time access to a large 

operational or even data warehouse to support decision making. Such 

database or data warehouse can have internal or external data. It can also 

provide queries and management reports according to user’s 

requirement. The more advanced data-driven DSS is combined with 

online analytical processing (OLAP) and data mining (such as, spatial 

data mining, correlation mining, linking mining, and Web mining). 

Therefore, it can be used to analysis the historical data and find data 

associations in order to help users identify happening facts. 

 

(3) Knowledge-driven DSS or Intelligent DSS (IDSS)  

This type of DSS often includes a rule-based system to suggest 

decision makers to take certain kind of actions. On the other hand, it can 

be regarded as a person-computer system with some specialised 

problem-solving expertise. In fact, the decision-making process itself is 

one of the intelligent activities of human beings. The term intelligence in 

DSS is the ability of DSS to use possessed information, knowledge, and 

inference in order to achieve new objectives in new circumstances. Over 

the past twenty years, DSS designers have tried to use various intelligent 

methods to handle complex situations and improve the performance of 

DSS. Knowledge-based reasoning, machine learning, data mining, data 

fusion, soft computing, and intelligent agencies all have contributed 

greatly in the development of IDSS.  

 

(4) Group Decision Support Systems (GDSS) 

This type of DSS, as we have mentioned in Chapter 2, allows  

multiple users to work collaboratively in the group for a decision 

problem. GDSS, in general, support a decision meeting where each 

member can give their opinions through a computer or a facilitator 

(coordinator). However, getting a group of decision makers together in 

one place and at one time can be difficult and expensive. Attempts to 
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improve the work of groups with the aid of information technology have 

been described as distributed electronic meeting systems, Delphi 

technique-based collaborative systems, and distributed online GDSS.  

 

(5) Web-based DSS 

The implementation of Web-based DSS has been popular since the 

mid-1990s when Internet technology develops rapidly around the world. 

Web-based DSS use Web browser to access Internet or Intranet. In 

addition, TCP/IP protocols are used to communicate with the 

server/client architecture, which can be applied in Web-based GDSS as 

well. With information technology, Web-based DSS can be model-

driven, date-driven, knowledge-driven, communications-driven or a 

hybrid of them. Recent developments in e-commerce, e-business, e-

government, and e-service provide a fertile ground for this new type of 

DSS applications. 

 It should be indicated that decision is regarded differently in  

different decision theories; and, furthermore, different sciences are 

contributing to decision making paradigms and have different 

classifications and categories. We have only outlined the five main types 

of DSS, which are in line with the scope of this book.  

4.4 Multi-Objective DSS 

As the separate areas, MODM and MADM tend to draw from different 

sources for their solution procedures. MCDSS can thus be broadly 

categorised into MODSS and MADSS. These two categories have 

different requirements of data and model management for effective 

decision support, and have different elements of methodology matched 

with practical.  

MODSS is applied to support the decision making in which decision 

problems can be described by an MODM model, e.g., (2.2.1). MODSS 

has gained widespread attention in its algorithms, methodology 

implementation, as well as their applications. Compared to MADSS, 

MODSS require more model management functions than data 

management functions. Problem structuring in MODSS mainly includes 
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generating objectives, constraints and decision variables, three important 

components of the MODM model. The model constructing has to be 

performed initially by decision makers. Therefore, it should be 

completed manually first and then can be evolved gradually over a 

number of iterations. The model can be structured in an interactive 

fashion of an MODSS using a graphical user interface environment. Two 

matrices, called objective matrix and constraint matrix, have to be 

generated first to construct an MODM model (Quaddus, 1997). 

Table 4.1 lists 17 MODSS including decision support tool (C) or 

specific application (S), and analyses the six main characteristics/ 

functions: method-base (MB) or model management, database (DB) or 

data management ability, knowledge-base or other intelligent component 

(I), group environment (GE), and graphical user interface (GUI). 
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Table 4.1: List of some selected MODSS 

No Name C S MB DB I GE GUI References 

1 IMOP *  *     (Werners, 1987) 

2 DINAS  *      
(Ogryczak, 
Studzinski, and 
Zorychta, 1989) 

3 VIG *      * 
(Korhonen and 
Wallenius, 1990) 

4 HYBRID *       
(Poh and Quaddus, 
1990) 

5 
Interactive 
MOLP 

*  * *   * 
(Korhonen, 
Lewandowski, and 
Wallenius, 1991) 

6 
R&DPS 
MODSS 

 *  *   * (Stewart, 1991) 

7 
WQ-
PMODSS 

 *  *   * 
(Yakowitz et al., 
1993) 

8 ISGPII *      * 
(Hwang, Lai, and 
Liu, 1993) 

9 MOLP-PC *  *     
(Poh, Quaddus, and 
Chin, 1995) 

10 IMOST *  * * *  * (Lai, 1995) 

11 PDSS *   *   * (Paige et al., 1996a) 

12 FORMDSS  *  *  * * 
(Tecle, Shrestha, and 
Duckstein, 1998) 

13 GMCRII *     * * (Hipel, 1992) 

14 IMOGDSS *  * * * * * 
(Lu and Quaddus, 
2001)  

15 WMODSS *  * *   * 
(Lu, Zhang, and Shi, 
2003) 

16 FMODSS *  * *   * 
(Wu, Lu, and Zhang, 
2004)  

17 FMOGDSS *  * *  * * 
(Wu, Lu, and Zhang, 
2007) 

‘*’ denotes ‘yes’ 

Within the 17 selected MODSS, Interactive Multiple Objective 

Programming (IMOP) can provide with solutions to multi-objective 
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programming problems subject to both strict and flexible constraints. An 

integral part of the system is an extension of a fuzzy-set approach 

assessing possible solutions by their degrees of membership to the 

objectives and constraints. The Dynamic Interactive Network Analysis 

System (DINAS) enabled the solution of various multi-objective 

transhipment problems with facility location. It used an extension of the 

classical reference-point approach to handle multiple objectives. In this 

system, decision makers can specify acceptable and required values for 

given objectives. The Visual Interactive Goal Programming (VIG) was 

designed to support both the modelling and solving of an MOLP problem 

based on goal programming. HYBRID used the solution of a two-person 

zero-sum game with mixed strategies to generate efficient solutions, and 

then proceeded to modify the feasible region using responses from 

decision makers. The Interactive MODSS had an MODM method-base 

of five popular MOLP methods. These methods can be used in stand 

alone mode or in any sequence the user wishes. Stewart (1991) 

developed an MODSS for the selection of a portfolio of R&D projects, 

which was carried out for a large electricity utility corporation. The 

R&DPS MODSS was constructed around a reference point approach for 

the underlying MODM problems. WQ-PMODSS is to predict the impact 

of alternative management systems on surface and groundwater quality 

as well as farm income. ISGPII is an interactive MODSS to provide a 

process of psychological convergence for decision makers, whereby it 

learns to recognise good solutions and their importance in the system, 

and to design an optimal system, instead of optimising a given system. 

MOLP-PC is an integrated MODSS, which has a method-base of 

fourteen popular MODM methodologies for solving MOLP problems. 

IMOST was investigated to improve the flexibility and robustness of 

MODM methodologies. The interactive concept provided a learning 

process about the system, whereby decision makers can learn to 

recognise good solutions, the relative importance of factors in the 

system, and then design a high-productivity and zero-buffer system 

instead of optimising a given system. A prototype decision support 

system (PDSS), using multi-objective decision theory and embedded 

simulation models, was developed to evaluate landfill cover designs for 

low level radioactive waste disposal sites. FORMDSS is a multi- 
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objective and/or multi-person DSS for analysing multiple resource forest 

management problems. The procedure includes formulating the problem 

in a multi-objective and group decision-making framework, and solving 

it using two solution techniques which consist of a distance-based 

compromise programming and a cooperative game theoretic approach of 

the Nash equilibrium type. GMCRII is an MODSS tool for providing 

strategic advice in multi-participant multi-objective decision-making 

situations. WMODSS is a Web-based MODSS, which can support online 

decision making for MOLP problems. 

The intelligent multi-objective group DSS (IMOGDSS) was 

developed for solving MOLP problems under an individual and/or a 

group decision making environment. We will discuss this system in 

details in Chapter 12. FMODSS and FMOGDSS are two fuzzy technique 

based DSS, which will be presented in details in Chapters 8 and 13, 

respectively.  

4.5 Multi-Attribute DSS 

Multi-attribute decision support systems (MADSS) employ one or more 

MADM methods for generating alternatives and selecting solutions. The 

model management function of an MADSS concentrates more on the 

problem structuring and model structuring. Watson and Buede (1987) 

defined the problem structuring as the identification of decision makers, 

the determination of decision making boundaries, the determination of 

the principal objective, the willingness and ability of other decision 

makers to provide inputs to the analysis. The problem structuring 

function can be integrated with the MADSS for better problem 

structuring support. It involves the creation of an evaluation tool for 

comparing the alternatives. 

A variety of MADSS can be found in the literature. Some earlier 

developed systems have a weak integrated function of DSS, a simple 

model management ability and data management ability. Some recently 

developed systems achieved improvements in the implementation of 

model management, data management, intelligent support, GUI and 

multiple decision makers environment. Table 4.2 lists 17 MADSS 
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including tools (C) and applications (S), and analyses their main 

characteristics related to: method-base (MB); database (DB); intelligence 

(I); group environment (GE); and GUI. 

Table 4.2: List of some selected MADSS 

No Name C S MB DB I GE GUI References  

1 PREFCALC *       
(Lagreze and 
Shakun, 1984)  

2 HIVIEW *       (Barclay, 1987)  

3 EQUITY  *      (Barclay, 1988)  

4 VISA *     * * 
(Belton and Vickers, 
1989)  

5 CRITERIUM *     *  
(Sygenex, 1989) 
(Bois et al., 1989) 

6 PROMETHEE *      * (Bois et al., 1989)  

7 
MCDM 
advisor 

*  *  *  * 
(Korhonen, 
Lewandowski and 
Wallenius, 1991) 

8 
EXPERT 
CHOICE 

*     *  
(Expert-Choice-Inc, 
1992)  

9 GRADS  *     * (Klimberg, 1992)  

10 MCDA-DSS *  * *   * 
(Antunes et al., 
1994)  

11 TSDSS  *     * 
(Yau and Davis, 
1994)  

12 MCView *   *   * (Vetschera, 1994)  

13 ICDSS  *  *   * (Agrell, 1995)  

14 InterQuad *       
(Sun and Steuer, 
1996) 

15 IMADS *  * * *   (Poh, 1998) 

16 ALLOCATE  *     * 
(Quaddus and Klass, 
1998) 

17 
Web-based 
FGDSS 

*  * *  * * 
(Lu, Zhang, and Wu, 
2005) 

‘*’ denotes ‘yes’ 
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We have only briefly overviewed the salient features without 

evaluating the advantages and disadvantages of these MADSS. The 

details are available from the cited references. The Web-based FGDSS 

listed in Table 4.2 uses MCDM method and will be presented in Chapter 

11 in details. 

4.6 Group DSS 

Decision support systems have been well researched and a variety of 

interactive solution methods of group decision making (GDM) have been 

derived. Systems that combine appropriate technologies and 

methodologies of DSS and GDM show the potential to enhance the 

efficiency and effectiveness of group decision work. Such applications of 

information technology to support the decision work of groups have been 

referred to as group decision support systems (GDSS) (Gray, 1987). A 

GDSS is characterised as an interactive computer-based information 

system that combines the capabilities of communication technologies, 

database technologies, computer technologies, and decision technologies 

to support the identification, analysis, formulation, evaluation, and 

solution of problems by a group in a user-friendly computing 

environment. Therefore, GDSS is a collection of hardware, software, 

people and procedures appropriately arranged in an interactive computer-

based environment that supports a group of decision makers who are 

engaged in a decision-making process. A GDSS has two major goals in 

fulfilling its mission. These are improving the productivity of idea 

generation by speeding up the decision-making process and increasing 

the effectiveness of decision making by optimising quality of resulting 

decisions. In addition, every GDSS has a set of features, which have to 

be considered when a GDSS is designed. Since it is a software system, it 

must be user-friendly. Apart from that, it must support a group of 

decision makers for improving the decision-making process. Generally a 

GDSS environment may include a group facilitator, who coordinates the 

group actions throughout the decision making process. 

Group decision support systems typically offer a wide range of 

capabilities, including computerised support for interactive modelling, 
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group preference aggregation mechanisms, communication, idea 

generation, and freedom of expression to reach towards an optimal group 

solution. Importantly, GDSS is used in decision groups, not in general 

group meetings, and to support decision making, not only creating 

alternatives. This is the foundational difference between GDSS and 

group support systems (GSS).  

Interest in the development of GDSS emerged in the early 1980s. The 

growing availability of local area networks and group communication 

services in the past few years, such as e-mail, online chart room, is 

making this GDSS increasingly available. A variety of academic articles 

on GDSS with these new technologies have promoted the incorporation 

of quantitative decision making models, such as MODM and MADM in 

GDSS.  

The focus in GDSS research has been primarily on the group’s 

decision models, methods, interaction and communication with a strong 

emphasis on consensus-building. However, the appropriateness of any 

decision model and method within a GDSS depends on the conditions of 

members, tasks, and decision environment.  Also, GDSS design must 

take into consideration of the members’ behaviours as well as technical 

issues in order to develop useful and effective systems. A variety of 

comprehensive and integrative frameworks, which combine the 

behavioural characteristics of GDM with the technical specifications of 

DSS, are used in the development of GDSS. Communication channels in 

GDSS include face to face and computer mediated communication 

channels. Some experiments have shown that the face-to-face channel of 

communication and the computer mediated communication all have their 

own advantages in GDSS. Other topics about GDSS design, the use of a 

GDSS to facilitate group consensus, the interacting effects of GDSS and 

uncertainty issues will be discussed in Chapters 10-13. 

Group decision support systems have gained such a high level of 

popularity that it is currently used widely in industry. Moreover, 

researchers are utilising the mechanism of GDSS in various academic 

research areas, such as automated facilitation, speech recognition, 

automatic idea consolidation, multi-lingual groups, knowledge 

management, fuzzy logic, and team situation awareness. Two more 

significant changes are to apply Web technology into GDSS to build 
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Web-based GDSS and to add intelligent technology into GDSS to build 

intelligent GDSS, which will be discussed with the development of real 

systems in Chapters 11, 12, and 13. 

4.7 Intelligent DSS  

The complexity of decision making is increasing. The active involvement 

of the user and the computer in an intelligent way is necessary in 

decision process. With the complex decision-making environment, the 

insufficiency of conventional DSS is emerging in the following factors: 

 

• The conventional DSS mainly adopt static models to manipulate data, 

which require decision makers to have knowledge in both issues of 

decision domain and models. Therefore, the function of DSS is 

passive in the decision support process and cannot provide active 

support while the decision environment changes. 

• Under the dominated process of decision makers, a conventional DSS 

uses models to solve problems; it needs decision process companied 

with definite calculability. It is therefore hard to provide support for 

some existing unstructured issues in decision-making process. 

• A conventional DSS is based on quantitative mathematic models, it 

lacks of providing support measure for qualitative issues, such as data 

imprecise problems, uncertain problems, and inference problems. 
 

Artificial intelligence (AI), including knowledge-based systems/ 

expert systems (KBS/ES), natural language analysis, machine leaning 

and inference, has experienced significant progress in research and 

implementation. As a powerful tool, AI allows a human-being to easily 

control and direct power sources in the accomplishment of a task by 

providing cognitive amplification or augmentation.  In particular, ES can 

build the domain expert knowledge-base and make the machine learning 

achieve the human expert in some domains. The ES application in 

management aims at specific domain decision issues.  
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Knowledge is represented in many different ways, such as frames, 

semantic nets, and rules etc. Knowledge is often processed in inference 

machines, which normally performs symbol processing. A knowledge-

based ES uses knowledge and problem-solving techniques on a skill 

level comparable to those of human experts and intends to serve as 

consultants for decision making. These systems consist of a knowledge- 

base, containing facts, rules, heuristics, situation patterns, and an 

inference system that makes decisions within a domain. A knowledge-

based ES enables information system builders to move problem domain 

knowledge from the human to the computer so as to support problem 

recognition, problem structure and problem solving. It provides expertise 

when human expertise is not available, more uniformly, and sometimes 

faster and assist managers in making complex decisions. It has become a 

trend that DSS products incorporate, and will eventually encompass, 

tools and techniques from AI, particularly from knowledge-based ES. 

Based on the two factors: (1) AI can solve some qualitative, 

approximate, and imprecise knowledge for DSS; (2) AI technique yields 

potential benefits to decision makers, and IDSS takes the advantages of 

both AI and DSS, Turban and Aronson (1998) proposed two kinds of 

possible connections between DSS and AI techniques, in particular, ES: 

(1) intelligent techniques integration into the conventional DSS 

components; and (2) intelligent techniques as an additional component of 

DSS. The studies about these combinations have received great attention. 

Intelligent DSS (IDSS), as the combination of AI/ES and DSS, can be 

seen as a DSS that provides access to data and knowledge-bases and/or 

conducts inference to support effective decision making in complex 

problem domains. The research of IDSS has focused on from decision 

making component expanding to integration, from quantitative model to 

knowledge-based decision-making approach. This makes the theory and 

measure of IDSS more mature and accurate. Development and 

implementation of IDSS and their applications in practice have become 

an active research area, from which IDSS provide a number of 

advantages and potential benefits: 

 

• IDSS can deliver automated decision analysis assistance and offer a 

wide range of realistic possibilities for helping decision makers. The 
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knowledge-base has become a form of combined data/model-base, 

the inference engine can be viewed as a knowledge-base management 

system, and the language system is a part of the dialog. These give 

decision makers the opportunity to explore ‘what if...’ situations with 

different types of inputs. Also, it can handle uncertainty when data 

are incomplete and uncertain. In particular, IDSS enable us to analyse 

data and applies processing rules to determine whether variances are 

significant and explain in terms of factors that contributed to the 

variances. 

• IDSS have great potential in improving the quality of decision 

making. Combined with formal decision making methods and ES 

technology, the IDSS is capable of delivering more reliable decision 

support tools for users. The IDSS is to assist managers with 

assessment of the relative importance of competitive priorities in their 

organisations. As human experts, IDSS have the potential to facilitate 

effective and swift decision making in the selection of appropriate 

applications that best match an organisation’s manufacturing strategy. 

The intelligent process of IDSS can be realised by system detects data 

trends in a dynamic environment, incorporates optimisation modules 

to recommend a near-optimum decision, and includes self-learning 

modules to improves efficiency of decision making. 

• IDSS can be used by more decision makers including those who have 

little knowledge in decision models, methods and analysis skills. 

IDSS’ ability to provide unprecedented level of automated guidance 

on the analysis of a class of decisions, thereby enabling end-users 

with little knowledge in decision analysis to be effective decision 

analysts in that domain. Comparing with the conventional DSS, an 

IDSS could explain why certain variances were deemed significant 

and why certain factors were found to have caused a variance to be 

significant. To the extent that, IDSS could determine the cause for 

many of the significant variances, managers need only focus attention 

on examining the generation processes for the most significant 

unexplained variances. 

 

We will present an intelligent multi-objective group DSS, which 

combines an ES with DSS, in Chapter 12. 
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4.8 Web-Based DSS 

The Web has grown rapidly because of its single user interface paradigm, 

distributed architecture, and the growth of open standards. Web browsers 

make it easy for various users to gain access to many diverse sources of 

information. In particular, Web technologies have provided a new media 

for sharing information about decision making and become the preferred 

platform of choice for the delivery of DSS. 

Traditional DSS requires software to be installed on individual 

workstations or computers with a particular standard user environment. 

Web-based DSS have gone a long way towards solving a number of 

these user flexibility and accessibility problems and have opened up DSS 

capabilities to a broader user group. 

Web-based DSS take Web technologies to deliver the decision 

making process among a different group of geographically distributed 

end-users. This geographical freedom allows DSS to be utilised across 

long location and at any time. DSS also can be easily integrated into 

existing applications or systems in Web domains such as corporate 

intranets, enterprise-wide extranets and Internet. For example, it can 

support government policy makers, business managers, and citizens in 

decision making through an e-government service system. 

The Web-based DSS architecture combines typical DSS structure and 

Web infrastructure. Most Web-based DSS are built using three-tier 

architecture. Decision makers using a Web browser send a request using 

the hypertext transfer protocol (HTTP) to a Web server. The Web server 

processes the request and the results are returned to the user’s Web 

browser for display (see Fig. 4.1). Web applications are designed to 

allow any authorised user, with a Web browser and an Internet 

connection, to interact with them (Power and Kaparthi, 2002). The 

application code usually resides on a remote server and the user interface 

is presented at the client’s Web browser. 
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Fig. 4.1: Web-based DSS Architecture 

Web technologies such as HTML and browser applications were 

developed in the early 1990s. While the broad use of the Web was after 

1996, Web-based DSS didn’t begin its growth until 1999. This rapid 

growth was quickly followed in 2000 by the introduction of DSS 

supporting Application Service Providers (ASPs) (Bhargava and Power, 

2001). The latter of these facilitating the decision support process among 

many decision makers without restrictions for time and location. At 

present, utilising ActiveX or Java-enabled Web browser software, DSS 

can be distributed without regard to platform or geography. In summary, 

Web-based DSS have shown their advantages in applications: 

 

• Web-based DSS have reduced technological barriers to make 

decision-relevant information and decision support tools available to 

use in geographically distributed locations. Because of the Web 

infrastructure, enterprise-wide DSS can now be implemented at a 
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relatively low cost in geographically dispersed companies to 

dispersed stakeholders, including suppliers and customers. Using 

Web-based DSS, organisations can provide DSS capability to 

managers over an intranet, to suppliers over an extranet, or to 

customers and any stakeholder over the global Internet. 

• Developing Web-based DSS will increase the use of DSS and 

decision information in the organisation. Because Web-based DSS 

improves the rapid delivery of ‘best practices’ analysis and decision-

making frameworks, and can promote more consistent decision 

making on repetitive decision tasks across a geographically 

distributed organisation. The Web-based IDSS also provides a way to 

manage a company’s knowledge repository and to bring knowledge 

resources into the decision-making process. 

• The Web-based DSS can also reduce some of the problems associated 

with the competing ‘thick-client’ enterprise-wide DSS architecture 

where special software or configuration needs to be installed on 

users’ computers. It becomes much easier to add new users, and their 

initial training needs are minimal. Web-based DSS thus reduce the 

costs of operations, support, maintenance, and administration. 
 

Many DSS software companies provide case studies of successful 

Web-based DSS implementations at their Web sites. The following three 

real-world application directions of Web-based DSS further show the 

advantages over the conventional DSS: 

 

(1) Supporting Staff 

GroupSystems (Morehouse, 2005) is used to communicate 

information and to provide input, discuss solutions, and create reports of 

recommended action. Many people participate in the crisis management 

activities using GroupSystems OnLine. Also, some companies developed 

DSS for executives, salespeople, and analysts. When users need 

information such as sales trends, they query the DSS themselves and get 

an answer in a few minutes. Furthermore, they can quickly analyse the 

data in different ways using Internet access. 
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(2) Supporting Customers 

The Customer DSS is a Web-based, marketing model that establishes 

a link between a company and its customers and provides assistance to 

the decision-making process (O’Keefe and McEachern, 1998). Many 

Web sites have decision support applications for customers. Active 

Buyer Guide (http://www.activebuyersguide.com) offers product 

recommendations directly from its shopping site. For example, users can 

use a ‘Compare’ feature to make pairwise comparisons of car models 

across pre-specified attributes. 
 

(3) Supporting Suppliers 

Some companies have created DSS for extranets as well as for 

intranets. For example, Artesyn Technologies (www.artesyn.com) has 

virtual design decision support tools to provide customers of its power 

supply products with pre-sales technical support. Also, some DSS can 

provide suppliers with Web access to sales forecasts and decision support 

capabilities. Some companies are also creating their Web-based DSS in 

which suppliers can use to control costs or reduce inventories.  

4.9 Components 

As already explained in Section 4.2, a database management system 

(DBMS), a model-base management system (MBMS), and a user 

interface are the main components of a general structure of a DSS. With 

the development of new information technologies, more components, 

such as knowledge-base, can be added into a DSS (Fig. 4.2). However, in 

a particular DSS application, it may only compose some of these 

components.  

Data management is the most important component of a DSS. It 

mainly includes a database, which contains relevant internal or external 

data for the situation and is managed by a DBMS. The data management 

component can be interconnected with data warehouse, and internal and 

external decision-making data.  

Model/method management as another important component is a 

software package that includes statistical, optimisation, or other 

quantitative models and methods that provide the system’s analytical 
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capabilities and appropriate software management. Modelling languages 

for building custom models can also be included by MBMS. This 

component can be connected to internal or external storage models, 

embedded in a model-base. The model-base provides simplified 

representations or abstraction of reality. A method-base is related to the 

model-base. It often includes a set of algorithms used to solve proposed 

models in the model-base. 

Knowledge management component can support any of the other 

subsystems or act as an independent component. It can be interconnected 

with the organisation’s knowledge-base, which may consist of a rule-

base, a fact-base, and so on. 

User interface means that user communicates with the DSS. A better 

decision can be derived through a DSS from the intensive interaction 

between computers and decision makers. 

These components of DSS can be connected to the corporate intranet, 

an extranet, and/or the Internet. However, in practice, DSS may have 

some special components, such as text-base, multi-media database, and 

so on. 
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Fig. 4.2: The main components of a DSS 

4.10   Summary 

Decision support system is an interactive computer-based information 

system, which can help decision makers utilise data, models, and 

methods to solve ill-structured decision problems. DSS incorporate 

database, model-base, method-base, and the intellectual resources of 

individuals or groups with the capabilities of the computer to improve 

the quality of decisions. Models, intelligence, methodology, and 

interaction in DSS are the key elements to formulate decision support. 

For several main types of DSS listed in this chapter each of them varies 

with their particular models and methodologies. DSS in the broad sense 

as the application oriented result of decision analysis and intelligence. 

Fuzzy set theory as a kind of intelligent technologies has been applied in 
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MODSS, MADSS, GDSS, and Web-based DSS. This is the main focus 

of this book, which will be discussed in the rest of this book. 
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Chapter 5 

Fuzzy Sets and Systems  

Fuzzy sets, introduced by Zadeh in 1965, provide us a new mathematical 

tool to deal with uncertainty of information. Since then, fuzzy set theory 

has been rapidly developed and many successful real applications of 

fuzzy sets and systems in wide-ranging fields have been appearing. In 

this chapter, we will review basic concepts of fuzzy sets, fuzzy relations, 

fuzzy numbers, linguistic variables, and fuzzy linear programming, 

which will be used in the rest chapters of the book. 

5.1 Fuzzy Sets 

5.1.1 Definitions 

Definition 5.1.1 (Fuzzy set) Let X be a universal set. Then a fuzzy set A
~

 

of X is defined by its membership function. 

],1,0[:~ →X
A

µ  (5.1.1) 
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µ֏    

The value of )(~ x
A

µ  represents the grade of membership of x in X and 

is interpreted as the degree to which x belongs to A
~

, therefore the closer 

the value of )(~ x
A

µ  is 1, the more belongs to A
~

. 

A crisp or ordinary set A of X can also be viewed as a fuzzy set in X 

with a membership function as its characteristic function, i.e., 
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A fuzzy set A
~

 can be characterised as a set of ordered pairs of 

elements x and grade )(~ x
A

µ and is noted 

( ){ }XxxxA
A

∈= |)(,
~

~µ . (5.1.3) 

where each pair ( ))(, ~ xx
A

µ is called a singleton.  

When X is a countable or finite set, a fuzzy set A
~

 on X is expressed as 
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~
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∈
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i

xxA µ  (5.1.4) 

When X is a finite set whose elements are x1, x2, …, xn, a fuzzy set A
~

 

on X is expressed as 

( ) ( ) ( ){ }      .)(,,,)(,,)(,
~
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When X is an infinite and uncountable set, a fuzzy set A
~

 on X is 

expressed as 

.)(
~

∫=
X

xxA µ  (5.1.6) 

These expressions mean that the grade of x is )(~ x
A

µ  and the 

operations ‘+,’ ‘Σ,’ and ‘∫’ do not refer to ordinary addition and integral 

but they are union, and ‘/’ does not indicate an ordinary division but it is 

merely a marker. 

 

The following basic notions are defined for fuzzy sets. 

 

Definition 5.1.2 (Support of a fuzzy set) Let A
~

 be a fuzzy set on X. Then 

the support of A
~

, denoted by supp( A
~

), is the crisp set given by 

{ }.0)(|)
~

supp( ~ >∈= xXxA
A

µ  (5.1.7) 

Definition 5.1.3 (Normal fuzzy set) Let A
~

 be a fuzzy set on X. The 

height of A
~

, denoted by hgt( A
~

), is defined as 

).(sup)
~

hgt( ~ xA
A

Xx

µ
∈

=  (5.1.8) 

If hgt( A
~

) = 1, then the fuzzy set A
~

 is called a normal fuzzy set, 

otherwise it is called subnormal. 
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Definition 5.1.4 (Empty fuzzy set) A fuzzy set A
~

 is empty, denoted by 

∅, if 0)(~ =x
A

µ  for all Xx ∈ . 

5.1.2 Operations and properties 

Definition 5.1.5 (Subset) Let A
~

 and B
~

 be two fuzzy sets on X. The 

fuzzy set A
~

 is called a subset of B
~

 (or A
~

 is contained in B
~

), denoted by 

A
~

⊂ B
~

, if )()( ~~ xx
BA

µµ ≤  for all Xx ∈ . 

 

Definition 5.1.6 (Equal) Let A
~

 and B
~

 be two fuzzy sets on X. The fuzzy 

sets A
~

 and B
~

 are equal, denoted by A
~

= B
~

, if B
~

⊂ A
~

 and A
~

⊂ B
~

. 

 

Definition 5.1.7 (Union) Let A
~

 and B
~

 be two fuzzy sets on X. The 

union of two fuzzy sets A
~

 and B
~

, denoted by A
~

∪ B
~

, if for all ,Xx ∈  
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Definition 5.1.8 (Intersection) Let A

~
 and B

~
 be two fuzzy sets on X. The 

intersection of two fuzzy sets A
~

 and B
~

, denoted by A
~

∩ B
~

, if for all 
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).()(

)(),(min)(

~~

~~~~

xx

xxx

BA

BABA

µµ

µµµ

∧=

=
∪  (5.1.10) 

 

Definition 5.1.9 (Complementation) Let A
~

 be a fuzzy set on X. The 

complementation of a fuzzy set A
~

, denoted by c
A
~

, if for all ,Xx ∈  

).(1)( ~~ xx
AAc µµ −=  (5.1.11) 

 

Theorem 5.1.1 Let ,
~
A B

~
 and C

~
 be fuzzy sets on X. We have 

(1)  ∅ ⊂ A
~

⊂ X; 

(2)  (Reflexive law): A
~

⊂ A
~

; 

(3)  (Transferability): If A
~

⊂ B
~

 and B
~

⊂ ,
~
C  then A

~
⊂ C

~
; 

(4)  (Commutativity law): ABBAABBA
~~~~

and
~~~~

∩=∩∪=∪ ; 

(5)  (Associativity law): ( ) ( )CBACBA
~~~~~~

∪∪=∪∪  and ( ) CBA
~~~

∩∩  

( )CBA
~~~

∩∩= ; 
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(6)  (Distributivity law): ( ) ( ) ( )CBCACBA
~~~~~~~

∩∪∩=∩∪ , and 

( ) ( ) ( )CBCACBA
~~~~~~~

∪∩∪=∪∩ ; 

(7)  (Absorption): ( ) AABA
~~~~

=∩∪  and ( ) AABA
~~~~

=∪∩ ; 

(8)  (De Morgan’s laws):  ( ) ccc

BABA
~~~~

∩=∪  and ( ) ccc

BABA
~~~~

∪=∩ ; 

(9)  (Involution): ( ) AA
cc ~~

= . 

It should be noted that the complementarity law and mutually 

exclusive law are no longer valid for fuzzy sets: 

≠∩ c
AA
~~

∅ and XAA c ≠∪
~~

. 

5.1.3 Decomposition theorem and the extension principle 

Definition 5.1.10 (α-cut) Let A
~

 be a fuzzy set on X and [ ]1,0∈α . The 

α-cut of the fuzzy set A
~

 is the crisp set Aα given by  

{ }     .)(| ~ αµα ≥∈= xXxA
A

 (5.1.12) 

 

Theorem 5.1.2 Let A
~

 and B
~

 be two fuzzy sets on X and [ ]1,0∈α . We 

have 

(1) If α1≤ α2, then 
21 αα AA ⊃ ;  

(2) ( ) ααα BABA ∪=∪
~~

 

(3) ( ) ααα BABA ∩=∩
~~  

 

Theorem 5.1.3 (Decomposition theorem) Let A
~

 be a fuzzy set on X with 

the membership function ),(~ x
A

µ  Aα be the α-cut of the fuzzy set A
~

 and 

)(xAα
χ  be the characteristic function of the crisp set Aα for [ ]1,0∈α . 

Then the fuzzy set A
~

 can be represented by 

,
~

]1,0[
α

α
αAA

∈
∪=  (5.1.13) 

and its membership function can be represented by 

( ).)(sup)(
]1.0[

~ xx AA α
χαµ

α

∧=
∈

 (5.1.14) 

 

Definition 5.1.11 (Convex fuzzy set) A fuzzy set A
~

 on Rn is called a 

convex fuzzy set if its α-cuts Aα are the crisp convex sets for all [ ]1,0∈α . 
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Theorem 5.1.4 A fuzzy set A
~

 on Rn is a convex fuzzy set if and only if  

( ))(),(min))1(( 2~1~21~ xxxx
AAA

µµααµ ≥−+  (5.1.15) 

for any x1, x2 ∈Rn
 and [ ]1,0∈α . 

 

Definition 5.1.12 (Bounded fuzzy set) Let A
~

 be a fuzzy set on Rn. A
~

 is 

called a bounded fuzzy set if its α-cuts Aα are the crisp bounded sets for 

all [ ]1,0∈α . 

 

Definition 5.1.13 (Extension principle) Let f: X →Y be a mapping from a 

set X to a set Y. Then the extension principle allows us to define the 

fuzzy set B
~

 on Y induced by the fuzzy set A
~

 on X through f as follows: 

(1) ( ),)(sup)( ~

)(
)

~
(

xy
A

Xx
yxf

Af
µµ

∈
=

=  

(2) ( ).)()( ~
)

~
(1 xfx

BBf
µµ =−  

5.2 Fuzzy Relations 

Let X and Y be two crisp sets and X×Y be the Cartesian product.  

Definition 5.2.1 (Fuzzy relation) A fuzzy relation R
~

 on X×Y is defined 

as 

( ) ( )( ) ( ){ }YXyxyxyxR
R

×∈= ,|,,,
~

~µ , (5.2.1) 

where ]1,0[:~ →×YX
R

µ  is a grade of membership function. If X = Y, 

then R
~

 is called a fuzzy relation on X. 
 

Definition 5.2.2 (Fuzzy reflexivity) Let R
~

 be a fuzzy relation on the 

Cartesian product S = X×X. R
~

 is called reflexive if for all x ∈X we have 

1),(~ =xx
R

µ . (5.2.2) 

If for at least one x in X but not for all x’s, (5.2.2) is not true the fuzzy 

relation R
~

 is called irreflexive. If (5.2.2) is not satisfied for any x, then 

R
~

 is called antireflexive. 
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Definition 5.2.3 (Fuzzy symmetry) Let R
~

 be a fuzzy relation on the 

Cartesian product S = X×X. R
~

 is called symmetric if for all x, y ∈X we 

have 

),(),( ~~ xyyx
RR

µµ = . (5.2.3) 

If (5.2.3) is not satisfied for some pairs (x, y), then we say R
~

 is 

antisymmetric. If it is not satisfied for all pairs (x, y), then we say the 

fuzzy relation R
~

 is asymmetric. 

 

Definition 5.2.4 (Fuzzy max-min transitivity) Let R
~

 be a fuzzy relation 

on the Cartesian product S = X×X. R
~

 is called max-min transitive if for 

all (x, y), (y, z) ∈X×X, we have 

( )),(),(),( ~~~ zyyxzx
RRyR

µµµ ∧∨≥ , (5.2.4) 

where all the maxima with respect to y are taken for all the minima inside 

the brackets in (5.2.4). A transitivity can be defined for other operations 

such as product (·) instead of min (∧) in (5.2.4), in such a case we 

have what is called the fuzzy max-product transitivity. In fact, the 

transitivity can be defined for any triangular conorms (S) and triangular 

norms (T) instead of max (∨) and min (∧), respectively, in (5.2.4), it is 

called the fuzzy S-T transitivity. A fuzzy relation that does not satisfy 

(5.2.4) for all pairs, then we say R
~

 is non-transitive. If it fails to satisfy 

(5.2.4) for all pairs, then it is called anti-transitive. 

 

Definition 5.2.5 A fuzzy relation is called a fuzzy proximity or fuzzy 

tolerance relation if it is reflexive and symmetric. A fuzzy relation is 

called a fuzzy similarity relation if it is reflexive, symmetric, and 

transitive. 

 

Definition 5.2.6 (Fuzzy composition) Let A
~

 and B
~

 be two fuzzy sets on 

X×Y and Y×Z, respectively. A fuzzy relation R
~

 on X×Z is defined as 

( ) ( )( ) ( ){ }ZXzxzxzxR
R

×∈= ,|,,,
~

~µ , (5.2.5) 

where  

( )( )),(),,(),(),(),(

]1,0[:

~~~~~

~

zyyxTSzxzxzx

YX

BAYyBAR

R

µµµµ

µ

∈
==

→×

�
֏

 (5.2.6) 
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for x∈X and z∈Z, ‘T’ and ‘S’ are triangular norms and triangular 

conorms, respectively. 

5.3 Fuzzy Numbers 

Definition 5.3.1 (Fuzzy number) A fuzzy set a~  on R is called a fuzzy 

number if it satisfies the following conditions: 

(1)  a~  is normal, i.e., there exists an x0 ∈R such that 1)( 0~ =xaµ ; 

(2)  aα is a closed interval for every α ∈ (0, 1], noted by ],[ RL
aa αα ; 

(3)  The support of a~ is bounded. 

 

Let F(R) be the set of all fuzzy numbers on R. By the decomposition 

theorem of fuzzy sets, we have  

],[~
]1,0[

RL
aaa αα

α
α

∈
∪= , (5.3.1) 

for every a~∈ F(R). For any real number λ ∈ R, we define µλ(x) by 





≠

=
=

λ

λ
µλ

x

x
x

iff0

iff1
)( . 

Then λ ∈  F(R). 

 

Definition 5.3.2 A triangular fuzzy number a~ can be defined by a triplet 

( )RL
aaa 00 ,,  and the membership function )(~ xaµ is defined as: 















<

≤≤
−

−

≤≤
−

−

<

=

xa

axa
aa

xa

axa
aa

ax

ax

x

R

R

R

R

L

L

L

L

a

0

0

0

0

0

0

0

0

~

0

0

)(µ , (5.3.2) 

where .11

RL
aaa ==  

 

Definition 5.3.3 If a~  is a fuzzy number and ]1,0(anyfor0 ∈> λλ
L

a , 

then a~  is called a positive fuzzy number. Let )(*
RF+  be the set of all 

finite positive fuzzy numbers on R. 
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Definition 5.3.4 For any )(
~

,~ RFba ∈ and ,0 R∈< α  the sum, scalar 

product and product of two fuzzy numbers ,
~~ ba +  ,

~~ ba −  a~α  and ba
~~ ×  

are defined by the membership functions 

)},(),({minsup)( ~~~~ vut
ba

vutba
µµµ

+=+
=   (5.3.3) 

)},(),({minsup)( ~~~~ vut
ba

vutba
µµµ

−=−
=   (5.3.4) 

)},({minsup)( ~~ ut a
ut

a µµ
α

α
=

=   (5.3.5) 

)},(),({minsup)( ~~~~ vut
ba

vutba
µµµ

×=×
=   (5.3.6) 

where we set −∞=}sup{φ . 

 

Theorem 5.3.1 For any )(
~

,~ RFba ∈  and ,0 R∈< α  

∪
]1,0(

],,[
~~

∈

++=+
λ

λλλλλ RRLL
bababa  

,)](),([

)
~

(~

],[
~~

]1,0(

]1,0(

∪

∪

∈

∈

−+−+=

−+=

−−=−

λ
λλλλ

λ
λλλλ

λ

λ

LRRL

LRRL

baba

ba

bababa

 

∪
]1,0(

],[~

∈

=
λ

λλ ααλα RL aaa , 

∪
]1,0(

],[
~~

∈

××=×
λ

λλλλλ RRLL bababa . 

 

Definition 5.3.5 For any )(~ *
RFa +∈  and 

+∈< Qα0  (
+Q  is a set of all 

positive rational numbers), the positive fuzzy number a~  power of λ is 

defined by the membership function 

)}({minsup)( ~~ ut a
ut

a
µµ

α
α

=
=   (5.3.7) 

where we set .}sup{ −∞=φ  

 

Theorem 5.3.2 For any )(~ *
RFa +∈  and 

+∈< Qα0 , 

.])(,)[(~

]1,0(

∪
∈

=
λ

α
λ

α
λ

α λ RL
aaa  

 

Definition 5.3.6 Let ba
~

and~  be two fuzzy numbers. We define 

(1) ba
~~ ≥  iff LL

ba λλ ≥  and ]1,0(, ∈≥ λλλ
RR

ba ; 
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(2) ba
~~ =  iff ba

~~ ≥ and ;~~
ab ≥  

(3) ba
~~ >  iff  ba

~~ ≥  and there exists a ]1,0(0 ∈λ  such that LL ba
00 λλ >  or 

.
00

RR ba λλ >  

 

Definition 5.3.7 If a~  is a fuzzy number and ,10 ≤≤< RL
aa λλ

 for any 

]1,0(∈λ , then a~  is called a normalised positive fuzzy number. Let 

)(*
RFN

 be the set of all normalised positive triangular fuzzy numbers on 

R. 

 

Definition 5.3.8 Let )(
~

,~ RFba ∈ . Then the quasi-distance function of a~  

and b
~

 is defined as 

2

1

1

0

22 ])()[(
2

1
)

~
,~( 








∫ −+−= λλλλλ dbababad RRLL  (5.3.8) 

 

Definition 5.3.9 Let )(
~

,~ RFba ∈ . Then the fuzzy number a~  is said to 

closer to the fuzzy number b
~

 as )
~

,~( bad  approaches 0. 
 

Proposition 5.3.1 If both ba
~

and~  are real numbers, then the quasi-

distance measurement )
~

,~( bad is identical to the Euclidean distance.  

 

Proposition 5.3.2 Let ).(
~

,~ RFba ∈ 1) If they are identical, then 

.0)
~

,~( =bad 2) If a~  is a real number or b
~

 is a real number and 

0)
~

,~( =bad , then ba
~~ = . 

 

Proposition 5.3.3 Let )(~,
~

,~ RFcba ∈ . Then b
~

 is closer to a~  than c~  if 

and only if )~,~()~,
~

( acdabd < . 

 

Proposition 5.3.4 Let ).(
~

,~ RFba ∈  If )0,
~

()0,~( bdad <  then a~  is closer 

to 0 than b
~

. 

 

Definition 5.3.10 Let .,,2,1),(~ niRFai ⋯=∈ We define )~,,~,~(~
21 naaaa ⋯=  

),(

]1,0[:

~

1

~

ia

n

i

n
a

xx

R

i
µ

µ

∧
=

→

֏
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where x = (x1, x2, …, xn)
T
 ∈ R

n, and a~ is called an n-dimensional fuzzy 

number on R
n. If ,,,2,1),(~ niRFai ⋯=∈  a~  is called an n-dimensional 

finite fuzzy number on Rn. 

 

Let )( nRF  be the set of all n-dimensional fuzzy numbers on Rn. 
 

Proposition 5.3.5 For every )(~ n
RFa ∈ , a~  is normal. 

 

Proposition 5.3.6 For every )(~ n
RFa ∈ , the λ-section of a~  is an n-

dimensional closed rectangular region for any ]1,0(∈λ . 

 

Proposition 5.3.7 For every aRFa
n ~),(~ ∈  is a convex fuzzy set, i.e., 

),()())1(( ~~~ yxyx aaa µµλλµ ∧>−+  

whenever λ ∈ [0, 1], x = (x1, x2, …, xn)
T
, y = (y1, y2, …, yn)

T
 ∈ R

n. 
 

Proposition 5.3.8 For every )(~ n
RFa ∈  and λ1, λ2 ∈ (0, 1], if 

21 λλ < , 

then 
12 λλ aa ⊂ . 

 

Definition 5.3.11 For any )(
~

,~ n
RFba ∈ and ,0 R∈< α  the sum, scalar 

product and product of two fuzzy numbers ,
~~ ba +  ,

~~ ba − baa
~~and~ ×α  

are defined by the membership functions 

),()( ~~
1

~~ iba

n

iba
xx

ii +=+
∧= µµ  (5.3.9) 

),()( ~~
1

~~ iba

n

iba
xx

ii −=−
∧= µµ  (5.3.10) 

),()( ~
1

~ ia

n

i
a xx

ii
αα µµ

=
∧=  (5.3.11) 

).()( ~~
1

~~ iba

n

iba
xx

ii×=×
∧= µµ  (5.3.12) 

Definition 5.3.12 For any ),,2,1)((~),~,,~,~(~ *

21 niRFaaaaa in ⋯⋯ =∈= +
 and 

,0 +∈< Qα   

)}.()( ~
1

~ ia

n

ia
xx

i
αα µµ

=
∧=   (5.3.13) 

Definition 5.3.13 For any n-dimensional fuzzy numbers )(
~

,~ n
RFba ∈ , 

and ]1,0(∈α  we define 
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(1) ba
~~

α
≻  iff  LL ba λλ >  and ]1,[, αλλλ ∈> RR ba ; 

(2) ba
~~

α≻  iff  LL ba λλ ≥  and ]1,[, αλλλ ∈≥ RR ba ; 

(3) ba
~~

α≻ iff  LL
ba λλ >  and  ]1,[, αλλλ ∈> RR ba . 

We call the binary relations ≻≻, , and ≻  a fuzzy max order, a strict 

fuzzy max order, and a strong fuzzy max order, respectively. 

 

Definition 5.3.14 Let )(
~

,~ RFba ∈  be two fuzzy numbers, the ranking of 

two fuzzy numbers are defined as: 

ba
~~ ≤  if  )

~
()~( bmam <  (5.3.14) 

or 

)
~

()~( bmam =  and )
~

()~( ba σσ ≥  (5.3.15) 

where the mean )~(am  and the standard deviation )~(aσ are defined as: 

( )

( )

( )
( )

( )

s a

s a

xa x dx
m a

a x dx
=
∫
∫
ɶ

ɶ

ɶ
ɶ

ɶ
 (5.3.16) 

1
22

( ) 2

( )

( )
( ) ( ( )

( )

s a

s a

x a x dx
a m a

a x dx
σ

 
 = −
 
 

∫
∫
ɶ

ɶ

ɶ
ɶ ɶ

ɶ
 (5.3.17) 

Where ( ) { | ( ) 0}s a x a x= >ɶ ɶ  is the support of fuzzy number a~ . 

For triangular fuzzy number ),,(~ nmla = , 

)(
3

1
)~( nmlam ++=  (5.3.18) 

2 2 21
( ) ( )

18
a l m n lm ln mnσ = + + − − −ɶ  (5.3.19) 

5.4 Linguistic Variables  

Any linguistic description is a formal representation of systems made 

through fuzzy set theory, fuzzy relations, and fuzzy operators. It offers an 

alternative to describe and use human languages in related analysis 

models and systems. Informal linguistic descriptions used by humans in 

daily life and in the performance of skilled tasks, such as control of 
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industrial facilities, troubleshooting, aircraft landing, decision making, 

text searching and so on, are usually the starting point for the 

development of linguistic descriptions.  

In the situations mentioned above information cannot be described 

and assessed precisely in a quantitative manner but may be in a 

qualitative one. These situations often involve attempting to qualify an 

event or an object by our human perception, and therefore often lead to 

use words in natural languages instead of numerical values. For example, 

in group decision making, an individual’s role can be described by using 

linguistic terms such as important person.  To express decision makers’ 

judgment for a comparison of a pair of assessment-criteria, ‘equally 

important’ or ‘A is more important than B’ could be used. In other 

cases, precise quantitative information cannot be obtained due to its 

unavailability or its high computational cost. Hence, an approximate 

fuzzy value can be applicable. For example, when evaluating the 

satisfactory for a product, terms like very good, good, medium, or bad 

can be used instead of numeric values. Similarly, to express decision 

makers’ preference for an alternative linguistic term such as low and high 

could be used.  

Since these linguistic terms reflect the uncertainty, inaccuracy and 

fuzziness of decision makers, fuzzy sets and fuzzy relations are good for 

modelling linguistic variable deal with qualitative assessments described 

in a human-like language.  

A linguistic variable is a quintuple (X,T(X),U,G,M,), where X is the 

name of the variable, T(X) is the term set, i.e., the set of names of 

linguistic values of X, U is the universe of discourse, G is the grammar to 

generate the names and M is a set of semantic rules for associating each 

X with its meaning.  

Linguistic terms have been defined as general as possible, but it is 

possible to precise their membership function parameters to provide 

more accuracy in the solution map. For example, to express decision 

makers’ preference for an alternative, five linguistic terms are defined in 

an interval ranging from 0 to 1 and shown in Table 5.1 with their general 

membership functions. For example, the linguistic term ‘High’ can be 

represented as its membership function as in Fig. 5.1. 
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Table 5.1: Some definitions of linguistic variable-Preference   

Linguistic terms Membership functions 

Very low ∪
]1,0[

]
10

1
,0[

∈

−

λ

λ
λ  

Low  ]
10

89
,

10
[

]1,0[

λλ
λ

λ

−

∈

∪  

Medium  ]
10

2449
,

10

916
[

]1,0[

λλ
λ

λ

−+

∈

∪  

High ]
10

19100
,

10

4932
[

]1,0[

λλ
λ

λ

−+

∈

∪  

Very high  ]1,
10

8119
[

]1,0[

∪
∈

+

λ

λ
λ  

 

 
Fig. 5.1: Membership function of the linguistic term ‘High’ 

The concept of linguistic variables has been applied to handle many 

kinds of linguistic terms and approximate reasoning in many areas 

especially in decision-making problems. 

5.5 Fuzzy Linear Programming  

Zimmermann first introduced fuzzy set theory into conventional linear 

programming problems in 1976. He considered a linear programming 

problem with a fuzzy goal and fuzzy constraints. Following the fuzzy 
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decision proposed by Bellman and Zadeh (1970) together with linear 

membership functions, he proved that there exists an equivalent linear 

programming problem. Since then, fuzzy linear programming has been 

developed in number of directions with many successful applications, 

including fuzzy multi-objective programming, fuzzy bilevel 

programming, and fuzzy dynamic programming. 

5.5.1 Zimmermann’s model 

We introduce an n-dimensional row vector c = (c1, c2, …, cn), an n-

dimensional column vector x = (x1, x2, …, xn)
T,  an n-dimensional column 

vector b = (b1, b2, …, bm)T
, and an m× n matrix A = (aij), a linear 

programming problem can be described as follows: 

.0

tosubject

min

≥

≤

=

x

bAx

cxz

 (5.5.1) 

In contrast to a conventional linear programming problem, 

Zimmermann proposed to soften the rigid requirements of decision 

makers to strictly minimise the objective function and to strictly satisfy 

the constraints. Namely, when the imprecision or fuzziness of decision 

makers’ judgment is softened the usual linear programming problem 

(5.5.1) can be covered into the following fuzzy version: 

,0

0

≥x

bAx

cxz

≺

≺

 (5.5.2) 

where the symbol ‘≺ ’ denotes a relaxed or fuzzy version of the ordinary 

inequality ‘≤.’ More explicitly, these fuzzy inequalities representing 

decision makers’ fuzzy goal and fuzzy constraints mean that ‘the 

objective function cx should be essentially smaller than or equal to an 

aspiration level z0 of decision makers’ and ‘the constraints Ax should be 

essentially smaller than or equal to b,’ respectively. 
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5.5.2 Fuzzy parameters 

In most real-world situations, the possible values of the parameters of 

linear programming problems are often only imprecisely or ambiguously 

known to experts when establishing a fuzzy linear programming model. 

With this observation, it would be certainly more appropriate to interpret 

experts’ understanding of the parameters as fuzzy numerical data, which 

can be represented by means of fuzzy sets of the real line known as fuzzy 

numbers. This fuzzy linear programming problem with fuzzy parameters 

model is 

,0

~~
tosubject

~min

≥

=

x

bxA

xcz

≺  (5.5.3) 

where c~ is an n-dimensional row fuzzy vector ),~,,~,~(~
21 ncccc ⋯= an n-

dimensional column vector x = (x1, x2, …, xn)
T,  an n-dimensional column 

fuzzy vector ,)
~

,,
~

,
~

(
~

21
T

mbbbb ⋯=  and an m×n fuzzy matrix ).~(
~

ijaA =  

The symbol ‘≺ ’ denotes a fuzzy ordinary relation between two fuzzy 

numbers. 

5.6 Summary 

This chapter introduced fuzzy sets related concepts, which will be used 

in the rest chapters of this book. Linguistic terms such as high and low, 

more or less discussed in this chapter can be used for fuzzy multi-

attribute decision making. The fuzzy linear programming will be applied 

in fuzzy multi-objective decision making. For any related approaches to 

solve fuzzy linear programming problems, we refer the relevant 

references at the end of the book. 
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Chapter 6 

Fuzzy MODM Models 

Many decision problems are involved in multiple objectives, called 

multi-objective decision making (MODM). Most MODM problems can 

be formulated by multi-objective linear programming (MOLP) models. 

Referring to the imprecision and insufficient inherent in human 

judgments, uncertainties may be affected and incorporated in the 

parameters of an MOLP model, which is called a Fuzzy MOLP (FMOLP) 

model. Uncertainties are also involved in the goals of decision makers 

for their multiple objectives, called fuzzy multi-objective linear goal 

programming (FMOLGP). 

In this chapter, we first illustrate what is an FMOLP problem. We 

then give a general FMOLP model in which fuzzy parameters of 

objective functions and constraints are described by membership 

functions. To solve such an FMOLP problem, we propose an optimal 

solution concept of FMOLP. Importantly, we develop a general solution 

transformation theorem and a set of related workable solution 

transformation theorems. Based on these theorems, we obtain an optimal 

solution of the FMOLP by solving an associated MOLP problem. We 

further introduce an FMOLGP model and its related theorems. We will 

apply these models and theorems in Chapter 7 to develop related 

methods to get an optimal solution for the FMOLP problem. 

6.1 A Problem 

As the example described in Chapter 2, a manufacturing company has six 

machine types - milling machine, lathe, grinder, jig saw, drill press, and 

band saw - whose capacities are to be devoted to produce three products 
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x1, x2, and x3. Decision makers have three objectives of maximising 

profits, quality, and worker satisfaction. When formulating the problem, 

various uncertain factors of the real world system will determine the 

parameters of objective functions and constraints in the MOLP model by 

the experts. Naturally, the parameters of its objective functions and 

constraints are assigned with some uncertainties, expressed by fuzzy 

numbers. As shown in Table 6.1, for example, to produce one unit of x1 

needs about 12 hours of milling machine and about 3 hours of lathe.  

Table 6.1: Production planning data 

Machine 
Product x1 

(unit) 

Product x2 

(unit) 

Product x3 

(unit) 

Machine 

(available 

hours)  

Milling machine About 12 About 17 About 0 About 1400 

Lathe About 3 About 9 About 8 About 1000 

Grinder About 10 About 13 About 15 About 1750 

Jig saw About 6 About 0 About 16 About 1325 

Drill press About 0 About 12 About 7 About 900 

Band saw About 9.5 About 9.5 About 4 About 1075 

     

Profits About 50 About 100 About 17.5  

Quality About 92 About 75 About 50  

Worker Satisfaction About 25 About 100 About 75  

Therefore, with these imprecise values, this problem can be described 

by an FMOLP model as follows: 
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Here, α~  means ‘about α ,’ for example, 
~

50  represents ‘about 50.’ 

We can see that all parameters of objective functions and constraints are 

fuzzy numbers. Obviously, a real number is a special case of a fuzzy 

number. In following parts, the term ‘fuzzy parameters’ contains the case 

of ‘real numbers.’ 

6.2 Fuzzy Parameter-Based MOLP Models 

6.2.1 A general FMOLP model 

Consider a situation in which all parameters of the objective functions 

and the constraints are fuzzy numbers represented in any form of 

membership functions. Such an FMOLP problem can be formulated as 

follows, in general. 

 

(FMOLP)
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where 
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For the sake of simplicity, we set { }0,
~~

;
~

>= xbxAxX ≺  and assume 

that X
~

 is compact. In the FMOLP problem, for each Xx
~

∈ , the value of 

the objective function 
F

xc ,~  is a fuzzy number. Thus, we introduce the 

following concepts of optimal solutions to the FMOLP problems. 
 

Definition 6.2.1 A point n
Rx ∈*  is called a complete optimal solution to 

the FMOLP problem if it holds that 
FF

xcxc ,~,~ *
≻  for all Xx

~
∈ . 

 

Definition 6.2.2 A point n
Rx ∈*  is called a Pareto optimal solution to 

the FMOLP problem if there is no Xx
~

∈  such that 
FF

xcxc *,~,~ ≻  

holds. 
 

Definition 6.2.3 A point nRx ∈*  is called a weak Pareto optimal 

solution to the FMOLP problem if there is no Xx
~

∈  such that 

FF
xcxc *,~,~ ≻  holds. 

 

The efficient approach for solving the FMOLP problem is to 

transform it into an associative crisp programming. As normal MOLP 

problems have been well studied, the main idea here is to define an 

associative MOLP and then setting up the relationship between the 

solution of FMOLP (6.2.1) and the solution of the associated MOLP 

problem. By the definition of the Pareto optimal solution of the MOLP, 

other related methods can be designed and developed for solving the 

FMOLP problem.  

We consider the associated MOLP problem with the FMOLP problem 

as follows: 
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In the following, we introduce the concepts of optimal solutions of the 

MOLP problem. 
 

Definition 6.2.4 A point n
Rx ∈*  is called a complete optimal solution to 

the MOLP problem if it holds that ,),,,(),,,( ** TRLTRL
xcxcxcxc λλλλ >  

for all { }]1,0[,0,,; ∈><<=∈ λλλλλ xbxAbxAxXx RRLL  and [ ]1,0∈λ . 
 

Definition 6.2.5 A point n
Rx ∈*  is called a Pareto optimal solution to 

the MOLP problem if there is no Xx ∈  such that 

[ ]1,0,),,,(),,,( ** ∈< λλλλλ
TRLTRL xcxcxcxc  holds. 

 

Definition 6.2.6 A point n
Rx ∈*  is called a weak Pareto optimal 

solution to the MOLP problem if there is no Xx
~

∈  such that 

[ ]1,0,),,,(),,,( ** ∈< λλλλλ
TRLTRL

xcxcxcxc  holds. 
 

Theorem 6.2.1 Let n
Rx ∈*  be a feasible solution to the FMOLP 

problem. Then 

(1) *x  is a complete optimal solution to the FMOLP problem, if and 

only if *x  is a complete optimal solution to the MOLP problem. 

• *x  is a Pareto optimal solution to the FMOLP problem, if and only if 
*x  is a Pareto optimal solution to the MOLP problem. 

• *x  is a weak Pareto optimal solution to the FMOLP problem, if and 

only if *x  is a weak Pareto optimal solution to the MOLP problem. 
 

Proof: The proof is obvious from Definitions 6.2.1 - 6.2.6. 
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6.2.2 An FMOLPαααα model 

A feasible solution must satisfy the constraints for all [ ].1,0∈λ  

However, in general, this is a too strong condition to get an optimal 

solution. Now we consider a typical parameter ci represented by a fuzzy 

number ic~ . The possibility of such a parameter ci taking values in the 

range ],[
R

i

L

i cc
λλ

 is λ or above. While the possibility of ci taking values 

beyond ],[
R

i

L

i cc
λλ

 is less than λ. Thus, one would be generally more 

interested in a solution using parameters ci taking values in ],[
R

i

L

i cc
λλ

 

with λ ≥ α > 0. As a special case, if the parameters involved are either a 

real number of a fuzzy number with a triangular membership function, 

then, we will have the usual non-fuzzy optimisation problem (e.g., α = 

1). To formulate this idea, we introduce the following FMOLPα model. 
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where 

),(*)
~

,,
~

,
~

(
~

,

~~~

~~~

~~~

~
,

~~~

~~~

~~~

~

21

21

22221

11211

21

22221

11211

mT

m

mnmm

n

n

knkk

n

n

RFbbbb

aaa

aaa

aaa

A

ccc

ccc

ccc

c

∈=





















=





















=

⋯

⋯

⋮⋱⋮⋮

⋯

⋯

⋯

⋮⋱⋮⋮

⋯

⋯

 

and ,~
sjc .,,2,1,,,2,1,,,2,1),(~ * njmiksRFaij ⋯⋯⋯ ===∈  

Associated with the FMOLPα problem, we consider the following 

MOLPα problem:  
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Now, we introduce the concepts of optimal solutions of the MOLPα 
problem.  
 

Definition 6.2.7 A point n
Rx ∈*  is called a complete optimal solution to 

the FMOLP problem if it holds that 
FF

xcxc ,~,~ *

α
≻  for all .

~
αXx ∈  

 

Definition 6.2.8 A point n
Rx ∈* is called a Pareto optimal solution to 

the FMOLP problem if there is no αXx
~

∈  such that
FF

xcxc *,~,~
α≻  

holds. 
 

Definition 6.2.9 A point nRx ∈*  is called a weak Pareto optimal 

solution to the FMOLP problem if there is no αXx
~

∈  such that 

FF
xcxc *,~,~

α≻  holds. 

 

Definition 6.2.10 A point nRx ∈*  is called a complete optimal solution 

to the MOLPα problem if it holds that 
TRLTRL xcxcxcxc ),,,(),,,( **

λλλλ >  for all x ∈ 

{ }]1,[,0,,; αλλλλλα ∈><<= xbxAbxAxX RRLL  and λ ∈ [α, 1]. 
 

Definition 6.2.11 A point n
Rx ∈*  is called a Pareto optimal solution to 

the MOLPα problem if there is no x ∈ Xα such 

that [ ]1,,),,,(),,,( ** αλλλλλ ∈< TRLTRL xcxcxcxc  holds. 

 

Definition 6.2.12 A point nRx ∈*  is called a weak Pareto optimal 

solution to the MOLPα problem if there is no x ∈ Xα such that 

[ ]1,,),,,(),,,( ** αλλλλλ ∈< TRLTRL xcxcxcxc  holds. 
 

Theorem 6.2.2 Let nRx ∈*  be a feasible solution to the FMOLPα 

problem. Then  
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• *x  is a complete optimal solution to the FMOLPα problem, if and 

only if *x  is a complete optimal solution to the MOLPα problem. 

• *x  is a Pareto optimal solution to the FMOLPα problem, if and only if 
*x  is a Pareto optimal solution to the MOLPα problem. 

• *x  is a weak Pareto optimal solution to the FMOLPα problem, if and 

only if *x  is a weak Pareto optimal solution to the MOLPα problem. 

 

Proof: The proof follows from Definitions 6.2.7-6.2.12 and Theorem 

6.2.1. 

 

Based on these definitions and relationships proposed, we will 

develop the solution transformation theorems in the next section. 

6.3 Solution Transformation Theories 

This section gives a workable approach to transform an FMOLP 

problem, with any form of fuzzy numbers as parameters, to an MOLP 

problem, then to solve it through solving the associated MOLP problem.  

6.3.1 General MOLP transformation 

Lemma 6.3.1 If a fuzzy set c~  on R has a trapezoidal membership 

function with Fig. 6.1: 
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Fig. 6.1: Trapezoidal membership function 
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Theorem 6.3.1 If each of the fuzzy parameters 
ijsj ac ~,~  and 

ib
~

 has a 

trapezoidal membership function: 
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 (6.3.1) 

where z~  denotes ijsj ac ~,~  or ib
~

respectively, then the space of feasible 

solutions X is defined by the set of x ∈ X with xi, for i = 1,2,…,n, 

satisfying 
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Proof. From Theorem 6.2.1, X is defined by 
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That is, X is the set of x ∈ Rn with 0>x  satisfying 
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For fuzzy sets with trapezoidal membership functions, we have 
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Substituting (6.3.5) and (6.3.6) into (6.3.4), we have 
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Now, our problem becomes to show that ],[,0,0 αβλ
λλ

∈∀<< ii JI  

and mi ,,2,1 ⋯=  if (6.3.2) is satisfied. From (6.3.2), 
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Thus, from (6.3.9a) and (6.3.9c), we have, for any λ ∈ [β, α] and i = 

1,2,…,m, 
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and from (6.3.9b) and (6.3.9d), we have, for any λ ∈ [β, α] and i = 
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Corollary 6.3.1 If all the fuzzy parameters 
ijsj ac ~,~  and 

ib
~

 have a 

piecewise trapezoidal membership function 
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where z~  denotes ijsj ac ~,~  or ib
~

respectively, then the space of feasible 

solutions X is defined by the set of x ∈ X with xi, for i = 1,2,…,n, 

satisfying 
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 (6.3.11) 

The result of this corollary, a solution transformation approach, will be 

used in Chapter 7. 

  

Theorem 6.3.2 Let each of the fuzzy parameters be a piecewise 

trapezoidal membership function in FMOLPα (6.2.3):  



Fuzzy MODM Models 107 

( )

( )

( )

( )
























<

<<++−
−

−

<<++−
−

−

<<

<<+−
−

−

<<+−
−

−

<

=

−−

−

−
−

.

0

1

0

)(

0

010

01

11

1

211

12

100

01

0

0
10

1
1

1
12

0
01

~

tz

ztzzt
zz

ztzzt
zz

ztz

ztzzt
zz

ztzzt
zz

zt

t

R

RRR

RR

RR

n

R

RR

nn

RL

LLL

LL

LLL

LL

L

z

nnn

nn

nn

α

ααα

αα

ααα

αα

αα

ααα

αα

ααα

αα

α

α
αα

α
αα

α
αα

α
αα

µ

⋯⋯

⋯⋯
 (6.3.12) 

 

If a point 
n

Rx ∈*
 is a feasible solution to the FMOLPα problem, then x* 

is a complete optimal solution to the FMOLPα problem if and only if x* is 

a complete optimal solution to the MOLPα problem: 
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where .1110 =≤≤≤≤= − nn ααααα ⋯  

 

Proof. If x*
 is an optimal solution to the FMOLPα problem, then for any  

αXx
~

∈ , we have
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xcxc ,~,~ *

α
≻ . Therefore, for any λ ∈ [α, 1], 

,)~()~(and)~()~(
11

*

11

* ∑∑∑∑
====

>>
n

i

R

ii

n

i

R

ii

n

i

L

ii

n

i

L

ii xcxcxcxc λλλλ
 

that is, 

.and
11

*

11

* ∑∑∑∑
====

>>
n

i

i

R

i

n

i

i

R

i

n

i

i

L

i

n

i

i

L

i xcxcxcxc
λλλλ

 

Hence x
*
 is a complete optimal solution to the MOLPα problem by 

Definition 6.2.10. 
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If  x*
 is a complete optimal solution to the MOLPα problem, then for all 

x∈Xα, we have 
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For any λ ∈ [α, 1], there exists an { }ni ,,2,1 ⋯∈  so that [ ]ii ααλ ,1−∈ . 

As c~ has piecewise trapezoidal membership functions, we have  
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From Lemma 6.2.1, we have 
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for any λ ∈ [α, 1]. Therefore x*
 is an optimal solution to the FMOLPα 

problem. 
 

Please note that the solution discussed in this theorem is a completed 

optimal solution. The following Theorem 6.3.3 concerns the Pareto 

optimal solutions whereas Theorem 6.3.4 is about the weak Pareto 

optimal solutions used in the transformation.   

 

Theorem 6.3.3 Let each of the fuzzy parameters be a piecewise 

trapezoidal membership function in FMOLPα (6.3.12). Let a point 

αXx
~* ∈  be any feasible solution to the FMOLPα problem. Then x* is a 

Pareto optimal solution to the FMOLPα problem if and only if x
* is a 

Pareto optimal solution to the MOLPα problem in (6.3.13). 
  

Proof. Let 
αXx

~* ∈  be a Pareto optimal solution to the FMOLPα problem. 

On the contrary, we suppose that there exists an Xx ∈ such that 
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By using Lemma 6.3.1, for any λ ∈ [α, 1], we have 
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that is, 
FF
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*,~,~ ≻ . However, this contradicts the assumption that 

αXx
~* ∈  is a Pareto optimal solution to the FMOLP problem. 

Let 
αXx ∈  be a Pareto optimal solution to the MOLPα problem. If x* 

is not a Pareto optimal solution to the problem, then there exists an 

αXx
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∈  such that 
FF
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have 
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Hence, for ,1110 =≤≤≤≤= − nn ααααα ⋯  we have 

nixcxcxcxc TRLTRL
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⋯=> αααα
, 

which contradicts the assumption that 
αXx ∈*  is a Pareto optimal 

solution to the MOLPα problem. 
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Theorem 6.3.4 Let each of the fuzzy parameters be a piecewise 

trapezoidal membership function in the FMOLPα problem as shown in 

(6.3.12), and a point Xx ∈*  be a feasible solution to the FMOLPα 

problem. Then x
* is a weak Pareto optimal solution to the FMOLPα 

problem if and only if x* is a weak Pareto optimal solution to the MOLPα 

problem as shown in (6.3.13). 
 

Proof. Similar to Theorem 6.3.3. 
 

Therefore, if we use existing methods to get a complete optimal 

solution *x  to the MOLPα problem, then *x  is a complete optimal 

solution to the FMOLPα problem. This gives a way to solve FMOLPα 

problems, which will be used in developing detailed algorithms in 

Chapter 7.  

6.3.2 Weighted MOLP transformation  

From Theorems 6.3.2 to 6.3.4, to find all complete optimal, Pareto 

optimal or all weak Pareto optimal solutions to the FMOLP problem, we 

need to find all complete or Pareto or weak Pareto optimal solutions to 

the MOLP problem. Now, associated with the MOLP problem, we 

consider the following weighting linear programming problem (Sakawa, 

1993): 
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where 0),,,,,,( 1100 ≥= R

n

L

n

RLRL
wwwwwww ⋯ , 1110 =≤≤≤≤= − nn ααααα ⋯ . 

 

Theorem 6.3.5 Let each of the fuzzy parameters be a piecewise 

trapezoidal membership function in the FMOLP problem, as shown in 

(6.3.12) and a point Xx
~* ∈  be a feasible solution to the FMOLP 

problem. If it is an optimal solution of MOLPw (6.3.17) for some w > 0, 

then it is a Pareto optimal solution to the FMOLP problem. 

 

Proof. If an optimal solution x* to the MOLPw problem is not a Pareto 

optimal solution to the FMOLP problem, from Theorem 6.2.3, it is not a 

Pareto optimal solution to the MOLP problem, thus there exists an 

Xx ∈  such that 

nixcxcxcxc TRLTRL
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,,1,0,),,,(),,,( **

⋯=< αααα
. (6.3.18) 

Hence, there exists at least a R

i

L

i cc or , i = 0, 1, 2, … n such that ‘<’ 

holds. Noting that 0),,,,,,( 1100 >= R
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L

n

RLRL wwwwwww ⋯ , this implies 



Fuzzy MODM Models 113 

( )

( )

.,~,

,,

,,,~,

0

0

***

xcw

xcwxcw

xcwxcwxcw

n

i

RR

i

LL

i

n

i

RR

i

LL

i

ii

ii

=

+<

+=

∑

∑

=

=

αα

αα

 

However, this contradicts the assumption that x* is an optimal solution to 

the MOLPw problem for some 0>w . 
 

Theorem 6.3.6 Let each of the fuzzy parameters be a piecewise 

trapezoidal membership function in the FMOLP problem, as shown in 

(6.3.12) and a point Xx
~* ∈  be any feasible solution to the FMOLP 

problem. If it is a Pareto optimal solution to the problem, then it is an 

optimal solution to MOLPw  (6.3.17) for some 0>w . 

 

Proof. If x* is a Pareto optimal solution to the FMOLP problem, then it is 

a Pareto optimal solution to the MOLP problem from Theorem 6.3.3. By 

using Theorem 3.2 of Chapters 3, it is an optimal solution to the MOLPw 

problem for some 0>w . 

 

Theorem 6.3.7 Let each of the fuzzy parameters be a piecewise 

trapezoidal membership function in the FMOLP problem, as shown in 

(6.3.12) and a point Xx
~* ∈  be a feasible solution to the FMOLP 

problem. Then it is an optimal solution of  MOLPw  (6.3.17) for some 

0>w  if and only if it is a weak Pareto optimal solution to the FMOLP 

problem. 
 

Proof. Similar to Theorems 6.3.5 and 6.3.6. 

 

Therefore, if we use existing methods to get a complete optimal 

solution *x  to the MOLPw problem, then *x  is a complete optimal 

solution to the FMOLP problem. This gives a way to solve the FMOLP 

problem. 
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6.3.3 Constrained MOLP transformation 

Associated with the MOLP problem and the constrained linear 

programming (CLP) problem (Sakawa, 1993), we now consider the 

following constrained MOLP (CMOLP) problem: 
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where nTRRR

in

TL

n

LL

i Rcccccccc
iiiiii

∈== ++ ),,,(,),,,( 111121 αααααα
⋯⋯ , 

),1(2,,1,,,2,1 ++= nnni ⋯⋯  and εj is the minimum acceptable values 

for objectives corresponding to j ≠ i. 

 

Theorem 6.3.8 Let each of the fuzzy parameters be a piecewise 

trapezoidal membership function in the FMOLP problem as shown in 

(6.3.12) and a point Xx
~* ∈  be any feasible solution to the FMOLP 

problem. If it is a unique optimal solution of CMOLP (6.3.19) for some 

εj, j = 1, 2, …, 2(n+1) and j ≠ i, then it is a Pareto optimal solution to the 

FMOLP problem. 
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Proof. If a unique optimal solution x* to the CMOLP problem is not a 

Pareto optimal solution to the FMOLP problem. Then it is not a Pareto 

optimal solution to the MOLP problem from Theorem 6.3.3, therefore 

there exists an Xx ∈ such that 

.,,2,1,,,,,, **

1
nixcxcxcxc

RRLL

iii
⋯=>> αααα

 

This means  

,,,,);1(2,,2,1,,, **

j xcxcijnjxcxc iijj <≠+=<< ⋯ε  

which contradicts the assumption that x* is a unique optimal solution of 

the CMOLP problem for some εj, j = 1, 2,…, 2(n+1) and j ≠ i. 

 

Theorem 6.3.9 Let each of the fuzzy parameters be a piecewise 

trapezoidal membership function in the FMOLP problem as shown in 

(6.3.12) and a point Xx
~* ∈  be any feasible solution to the FMOLP 

problem. If it is a Pareto optimal solution to the problem, then it is an 

optimal solution of CMOLP for some εj, j = 1, 2,…, 2(n+1) and j ≠ i. 

 

Proof. If x* is a Pareto optimal solution to the FMOLP problem, then it is 

a Pareto optimal solution to the MOLP problem from Theorem 6.3.3. 

Suppose x* is not an optimal solution of the CMOLP problem for some εj, 

j = 1, 2, …, 2(n+1); j ≠ i, then there exists an Xx ∈  such that 

,,,,);1(2,,2,1,,, *

j

*
xcxcijnjxcxc iijj <≠+=<= ⋯ε  

which contradicts the fact that x
* is a Pareto optimal solution to the 

MOLP problem. 

 

Theorem 6.3.10 Let each of the fuzzy parameters be a piecewise 

trapezoidal membership function in the FMOLP problem as shown in 

(6.3.12) and a point Xx
~* ∈  be any feasible solution to the FMOLP 

problem. If it is an optimal solution of CMOLP for some εj, j = 1, 2,…, 

2(n+1) and j ≠ i, then it is a weak Pareto optimal solution to the FMOLP 

problem. 

 

Proof. If an optimal solution x
* to the CMOLP problem is not a weak 

Pareto optimal solution to the FMOLP problem. Then it is not a weak 

Pareto optimal solution to the MOLP problem from Theorem 6.3.4, 

therefore, there exists an Xx ∈  such that 
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.,,2,1,,,,,, **

1
nixcxcxcxc
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iii
⋯=>> αααα

 

This means  

,,,,);1(2,,2,1,,, **

j xcxcijnjxcxc iijj <≠+=<< ⋯ε  

which contradicts the assumption that x
* is an optimal solution of the 

CMOLP problem for some εj, j = 1, 2, …, 2(n+1); j ≠ i. 

 

Therefore, if we use existing methods to get a complete optimal 

solution *x  to the CMOLP problem, then *x  is a complete optimal 

solution to the FMOLP problem. This gives another way to solve 

FMOLP problems.  

6.3.4 Weighted maximum MOLP transformation 

Associated with the MOLP problem, we consider the following weighted 

maximum linear programming (WMLP) problem (Sakawa, 1993): 
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Fuzzy MODM Models 117 

where         nTRRR

in

TL

n

LL

i Rcccccccc
iiiiii

∈== ++ ),,,(,),,,( 111121 αααααα
⋯⋯ ,  

)1(2,,1,,,2,1 ++= nnni ⋯⋯ ,     0),,,,( )1(21221 ≥= ++ nn wwwww ⋯      and 

.1110 =≤≤≤≤= − nn ααααα ⋯  

 

Theorem 6.3.11 Let each of the fuzzy parameters be a piecewise 

trapezoidal membership function in the FMOLP problem as shown in 

(6.3.12) and a point Xx
~* ∈  be a feasible solution to the FMOLP 

problem. If it is a unique optimal solution of MOLPwm (6.3.20) for some 

w >  0, then it is a Pareto optimal solution to the FMOLP problem. 

 

Proof. If a unique optimal solution x* to the MOLPwm problem for some 

w >  0 is not a Pareto optimal solution to the FMOLP problem. Then it is 

not a Pareto optimal solution to the MOLP problem from Theorem 6.3.3, 

therefore there exists an Xx ∈ such that  

.,,2,1,,,,,, **

1
nixcxcxcxc

RRLL

iii
⋯=>> αααα

 

In view of 0),,,,( )1(21221 >= ++ nn wwwww ⋯ , it follows 

).1(2,,2,1,,, * +=< njxcwxcw jjjj ⋯  

Hence, 

,,min,min
)1(2,,2,1

*

)1(2,,2,1

xcwxcw ii
ni

ii
ni +=+=

<
⋯⋯

 

which contradicts the assumption that x* is a unique optimal solution of 

the MOLPwm problem for some 0),,,,( )1(21221 >= ++ nn wwwww ⋯ . 

 

Theorem 6.3.12 Let each of the fuzzy parameters be a piecewise 

trapezoidal membership function in the FMOLP problem as shown  

in (6.3.12) and a point Xx
~* ∈  be any feasible solution to the  

FMOLP problem. If it is a Pareto optimal solution to the FMOLP 

problem, then it is an optimal solution of MOLPwm for some 

0),,,,( )1(21221 >= ++ nn wwwww ⋯ . 

 

Proof. If x
* is a Pareto optimal solution to the FMOLP problem  

then it is a Pareto optimal solution to the MOLP problem from  

Theorem 6.3.3. Here, without loss of generality, we assume that 

)1(2,,2,1,0, +=> njxc j ⋯  for all x ∈ X and choose 
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0),,,( *

)1(2

*

2

*

1

* >= +nwwww ⋯  such that ).1(2,,2,1,, ** +== njvxcw jj ⋯  

Now, we assume that x
* is not an optimal solution of the MOLPwm 

problem for 0),,,( *

)1(2

*

2

*

1

* >= +nwwww ⋯ , then there exists an Xx ∈  

such that 

).1(2,,2,1,,, *** +=< njxcwxcw jjjj ⋯  

Noting  0),,,( *

)1(2

*

2

*

1

* >= +nwwww ⋯ , this implies 

)1(2,,2,1,,, * +=< njxcxc jj ⋯  

which contradicts the fact that x
* is a Pareto optimal solution to the 

MOLP problem. 

 

Theorem 6.3.13 Let each of the fuzzy parameters be a piecewise 

trapezoidal membership function in the FMOLP problem as shown in 

(6.3.12) and a point Xx
~* ∈  be a feasible solution to the FMOLP 

problem. If it is an optimal solution of MOLPwm for some w > 0, then it 

is a weak Pareto optimal solution to the FMOLP problem. 
 

Proof. If an optimal solution x* to the MOLPwm problem for some w >  0 

is not a weak Pareto optimal solution to the FMOLP problem. Then it is 

not a weak Pareto optimal solution to the MOLP problem from Theorem 

6.3.4. Therefore, there exists an Xx ∈  such that 

.,,2,1,,,,,, **

1
nixcxcxcxc

RRLL

iii
⋯=>> αααα

 

In view of 0),,,,( )1(21221 >= ++ nn wwwww ⋯ , it follows 

).1(2,,2,1,,, * +=< njxcwxcw jjjj ⋯  

Hence, 

,,min,min
)1(2,,2,1

*

)1(2,,2,1

xcwxcw ii
ni

ii
ni +=+=

<
⋯⋯

 

which contradicts the assumption that x* is a unique optimal solution of 

the MOLPwm problem for some 0),,,,( )1(21221 >= ++ nn wwwww ⋯ . 

 

Theorem 6.3.14 Let each of the fuzzy parameters be a piecewise 

trapezoidal membership function in the FMOLP as shown in (6.3.12) and 

a point Xx
~* ∈  be a feasible solution to the FMOLP problem. If it is a 

weak Pareto optimal solution to the FMOLP problem, then it is an 

optimal solution of MOLPwm for some 0),,,,( )1(21221 >= ++ nn wwwww ⋯ . 
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Proof. If x
* is a weak Pareto optimal solution to the FMOLP problem 

then it is a weak Pareto optimal solution to the MOLP problem from 

Theorem 6.3.4. Here, without loss of generality, we can assume that 

)1(2,,2,1,0, +=> njxc j ⋯  for all x ∈ X and choose 

0),,,( *

)1(2

*

2

*

1

* >= +nwwww ⋯  such that ).1(2,,2,1,, ** +== njvxcw jj ⋯  

Now, we assume x* is not an optimal solution of the MOLPwm problem 

for 0),,,( *

)1(2

*

2

*

1

* >= +nwwww ⋯ , then there exists an Xx ∈ such that 

).1(2,,2,1,,, *** +=< njxcwxcw jjjj ⋯  

Noting  0),,,( *

)1(2

*

2

*

1

* >= +nwwww ⋯ , this implies 

)1(2,,2,1,,, * +=< njxcxc jj ⋯  

which contradicts the fact that x
* is a Pareto optimal solution to the 

MOLP problem. 

 

Therefore, if we use existing methods to get a complete optimal solution 
*x  to the MOLPwm problem, then *x  is a complete optimal solution to 

the FMOLP problem. This gives another way to solve FMOLP problems. 

6.4 Fuzzy Multi-Objective Linear Goal Programming Models  

In order to deal with FMOLP (6.2.1), under some circumstances, 

decision makers may want to specify fuzzy goals for the objective 

functions. The key idea behind goal programming is to minimise the 

deviations from a goal set by decision makers. 

Considering the FMOLPα problem, for the fuzzy objective functions 

,,~
F

xc  decision makers can specify fuzzy goals ( )T

kgggg ~,,~,~~
21 …=  

under a satisfactory degree α, which reflects the desired values of the 

objective functions of decision makers. These fuzzy goals can be 

represented by fuzzy numbers with any form of membershp functions. 

By defining a fuzzy deviation function ( )gxcD
F

~,,~~  as a fuzzy difference 

between a fuzzy objective function 
F

xc ,~  and fuzzy goals 

( )T

kgggg ~,,~,~~
21 …= , the fuzzy multi-objective linear goal programming 

(FMOLGP�) problem under a satisfactory degree α  is formulated as 

following: 
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(FMOLGPα)
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Then, the optimal solution of (6.4.1) can be obtained by solving the 

following non-fuzzy GP models: 
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or 

(GPαλ -2)
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where  
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The adoption of GPαλ-1 (6.4.2) or GPαλ-2 (6.4.3) for solving the 

FMOLGPα problem depends on the relationship of 
F

xc ,~  and g~ , i.e., if 

gxc
F

~  ,~ ≻  then GPαλ-1 (6.4.2) is used, otherwise, GPαλ-2 (6.4.3) is 

adopted. 

Therefore, if we use existing methods to get a satisfactory solution *x  

to the GP problem, then *x  is a satisfactory solution to the FMOLP 

problem. This gives another way to solve the FMOLP problems by 

providing goals of objectives, which will be used in developing detailed 

algorithms in Chapter 7.  
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6.5 Summary 

The FMODM models extend MODM decision functions from crisp to 

imprecise scope. Two essential issues are summarised here to help 

readers better understand and use these proposed models.   
 

(1) In the proposed FMOLP model, fuzzy parameters may appear in 

both objective functions and constraints. When only objective 

functions or only constraints include fuzzy parameters, the model is 

still applicable to deal with non-fuzzy parameters, as a real number 

is as a special case of a fuzzy number. Similarly, in the proposed 

FMOLGP, a goal with a real number is also as a special case of a 

fuzzy goal. 

(2) Both FMOLP and FMOLGP models allow decision makers to use 

any form of membership functions for describing fuzzy parameters 

in objective functions and constraints, and fuzzy goals.  
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Chapter 7 

Fuzzy MODM Methods 

As described in Chapter 6, FMOLP is the most popular form of fuzzy 

multi-objective decision-making (FMODM) problems. To derive an 

optimal solution for an FMOLP problem, we will present three FMOLP 

methods in this chapter. The first one is a scalarisation-based FMOLP 

method. The second one is called fuzzy multi-objective linear goal 

programming (FMOLGP) method, which integrates fuzzy sets with goal 

programming to extend multi-objective decision analysis. Finally, we 

present an interactive FMOLP (IFMOLP) method, which has both 

interactive and goal features. We will implement the three methods in a 

fuzzy multi-objective decision support system in Chapter 8.  

7.1 Related Issues 

There are three issues involved in the development of an FMODM 

method. The first issue is about how to express fuzzy parameters of 

objective functions and constraints and fuzzy goals by membership 

functions. The second one is about the presentation form of a Pareto 

optimal solution for the FMODM problem. And, the third one is about 

the different processes of solving the FMODM problem. 

For the first issue, as discussed in Chapter 5, fuzzy values of 

parameters are often generated by some experiments and therefore have 

different figures of data distributions. Some of them may be suitable to 

be described in a triangular form of membership functions, and some 

may be more suitable to be expressed in other forms such as a 

trapezoidal one. In order to deal with a wide range of expressions for 
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fuzzy parameters, the methods introduced in this chapter will allow us to 

use any form of membership functions for describing parameters shown 

in both objective functions and constraints. Similarly, for fuzzy goals 

given by decision makers, the methods will allow us to use any form of 

membership functions as well. 

The second issue involves the expression of a solution and its 

corresponded objective values for the FMODM problem. If an FMODM 

method is to provide us with useful assistance, its output, an optimal 

solution with optimal objective values, must be of sufficient quality and 

in a suitable form for the decision we are about to make. As discussed in 

Chapter 6, we suppose an FMODM model of a production planning. An 

optimal solution of the problem is the output of all products of this 

factory. Its corresponded objective values are the profit, quality, and 

worker satisfactory degree. Some FMODM methods have the objective 

functions, in corresponding to an optimal solution, described in crisp 

values. And some have optimal objective values described in fuzzy 

values. As the late case may be more appropriate in decision practice, the 

methods introduced in this chapter adopt the late approach. 

The third issue is about the process of finding an optimal solution. 

This issue involves understanding the preferences of some decision 

makers involved the solution process of an MODM problem. It has been 

found that there are obvious different requirements from decision makers 

for the process of finding an optimal solution for an FMODM problem. 

Some decision makers expect to have a method that can fast generate an 

optimal solution for a given FMODM problem without any extra data 

providing from them. While some decision makers have had goals for 

their decision objectives in their FMODM problem and, therefore, prefer 

a method that can find an optimal solution, which can maximise to meet 

these goals. Furthermore, with the support of software, some decision 

makers desire to have a chance to explore more alternative solutions in 

an interactive fashion with the aim of finding a satisfying solution. For 

example, they desire to be allowed to continuing revise their goals or 

change the weights of objective functions, so that to get new optimal 

solutions. Obviously, the goals or weights given by decision makers may 

be affected with uncertainty due to the imprecise nature of data evaluated 

by these decision makers. When a value of a goal is described by a fuzzy 
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number, it is called a fuzzy goal. In such a case, an FMODM method will 

deal with two kinds of fuzziness: a set of fuzzy parameters in the 

FMODM model and a set of fuzzy goals given by decision makers in a 

solution process. 

This analysis justifies the main reason to develop several different 

kinds of FMODM methods and some specific features of them. 

This chapter presents three FMODM methods: FMOLP (scalarisation-

based), FMOLGP (goal-based), and IFMOLP (interactive-based). 

There are four common features on the three methods. (1) The 

parameters in both fuzzy objective functions and constraints and fuzzy 

goals are described by any form of membership functions. (2) The values 

of objective functions, corresponding to an optimal solution, are 

described by that of membership functions as well. (3) The weights of 

objectives are flexible, given by decision makers. (4) An approximation 

approach is used in all the three methods. However, the FMOLP method 

is a non-interactive method, which can directly generate an optimal 

solution and therefore is suitable for decision makers who do not have 

deep knowledge about decision model and software monitory. The 

FMOLGP method and the IFMOLP method all allow decision makers to 

provide fuzzy goals in any form of membership functions. The IFMOLP 

method, in particular, has a strong feature of interaction with decision 

makers by allowing them to revise their fuzzy goals and satisfactory 

degrees for a solution. This method requires decision makers have 

enough knowledge on their decision problems and desires for interaction 

with a decision support system. 

The three methods have been implemented in a fuzzy multi-objective 

decision support system (FMODSS). All examples illustrated in this 

chapter have been run by the FMODSS and some results are shown in 

figures captured from this system. More details about the FMODSS will 

be described in Chapter 8. 
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7.2 Fuzzy MOLP 

In this section, we first describe the FMOLP method and then give a 

numerical example to illustrate it. 

7.2.1 Method description 

Refer to the description of an MOLPαλ problem in Chapter 6, an 

FMOLPα problem can be transformed into an MOLPαλ problem, which is 

a crisp programming. And, the solution of the MOLPαλ problem is 

equally the one of the corresponded FMOLPα problem. As the MOLPαλ 

problem has an infinite number of objective functions and an infinite 

number of constraints, an approximation approach will be appropriate. 

As given in Chapter 6, we have the definition 

{ },0,,| ≥≤≤∈= xbxAbxARxX
RRLLn

λλλλλ
, [ ]1,αλ ∈ . (7.2.1) 

Based on (7.2.1), we propose a fuzzy scalarisation-based algorithm 

for solving the MOLPαλ problem as follows, and therefore solve FMOLP 

problems. The FMOLP method is described as follows. 
 

Step 1: Specify a satisfactory degree α ( )10 ≤≤ α  by decision makers. 
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 (7.2.2) 

 

Step 4: Set ,1=l  then solve (MOLPαλ)l with ( ) ( )
lnl xxxx ,,, 21 …= , and 

the solution obtained is subject to the constraint l
Xx ∈ . 
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Step 5: Solve (MOLPαλ)2l with ( )
lx 2
, and the solution obtained is 

subject to the constraint l
Xx

2∈ . 
 

Step 6: If ( ) ( ) ε<− ll xx 2
, then the solution *

x  of the MOLPαλ 

problem is ( ) lx 2
. Otherwise, update l to 2l and go back to Step 5. 

 

Now we give some explanations about this method. 
 

• In principle, it needs to give a tolerance 0>ε  or a value for the 

times of decomposition loop as a termination condition. As it may be 

hard for decision makers to give such a value, the DSS has set 

related values in its programming to control this process. This issue 

is also applicable for the methods in Sections 7.2 and 7.3. 

• When decision makers do not provide any weights for objective 

functions, this method assumes all the weights of objectives are 

equal, that is, 
kwww === ⋯21

for fuzzy objective functions, 

respectively, and .1
1

=∑ =

k

i iw  This issue is also applicable for the 

methods in Sections 7.2 and 7.3. 

• In Step 4, the interval [ ]1,α  is not split initially, and only αλ =0
 and 

11 =λ are considered. Hence, each fuzzy objective function 

( ) xcxf ii
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=  in the FMOLPα is converted into four non-fuzzy objective 
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Similarly, each fuzzy constraint 
ss bxa
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α≺  in the FMOLPα is 

converted into four non-fuzzy constraints, which are as follows: 
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Therefore, an MOLP problem with non-fuzzy objective functions 

(7.2.3) and non-fuzzy constraints (7.2.4) is formed to find a solution 

( )lx . 

• In Step 5, the interval [ ]1,α  is further split. We suppose there are 

( )1+l  nodes ( )lii 2 ,,4 ,2 ,0 …=λ  in the interval [ ],1,α and l new 

nodes ( )12 , ,3 ,1 −= lii …λ  are inserted. The relationship between 

these new inserted nodes and previous ones is: 

.1 , ,1 ,0   ,
2

222
12 −=

+
= +

+ liii

i …
λλ

λ  (7.2.5) 

Therefore, each fuzzy objective function ( ) xcxf ii
~~

=  is converted into 

( )12*2 +l  non-fuzzy objective functions, and the same conversion for 

the constraints. Suppose that the number of fuzzy objective functions 

and fuzzy constraints are k and m, respectively, the total number of 

non-fuzzy objective functions and non-fuzzy constraints are 

( )12**2 +lk  and ( )12**2 +lm , respectively. The solution ( ) lx 2
 is now 

based on the set of updated (including original) non-fuzzy objective 

functions and non-fuzzy constraints. 

• In Step 6, if the difference between solutions ( )lx  and ( ) lx 2
 is within 

the preset tolerance, the solution in the current step, i.e., ( ) lx 2
 is the 

final result; otherwise, the method needs more iterations by inserting 

notes. 

• We have seen that each step of the method includes two parts. One is 

to convert an FMOLPα problem into a non-fuzzy (MOLPαλ)l 

problem. The other is to solve the (MOLPαλ)l problem, that is, to 

derive an optimal solution from it.  

Figure 7.1 shows the working process of the FMOLP method. 
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( ) ( ) ε<− ll xx 2

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
   
   
 

 

 

 

 
   

 

 

 

Fig. 7.1: Working process of the FMOLP method 
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Set l = 1, λ0 = α, and λ1 = 1 

 

Generate a solution ( )
l

x  for the (MOLPαλ)l problem 

Insert l new nodes into the interval [α, 1] 

Generate a solution ( ) lx 2
 for the (MOLPλ)2l problem 

Update  
 l to 2l 

End 

Convert the FMOLPα problem into an initial non-fuzzy 

(MOLPαλ)l problem  

Generate the new (MOLPλ)2l problem 

Start 

Specify a satisfactory degree α  

 

Set weights for fuzzy objective functions 

Get the final solution 
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7.2.2 A numeral example 

Consider the following FMOLPα problem with two fuzzy objective 

functions and four fuzzy constraints: 
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The membership functions of fuzzy parameters of the objective 

functions and constraints are as follows: 
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In this example, the fuzzy parameters are represented in different 

forms of membership functions, such as linear, quadratic, cubic, and 

exponent. 

We now show the process of getting the solution for the problem by 

using the FMOLP method. 

 

Step 1: Set 0=α , the FMOLPα problem becomes a general FMOLP 

problem. 
 

Step 2: Give equal weights 
1w  and 

2w  for objective functions 
1

~
f  and 

2

~
f , respectively, and 121 =+ ww . 

 

Step 3: We convert the FMOLPα problem into a non-fuzzy MOLPλ 

problem as follows: 
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 (7.2.7) 
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where [ ]1,0∈∀λ . 

 

Step 4: Refer to the MOLPλ problem, the interval [ ]1,0  is not split, 

and only 00 =λ  and 11 =λ  are considered. Totally, 8 non-fuzzy objective 

functions and 16 non-fuzzy constraints are then generated. The result of 

this conversion is as follows: 
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s.t. 
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By using a classical linear programming approach, we have an 

optimal solution: 

5179.1*

1 =x , 3790.1*

2 =x , (7.2.9) 

and corresponded fuzzy objective values: 
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~1.3790~5179.1,
~

ccxxf

ccxxf . (7.2.10) 

 

Step 5: One more node is inserted into the interval [ ]1,0 , we have 

00 =λ , 5.01 =λ , and 12 =λ . Totally, 12 non-fuzzy objective functions 

and 24 non-fuzzy constraints are generated. Similarly, we have a new 

optimal solution 

5985.1*

1 =x , 1049.1*

2 =x ,  (7.2.11) 

and its corresponded optimal fuzzy objective values are 
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This step will be repeated for as many times as required. Table 7.1 

shows the values of optimal solutions in first eight loops. 

Table 7.1: The optimal solutions in first eight loops 

Loop 
*
1x  

*
2x  

1 1.51786 1.37897 

2 1.59854 1.10480 

3 1.61299 1.02958 

4 1.61614 1.02795 

5 1.61629 1.02788 

6 1.61666 1.02634 

7 1.61659 1.02638 

8 1.61655 1.02640 

Step 6: Before the method starts running, the tolerance ε  needs to be 

preset. Different tolerance will cause the approximate-based method to 

terminate at different loops. From Table 7.1, we can find that if the 

tolerance 210−=ε , the method terminates at loop 5; if the tolerance 
410−=ε , the method will terminate at loop 8. 

Suppose we select the tolerance 410−=ε , then the final optimal 

solution for the example is  

6166.1*

1 =x , 0164.1*

2 =x  (7.2.13) 

and its corresponded optimal fuzzy objective values are 

( )
( )



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+=

+=
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*

2

*

1

*

2

1211

*

2

*

1

*

1

~1.0164~6166.1,
~

~1.0164~6166.1,
~

ccxxf

ccxxf . (7.2.14) 

The membership functions of *

1

~
f  and *

2

~
f  (7.2.14) are shown in Fig. 7.2, 

respectively. The result shows that when 6166.1*

1 =x , ,0164.1*

2 =x  the 

first objective’s value is around from 4.2595 to 6.9025. It may also be 
acceptable for the value not fully into the interval within a threshold. 
Similarly, we can understand the meaning of the second objective’s 
value interval. 
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The values of the weights of objective functions can directly influence 

the values of optimal solutions of an MOLP problem. Decision makers 

can set different weights for their objective functions based on their 

preference, experience, and judgment. In this example, 
1w  and 

2w  

represent the weights of 
1

~
f  and ,

~
2f  respectively, and 5.021 == ww . 

When 
1w  and 

2w  are revised by decision makers, a new optimal solution 

will be generated. Table 7.2 summarises 11 optimal solutions in which 

each corresponds a set of specific weights. 

From Table 7.2, when 11 =w  and 02 =w , the solution 

( ) ( )1932.0 ,2260.3, *
2

*
1 =xx  only concerns the objective function .

~*
1f  

While when 01 =w  and 12 =w , the solution ( ) ( )8506.1 ,0.0, *
2

*
1 =xx  more 

concerns objective function *
2

~
f . When 

1w  decreases from 1 to 0 and 

2w increases from 0 to 1 simultaneously, the solution will move from 

( )1932.0 ,2260.3  to ( )8506.1 ,0.0  gradually. 

 

 

   

Fig. 7.2: Membership functions of *

1

~
f and *

2

~
f  in the final solution 
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Table 7.2: The optimal solutions by revising the weights of objective functions 

1w  
2w  *

1x  *
2x  ( )*

2

*

11 ,
~

xxf  ( )*
2

*
12 ,

~
xxf  

1 0 3.2260 0.1932 1211
~1932.0~2260.3 cc +  

2221
~1932.0~2260.3 cc +  

0.9 0.1 2.9141 0.3543 1211
~3543.0~9141.2 cc +  

2221
~3543.0~9141.2 cc +  

0.8 0.2 2.5954 0.5201 1211
~5201.0~5954.2 cc +  

2221
~5201.0~5954.2 cc +  

0.7 0.3 2.2721 0.6878 1211
~6878.0~2721.2 cc +  

2221
~6878.0~2721.2 cc +  

0.6 0.4 1.9454 0.8568 1211
~8568.0~9454.1 cc +  

2221
~8568.0~9454.1 cc +  

0.5 0.5 1.6166 1.0264 1211
~0264.1~6166.1 cc +  

2221
~0264.1~6166.1 cc +  

0.4 0.6 1.2872 1.1957 1211
~1957.1~2872.1 cc +  

2221
~1957.1~2872.1 cc +  

0.3 0.7 0.9589 1.3637 1211
~3637.1~9589.0 cc +  

2221
~3637.1~9589.0 cc +  

0.2 0.8 0.6337 1.5296 1211
~5296.1~6337.0 cc +  

2221
~5296.1~6337.0 cc +  

0.1 0.9 0.3134 1.6922 1211
~6922.1~3134.0 cc +  

2221
~6922.1~3134.0 cc +  

0 1 0 1.8506 12
~8506.1 c  

22
~8506.1 c  

7.3 Fuzzy MOLGP 

Under some circumstances, decision makers may need to specify their 

goals for the objective functions, but it may be hard to provide an 

accurate value for each goal. In this section, we propose a fuzzy multi-

objective linear goal programming (FMOLGP) method, which allows 

decision makers to provide their fuzzy goals for the fuzzy objectives in 

an FMOLP model. It then finds an optimal solution to reach the proposed 

fuzzy goals. Obviously, this method deals with two fuzzy issues: fuzzy 

parameters in a given FMOLP model and fuzzy goals provided by 

decision makers in the process of finding an optimal solution.  A numeral 

example will further illustrate how this method deals with the two issues. 



Fuzzy MODM Methods 137 

7.3.1 Method description 

Considering an FMOLP problem, for the fuzzy multi-objective functions 

( ) ( ) ( ) ( )( )Tk xfxfxfxf
~

,,
~

,
~~

21 …= , decision makers can specify their fuzzy goals 

( )T

kgggg ~,,~,~~
21 …= , which reflect the desired values of decision makers for 

the objective functions. 

From the definitions of both FMOLPα and MOLPαλ problems in 

Chapter 6, when decision makers set up their fuzzy goals under a 

satisfactory degree α, an optimal solution, which corresponding optimal 

objective values are the nearest to the related fuzzy goals or better than 

that, is obtained by solving the following minimax programming 

problem: 
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We can see that the MOLPαλm problem (7.3.1) has an infinite number 

of objective functions and an infinite number of constraints. To solve the 

problem, we give the FMOLGP method, which can be described by the 

following steps. 

Step 1: Give an initial satisfactory degree α ( )10 ≤≤ α , and the 

membership functions of c~  for ( ) xcxf ~~
= ,  ~a  and b

~
 for bxa

~
 ~

 α
≺ . 
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Step 2: Give weights 
kwww ,,, 21 …  for 

kfff
~

,,
~

,
~

21 ⋯ , respectively, and 

.1
1

=∑ =

k

i iw  
 

Step 3: Specify a set of fuzzy goals ( )T

kgggg ~,,~,~~
21 …= , which need to 

be achieved, for the objective functions. 
 

Step 4: Let the interval [ ]1,α  be decomposed into l mean sub-intervals 

with (l+1) nodes ( )lii ,,0 ⋯=λ , where 110 =<<<= lλλλα ⋯ .  

We denote: 

(MOLPαλm)l










∈

==














−

−

      s.t.

,,,2,1,,1,2, , maxmin 

l

R

i

R

i

L

i

L

i

Xx

ljki
gxc

gxc

jij

jij

⋯⋯

λλ

λλ

 (7.3.2) 

where ∩
l

i

l

i
XX λ= , { }0,,| ≥≤≤∈= xbxAbxARxX

RRLLn

iiiii λλλλλ
, 

10 =<<= lλλα … . 

 

Step 5: Set ,1=l solve the (MOLPαλm)l with the solution  

( ) ( )
lnl xxxx ,,, 21 …= , which is subject to the constraint l

Xx ∈ .  

In this step, the interval [ ]1,α  is not split initially. So only αλ =0
 and 

11 =λ  are considered. Then, each fuzzy objective function ( ) xcxf ii
~~

=  

under the fuzzy goal ( )T

kgggg ~,,~,~~
21 …=  is converted into four non-fuzzy 

objective functions: 

 













−

−

−

−

R

i

R

i

R

i

R

i

L

i

L

i

L

i

L

i

gxc

gxc

gxc

gxc

αα

αα

11

11  , ki ,,1…= . (7.3.3) 

Similarly, each fuzzy constraint 
ss bxa

~
 ~

α
≺  in the FMOLPα is converted 

into four non-fuzzy constraints, which are as follows: 





















≤





















R

s

R

s

L

s

L

s

R

s

R

s

L

s

L

s

b

b

b

b

xa

xa

xa

xa

α

α

α

α

1

1

1

1
 

, ms ,,1…=   (7.3.4) 
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Hence, an MOLP problem with non-fuzzy objective functions (7.3.3) 

and non-fuzzy constraints (7.3.4) is formed to find a solution ( )lx . 

 

Step 6: Solve (MOLPαλm)2l with the solution ( )
lx 2
, which is subject to 

the constraint l
Xx

2∈ .  

The interval [ ]1,α  is further split in the step. We suppose there are 

( )1+l  nodes ( )lii 2 ,,4 ,2 ,0 …=λ  in the interval [ ]1,α , and l new nodes 

( )12 , ,3 ,1 −= lii …λ  are inserted. The relationship between the new 

inserted nodes and previous ones is: 

1 , ,1 ,0   ,
2

222
12 −=

+
= +

+ liii
i …

λλ
λ . (7.3.5) 

Therefore, each fuzzy objective function ( ) xcxf ii
~~

=  under its related 

fuzzy goal ( )T

kgggg ~,,~,~~
21 …= is converted into ( )12*2 +l  non-fuzzy 

objective functions, and the same for the constraints bxa
~

  ~
α≺ . The 

solution ( ) lx 2
 is now based on the set of updated (including original) non-

fuzzy objective functions and non-fuzzy constraints. 
 

Step 7: Referring to the solutions ( )1x  and ( ) lx 2
, if ( ) ( ) ε<− ll xx 2

, the 

final solution of MOLPαλm problem is ( )
l

x 2
. Otherwise, update l to 2l and 

go back to Step 6.  

 

The FMOLGP method is shown in Fig. 7.3. 
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( ) ( ) ε<− ll xx 2
 

 
 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

 

 

 

 
 
 

 

 
 
 

Fig. 7.3: Working process of the FMOLGP method 

 

Y 

Update 

 l to 2l 

Input the membership functions of c~ ,  ~a and b
~

  

Start 

Specify a satisfactory degree α ( )10 ≤≤ α  

Specify fuzzy goals ( )T

kgggg ~,,~,~~
21 …=  

Set l = 1, λ0 =α, and λ1 = 1 

Generate the initial non-fuzzy (MOLPλαm)l problem  

Set weights for fuzzy objective functions 

N 

Insert l new nodes into the interval [α, 1] 

Generate a solution ( )
lx 2
 for the (MOLPλαm)2l problem 

Generate a new non-fuzzy (MOLPλαm)2l problem  
 

Generate a solution ( )lx  for the (MOLPλαm)l problem 

Get the final solution End 
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7.3.2 A numeral example 

Consider a numeral FMOLPα problem with two fuzzy objective 

functions and four fuzzy constraints as follows: 

( )
( )

( ) 

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s.t.    
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The membership functions of fuzzy parameters of the objective 

functions and constraints are set up as follows: 
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We now show the process of finding an solution for the problem by 

using this method. 
 

Step 1: We give an initial value of the satisfactory degree 0.2=α , 

and input the membership functions of c~  for objective functions 

( ) xcxf ~~
= ,  ~a  and b

~
 for constraints .

~
   ~ bxa ≺ For example, the 

membership function of 
11

~c  is given as shown in Fig. 7.4.  

  

Fig. 7.4: Membership function of fuzzy parameter 
11

~c  
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Step 2: Give equal weights 
1w  and 

2w  for objective functions 
1

~
f  and 

2

~
f , respectively, i.e., 5.021 == ww  

 

Step 3: Specify fuzzy goals ( )21
~,~ gg  by corresponded membership 

functions as follows: 

( )
( )
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
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 (7.3.8) 

The membership functions of the two fuzzy goals ( )21
~,~ gg  are shown 

in Fig. 7.5. The first fuzzy goal 
1

~g  is around 20, and the second one 
2

~g  

is about 8. 

   
Fig. 7.5: Membership functions of two fuzzy goals ( )21

~,~ gg  

Steps 4-7: Under the satisfactory degree 2.0=α  and the fuzzy goals 

in (7.3.7) and (7.3.8), the FMOLPα problem is converted into a non-

fuzzy MOLPαλm problem as follows: 
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where [ ]1,αλ ∈∀ . 

Referring to the MOLPαλm problem in (7.3.9), as initially the interval 

]1 ,[α  is not split, and only 2.00 =λ  and 11 =λ  are considered, totally, 8 

non-fuzzy objective functions and 16 non-fuzzy constraints are 

generated. From (7.3.9), the result of the conversion is as follows: 
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 (7.3.10) 

s.t. 
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The interval ]1,[α  is further split. Three nodes are considered in this 

step, they are 2.00 =λ , 6.01 =λ , and 12 =λ . Totally, 12 non-fuzzy 

objective functions and 24 non-fuzzy constraints are generated. 

The process will be repeated until the difference between ( )lx  and 

( )
l

x 2
 is within a preset tolerance.  

Finally, we have an optimal solution  







=

=

2.5418

2.1455

*

2

*

1

x

x , (7.3.11) 

and its corresponded optimal fuzzy objective values  

( ) ( )

( ) ( )


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

+==

+==

2221

*

2

*

2

*

1

*
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1211
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1

*

2

*

1
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1

~2.5415~2.14552.5415,2.1455
~

,
~

~2.5415~2.14552.5415,2.1455
~

,
~

ccfxxf

ccfxxf , (7.3.12) 

which are shown in Fig. 7.6, respectively. From Fig. 7.6, we can see that 

the first optimal fuzzy objective *

1

~
f  is about 20.4985, and the second one 

*

2

~
f  is about 8.8145. 
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Fig. 7.6: Membership functions of ( )*

2

*

1

*

1 ,
~

xxf  and ( )*

2

*

1

*

2 ,
~

xxf  

7.4 Interactive FMOLP 

Many decision makers prefer an interactive approach to find an optimal 

solution for a decision problem as such an approach enables decision 

makers to directly engage in the problem solving process. In this section, 

we propose an interactive FMOLP (IFMOLP) method, which not only 

allows decision makers to give their fuzzy goals, but also allows them to 

continuously revise and adjust their fuzzy goals. In this way, decision 

makers can explore various optimal solutions under their goals, and then 

choose the most satisfactory one. We also supply a numeral example to 

illustrate how to use this method. 

7.4.1 Method description 

From the definitions of both FMOLPα and MOLPαλ problems, decision 

makers can set up their fuzzy goals ( )T

kgggg ~,,~,~~
21 …=  under a 

satisfactory degree α. Its corresponded optimal solution, which results in 

the objective values being the nearest to the fuzzy goals, is obtained by 

solving the following minimax problem: 
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Let the interval ]1,[α  be decomposed into l mean sub-intervals with 

(l+1) nodes ( )lii ,,0 ⋯=λ , which 110 =<<<= lλλλα ⋯ .  

We denote: 

(MOLPαλm)l
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where ∩
l

i

l

i
XX λ= , { }0,,| ≥≤≤∈= xbxAbxARxX

RRLLn

iiiii λλλλλ
, [ ]1,αλ ∈ . 

This method consists of 11 steps under two stages. Stage 1 aims to 

find an initial optimal solution for the problem. Stage 2 is an interactive 

process in which when decision makers specify a set of fuzzy goals for 

related objective functions, an optimal solution is generated. By revising 

fuzzy goals, this method will provide decision makers with a series of 

optimal solutions. Hence, decision makers can select the most suitable 

one on the basis of their preference, judgment, and experience.  
The method is described as follows: 
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Stage 1: Initialisation 

 

Step 1: Select an initial satisfactory degree α ( )10 ≤≤ α , give the 

membership function of c~  for ( ) xcxf ~~
= ,  ~a  and b

~
 for bxa

~
 ~

 α
≺ , and set 

weights for fuzzy objective functions by decision makers. 

 

Step 2: Set 1=l , then solve  

(MOLPαλ)l







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∈

==

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



l

R
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L

i

Xx

ljki
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j

  s.t.

  ,,,1,0   ;, 1, , max ⋯⋯

λ

λ

 (7.4.4) 

with the solution ( )lx , where ( ) ( ) ,,,, 21 lnl xxxx …= and the solution 

obtained is subject to the constraint l
Xx ∈ .  

 

Step 3: Solve the (MOLPαλ)2l with the solution ( ) lx 2
, subject to the 

constraint l
Xx

2∈ .  

The interval ]1,[α  is further split. Suppose there are ( )1+l  nodes 

( )lii 2 ,,4 ,2 ,0 …=λ  in the interval, and l new nodes ( )12 , ,3 ,1 −= lii …λ  

are inserted. The relationship between the new nodes and previous ones 

is: 

 1 , ,1 ,0   ,
2

222
12 −=

+
= +

+ liii
i …

λλ
λ .  (7.4.5) 

Each of the fuzzy objective functions is converted into ( )12*2 +l  

non-fuzzy objective functions, and the same conversion happens for the 

constraints
ii bxa

~
  ~
α≺ . The solution ( ) lx 2

 is now based on the set of 

updated (including original) non-fuzzy objective functions and non-fuzzy 
constraints. 
 

Step 4: If ( ) ( ) ε<− ll xx 2
, then ( ) lx 2

 is the final solution of the 

MOLPαλ problem. Otherwise, update l to 2l and go back to Step 3.  
 

Step 5: If the corresponded Pareto optimal solution *x  exists, go 

forward to Step 6. Otherwise, decision makers must go back to Step 1 to 

reassign a degree α (give a higher value for the degree α). 
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Step 6: If decision makers are satisfied with the Pareto optimal 

solution, the interactive process terminates. Otherwise, go to Stage 2. 
 
Stage 2: Iteration 

 

As decision makers are not satisfied with the obtained solution in the 

Initialisation stage (or the previous iteration phase), they specify their 

fuzzy goals (or revised current goals) for the fuzzy objective functions. A 

new compromise solution is then generated. This process will terminate 

when decision makers find their satisfactory solution. 
 

Step 7: Give a set of new fuzzy goals or revise current fuzzy goals by 

decision makers. At the same time, a satisfactory degree α can be revised 

as well. The original decision problem is therefore covered into an 

(MOLPαλm)l problem. 
 

Step 8: Set 1=l , solve the (MOLPαλm)l with the solution ( )lx , which is 

subject to the constraint l
Xx ∈ .  

Let αλ =0
 and 11 =λ  in the interval ]1,[α , each fuzzy objective 

function ( ) xcxf ii
~~

=  under the fuzzy goal ( )T

kgggg ~,,~,~~
21 …=  and related 

constraints are converted into non-fuzzy, as described in (7.3.3) and 

(7.3.4) 
 

Step 9: Solve the (MOLPαλm)2l  with the solution ( ) lx 2
, which is 

subject to the constraint l
Xx

2∈ .  

Similar as Step 6 in 7.3.1, the interval [α, 1] is further split, and new 

nodes are inserted further. Fuzzy objective functions under related fuzzy 

goals and constraints are converted into non-fuzzy again. A new solution 

( ) lx 2  is generated. 
 

Step 10: If ( ) ( ) ε<−
ll

xx 2
, then ( ) lx 2

 is the final solution of the 

MOLPαλm problem. Otherwise, update l to 2l and go back to Step 9. 
 

Step 11: If decision makers are satisfied with the current Pareto 

optimal solution obtained in Step 10, the interactive process terminates. 
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The current optimal solution is the final satisfactory solution to decision 

makers. Otherwise, go back to Step 7. 
 

We now give further explanations for this method: 

 

• Definition 5.3.13 is about ranking two n-dimensional fuzzy numbers 

under a satisfactory degree α. This definition is the foundation for the 

comparison of fuzzy objective functions and left- and right-hand-side 

of fuzzy constraints in an FMOLP problem. In Step 5, if the Pareto 

optimal solution does not exist under a satisfactory degree α, by 

replacing this α with a higher value may derive a Pareto optimal 

solution. 

• In Step 7, decision makers can improve their goals for some 

unsatisfactory objectives by sacrificing the goals of others. The new 

fuzzy goals can be given directly by a new fuzzy number vector or by 

increasing/decreasing the values of its corresponded objective 

functions in a current Pareto optimal solution. 
 

Figure 7.7 shows the working process of the IFMOLP method. 
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Fig. 7.7: Working process of the IFMOLP method 
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7.4.2 A numeral example 

Consider a numeral FMOLPα problem as follows: 
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The membership functions of fuzzy parameters of the objective 

functions and constraints are set up as follows: 
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Stage 1: Initialisation 

 

Step 1: Input membership functions of c~  for objective functions 

( ) xcxf ~~
= ,  ~a  and b

~
 for constraints bxa

~
   ~

α
≺ . For example, the 

membership function of 
11

~c  is given as shown in Fig. 7.8. We set an initial 

satisfactory degree α as 0.2. We use default values for the weights of 

objective functions. 

 

Fig. 7.8: Membership function of a fuzzy parameter 
11

~c  

Steps 2-4: Under the degree α = 0.2, we calculate the Pareto optimal 

solution. Associated with the FMOLPα problem in the example, a 

corresponded MOLPαλ problem is listed: 
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where [ ]1,αλ ∈∀ . 

Refer to the MOLPαλ problem, initially, 2.00 =λ  and 11 =λ , then 

totally, 8 non-fuzzy objective functions and 16 non-fuzzy constraints are 

generated. The result is listed as follows: 
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The interval [α, 1] is further split. We then have  

9115.1*

1 =x , 1023.5*

2 =x ,  

and two optimal objective values (see Fig. 7.9)  
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Fig. 7.9: Membership functions for ( )*
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xxf  in Stage 1 
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Steps 5-6: Suppose decision makers are not satisfied with the initial 

Pareto optimal solution, the interactive process will start. 

Stage 2: Iterations 

 

Iteration No. 1: 

Step 7: Based on the Pareto optimal solution obtained in Stage 1, 

decision makers specify new fuzzy goals ( )21
~,~ gg  by increasing 30% on 
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Steps 8-10: Calculate the fuzzy Pareto optimal solution based on the 

new fuzzy goals ( )21
~,~ gg  and the satisfactory degree α = 0.2.  

Under the new fuzzy goals, the FMOLPα problem is converted into a 
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where [ ]1,αλ ∈∀ . 

We obtain  

0486.3*

1 =x , 9239.4*

2 =x ,  
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and two optimal fuzzy objective values are  
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as shown in Fig. 7.10. 
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Fig. 7.10: Membership functions for ( )*
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xxf  in Iteration No. 1 

 

Step 11: Suppose decision makers do not satisfy the fuzzy Pareto 

optimal solution, the interactive process will proceed, that is, starting the 

second iteration. 

Iteration No. 2:  

Step 7: At this iteration, suppose decision makers specify new fuzzy 

goals ( )21
~,~ gg  by the corresponding membership functions as follows 

(see Fig. 7.11): 
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Fig. 7.11: Membership functions of the new fuzzy goals in Iteration No. 2 

Steps 8-10: Calculate the fuzzy Pareto optimal solution based on the 

new fuzzy goals ( )21
~,~ gg  and keep the degree α = 0.2.  

Under the fuzzy goals, the FMOLPα problem is converted into the 

non-fuzzy MOLPαλm problem as follows: 
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where [ ]1,αλ ∈∀ . 

We have  

2.8992*

1 =x , 4.9829*

2 =x ,  

and two optimal objective values are (see Fig. 7.12) 
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Fig. 7.12: Membership functions for ( )*
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Step 11: Now decision makers are satisfied with the solution obtained 

in Step 10, the interactive process thus terminates. The final solution of 

the FMOLP problem is, 2.8992,*

1 =x , 4.9829,*

2 =x  the first objective’s 

value is around 21.5625, and the second’s is around 14.1332. 
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7.5 Summary 

The developed FMODM methods extend MODM decision analysis 

functions from crisp to imprecise scope. This chapter gives three 

methods to solve the FMOLP problems. Several points are indicated here 

to help readers effectively use these methods.  

• These three methods deal with a general FMOLP problem with fuzzy 

parameters appearing in either objective functions or constraints or 

both. They are still applicable to deal with non-fuzzy parameters as a 

real number is as a special case of a fuzzy number. Similarly, a goal 

with a real number is also as a special case of a fuzzy goal. 
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• These three methods all allow decision makers to use any form of 

membership functions for describing fuzzy parameters in objective 

functions or constraints, and also for expressing decision makers’ 

fuzzy goals. When decision makers do not have a clear idea to choose 

a suitable form of membership functions, they can try different forms 

or use a default form provided by the FMODSS software. This feature 

offers decision makers a higher confidence in using the methods to 

solve practical problems.  

• Obviously, some FMOLP methods are more suitable than others for 

some particular decision makers in some particular decision 

problems. For example, managers might have enough expertise 

knowledge of FMOLP models and their fuzzy goals for objectives in 

an FMOLP problem. Particularly, they prefer to explore possible 

optimal solutions through monitoring their fuzzy goals. In such a 

case, the IFMOLP method is the most suitable one for them. Other 

decision makers who have expertise of the FMOLP model but have 

no idea in giving goals for objective functions in their decision 

problems, the FMOLP method will be the best.  

• However, the selection of the most suitable one from a number of 

available FMODM methods is difficult to accomplish by general 

decision makers, because it needs some expertise and experience to 

understand specific features of these methods. Table 7.3 shows the 

main characteristics of the three methods in order to advise users 

choosing a suitable one for a particular decision. 

Table 7.3: Main characteristics of the three methods 

Methods 

 

Char. 
Scalarisation Fuzzy goal Interaction 

Degree α * * * 

Weight * * * 

Fuzzy goal  * * 

Revising goal   * 
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Chapter 8 

Fuzzy Multi-Objective DSS 

We now present a fuzzy multi-objective DSS that implements the three 

methods proposed in Chapter 7 for solving fuzzy multi-objective 

decision problems. We first describe the configuration, the interface, the 

model-base, and the method-base of the system. We then give two case-

based examples to demonstrate the FMOLP problem solving procedure. 

8.1 System Configuration 

As a specific type of DSS, a fuzzy multi-objective DSS (FMODSS) aims 

to help decision makers gather the knowledge about the FMOLP problem 

itself so as to make a better-informed decision, and encourage decision 

makers to explore the support tools in an iterative fashion for further 

defining and refining the nature of the problem.  

With the aid of the FMODSS, decision makers are able to fully 

control the decision making process and can obtain possible solutions to 

their problems. The friendly windows-based user interface of this system 

enables decision makers to take advantage of the capabilities of the 

system in making real-time decisions. 

The user interface of the FMODSS has the typical form of window-

based software. It takes advantage of the graphical capabilities of 

Windows environment enabling users (decision makers or decision 

analysts) to exploit fully the capabilities of the system. 

The FMODSS consists of four major software components: (1) input-

and-display component, (2) model management component, (3) method 

management component, and (4) data management component. It also 

has three bases: (a) database, (b) FMOLP method-base, and (c) model-
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base. These bases are linked to their corresponding management 

components respectively. Fig. 8.1 shows the structure of the FMODSS. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8.1: The structure of the FMODSS 

During the decision making process, the system needs decision 

makers’ inputs to the FMOLP model and the selected decision method, 

and interprets output from the method continually throughout the 

interactive process. Thus, these inputs and outputs must be formatted in 

such a way that they are intuitive and easy for decision makers to use. 

Following the FMOLP model and its input-and-display component, some 

typical data, such as fuzzy parameters of the FMOLP model, weights, 

and satisfactory degrees etc., need to be input from users for setting up 

models and other initial data for the system. 

From Fig. 8.1, all data within the system, such as parameters, 

alternative definitions and values, intermediate and/or final results, even 

the data from the external sources, will be stored in the database by the 

data management component. 

Importantly, the model management component is functionally able to 

define and structure a fuzzy multi-objective decision problem, and 

generate a decision making model based on data inputs. Generally, it is 

combined with the data management component and provides facilities 

for the definition, storage, retrieval and execution of a wide range of 

Database Model-base 
FMOLP 

method-base 

Data management 

component 
Method management 

component 
Model management 

component 

Input-and-display 
management component 

Decision maker 
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models. It also gives decision makers to specify or build entirely new 

models by using a model-building facility associated with an input-and-

display component. 

Depending on the nature of decision makers to an FMOLP problem, 

different methods are thus contained in the method-base for the method 

management component to access for searching the optimal solution. 

Decision makers can select the most suitable method for solving their 

decision problems. To harness the potential of these methods effectively, 

the system is flexible enough to let new or revised methods be introduced 

if desired. 

8.2 System Interface 

An FMODSS is designed and developed as a prototype essentially 

applied for solving FMOLP problems. It involves different kinds of 

interfaces such as windows, menus, dialog boxes, icons, and forms that 

are able to assist decision makers for modelling, understanding, 

analysing, and solving their problems. There are five menus that form the 

functions of the system interface. They are File menu, Method menu, 

Model menu, Result menu, and Help menu. These pull-down menus 

together with their respective windows perform all kinds of decision 

support activities. 

Among five items in the File menu (see Fig. 8.2), New FMOLP 

Model, Open FMOLP Model, and Save FMOLP Model are for dealing 

with FMOLP models. Three items, Fuzzy Multi-Objective Linear 

Programming (FMOLP), Fuzzy Multi-Objective Linear Goal 

Programming (FMOLGP), and Interactive Fuzzy Multi-Objective Linear 

Programming (IFMOLP), are included in the Method menu. The Model 

menu is used for displaying the current model that will be solved in the 

latter procedure by using some suitable methods. One item, which is 

FMOLP Model, is in the Model menu. Similarly, the item, FMOLP 

Result, is included in the Result menu for showing the optimal solution 

for the current FMOLP problem. 
 



Multi-Objective Group Decision Making 164 

 

Fig. 8.2: Main interface of the FMODSS 

8.3 A Model-Base and Model Management 

A model-base is set up for storing users’ application models in the 

FMODSS. Each model is prepared in a file format. And these models in 

the model-base are connected with the database and data management 

component for retrieving and storing the related modelling data of the 

problems. 

A model management component combined with the model-base 

defines, develops, and maintains decision models for computing efficient 

solutions. This component inputs a new model, opens an existing model 

stored in the model-base, or stores the current model to the model-base 

for the further use or modification. Generally, the model management 

component is connected with the database and the data management 

component. 

By clicking the item of New FMOLP Model in the File menu, we can 

start a procedure for setting up a new model for an FMOLP problem. 

Based on the FMOLP model described in Chapter 6, the following 

common data are needed for creating the model. 
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• The numbers of decision variables, fuzzy objective functions, and 

fuzzy constraints, respectively. 

• The names of decision variables, fuzzy objective functions, and fuzzy 

constraints, respectively. 

• The parameters of fuzzy objective functions, the max/min for 

individual fuzzy objective function as shown in Fig. 8.3. 

• The parameters of fuzzy constraints and the relation signs of 

individual fuzzy constraint as shown in Fig. 8.3. 

 

Fig. 8.3: Input fuzzy objective functions and fuzzy constraints 

As the parameters of fuzzy objective functions and fuzzy constraints 

and fuzzy goals are represented by fuzzy numbers, a Dialog Box as 

showed in Fig. 8.4 is designed specially for entering these fuzzy 

numbers. Referring to a fuzzy number to be entered, the forms of left 

continuous increasing function and right continuous decreasing function 

of a fuzzy number can be selected as linear, quadratic, cubic, 

exponential, logarithmic, other piecewise forms from the dropdown lists, 

and four end-points of left and right function of fuzzy numbers are 

entered in the textboxes simultaneously. Fig. 8.5 shows the general 

information about an FMOLP problem to be solved. 
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Fig. 8.4: Input membership function of a fuzzy number 

 

 
Fig. 8.5: General information about an FMOLP problem 
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8.4 A Method-Base and Solution Process 

Recall the three methods proposed in Chapter 7: FMOLP method, 

FMOLGP method, and IFMOLP method. They are now implemented 

and stored in the method-base. Different methods contained in the 

method-base can be accessed for the method management component 

and for searching optimal solutions of FMOLP problems. 

8.4.1 Fuzzy MOLP  

By clicking the item of FMOLP in the Method menu, Fig. 8.6 shows 

windows in which different weights for fuzzy objective functions can be 

entered in FlexGrid 1, and the degree of all membership functions of the 

fuzzy numbers can also be set by the slider as well. Currently in the 

window, the degree is 0.15. When the degree is set to 1, the original 

fuzzy problem is converted to a crisp problem, and the values of 

objective functions will be non-fuzzy numbers.  

Following the FMOLP method, click Button Run, a solution of the 

problem including decision variables and fuzzy objective functions will 

be shown in FlexGrid 2 and FlexGrid 3, respectively. Here, the output of 

decision variables as shown in FlexGrid 2 is ,27.58*

1 =x  ,56.52*

2 =x  

,0.0*
3 =x  ,66.4*

4 =x  .86.36*
5 =x  To display membership functions of 

fuzzy objective functions output, click the corresponding grids in 

FlexGrid 3 and Button membership one by one, new windows will be 

displayed similarly as Fig. 8.7 sequentially.  

8.4.2 Fuzzy MOLGP 

Similar to the FMOLP method in Section 8.4.1, by clicking the item of 

FMOLGP in the Method menu, Fig. 8.8 shows the window, in which the 
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Fig. 8.6: Solving FMOLP problems with the FMOLP method 

    

 

Fig. 8.7: Membership functions of fuzzy objective functions 

FlexGrid 1 FlexGrid 2 FlexGrid 3 
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initial fuzzy goals can be entered in FlexGrid 2. To input membership 

functions of fuzzy goals that are represented by fuzzy numbers, click the 

corresponding grid in FlexGrid 2 and Button Membership, new windows 

will be shown in Fig. 8.9.   

For example, a fuzzy goal is entered in Fig. 8.9, both of the left and 

right membership functions of the fuzzy goal are set as quadratic. The 

four-end points for left and right membership functions are 650, 700, 

700, and 740, respectively. The diagram in Fig. 8.9 shows the shape of 

the membership function for the fuzzy goal. 

After having input fuzzy goals and setting the degree α, press Button 

Run, the solution will be supplied in FlexGrid 3 and FlexGrid 4. 

 
 

 

  

Fig. 8.8: Solving FMOLP problems with the FMOLGP method 

FlexGrid 1 FlexGrid 2 FlexGrid 3 FlexGrid 4 
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Fig. 8.9: Input a fuzzy goal 

8.4.3 Interactive FMOLP  

Following our discussions in Chapter 7, we just outline the working 

process of using the IFMOLP method in the FMODSS. The steps here 

are little different from the steps listed in Section 7.4 as here we work on 

a software. Original 11 steps are reduced to eight steps here.    
 

Stage 1: Initialisation 

This stage is to set up an FMOLP model and generate an initial 

optimal solution to the model.  

Step 1: Set up an FMOLP model and input membership functions of 

fuzzy parameters of the model. 
 

Step 2: Ask decision makers to select a satisfactory degree α 

( )10 ≤≤ α  and individual weights for fuzzy objective functions.  
 

Step 3: Solve the FMOLP problem under the current degree α and 

weights.  
 

Step 4: If the Pareto optimal solution including optimal decision 

variables *
x  and fuzzy objective functions ( )*~

xf  exists in Step 3, go to 
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the next step. Otherwise, go back to Step 2 to reassign the degree α and 

solve the FMOLP problem again. 
 

Step 5: Ask decision makers whether the initial solution in Step 3 is 

satisfied. If so, the whole interactive process stops, and the initial 

solution is to be the final satisfactory solution. Otherwise, go to Stage 2. 
 

Stage 2: Iterations 

At this stage, the interactive process will proceed. At each iteration 

phase, decision makers are supplied with the solution obtained at 

Initialisation stage or the previous phase. If not satisfied with the current 

solution, decision makers are asked to specify their fuzzy goals, and then 

a new compromise solution will be generated until decision makers stop 

the iterative procedure. 

Step 6: Specify new fuzzy goals ( )Tkgggg ~,,~,~~
21 …=  for fuzzy 

objective functions based on the current solution and a new degree α if 

needed. Decision makers will have to make the compromise among the 

fuzzy objectives. An improvement for one or more of the fuzzy 

objectives will result in the sacrifices of other fuzzy objectives. 
 

Step 7: Calculate a compromise solution based on the current fuzzy 

goals of objective functions specified in Step 6 and the degree α. 
 

Step 8: If decision makers are satisfied with the solution calculated in 

Step 7, the whole interactive process stops. The current compromise 

solution is the final satisfactory solution of the FMOLP problem. 

Otherwise, go back to Step 6 for more iteration. 
 

Figure 8.10 shows the working process of the IFMOLP method. 

 

 

 

 

 

 

 



Multi-Objective Group Decision Making 172 

Solution 
exists? 

Satisfactory 
solution? 

 

 

 

 

 

 

        N 

 
 

 
Y 

 

           Y 
 

 
N 

 
 
 
 
 
 
 
 

 

 
 
 
 
 
 

Fig. 8.10: Working process of the IFMOLP method in the FMODSS 

In the FMODSS, windows are designed to facilitate decision makers 

to gather the knowledge about the FMOLP problem to be solved and 

make a better decision with the IFMOLP method. During the solution 

Set up an FMOLP model 

Specify new fuzzy goals based on the 
current solution 

Show the final solution 

 

End 

Calculate an initial Pareto optimal solution  

Start 

Specify a degree α ( )10 ≤≤ α  and weights 

Generate a solution based on the current 
fuzzy goals 
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process, decision makers can specify fuzzy goals to be achieved by two 

ways. One is to increase or decrease the previous individual fuzzy 

objective function solution by percentage in the row ‘By %’. The other is 

by entering the new fuzzy goals in the row ‘By value’. A new solution at 

the current trial will be generated. The solution for each trial during the 

interactive process is recorded and listed in the historical records frame. 

8.5 Case-Based Examples 

To show the programme of the FMODSS, two case-based examples are 

formulated as FMOLP models and solved in this section. 
 

Example 1: Production planning 

 

As presented in Section 6.1, a manufacturing company has a 

production planning problem. It has six machine types used to produce 

three products. Decision makers have three objectives of maximising 

profits, quality, and worker satisfaction. With the imprecise values listed 

in Table 6.1, this problem is described by an FMOLP model as follows: 
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In this model, all parameters of objective functions and constraints are 

represented in triangular fuzzy numbers. The FMOLP model (8.5.1) is 

built into the system, and the result is shown in Fig. 8.11. 

 
Fig. 8.11: The FMOLP model of Example 1 in the FMODSS 

Here, we use the FMOLP method to solve the problem. As shown in 

Fig. 8.12, the output of decision variables are  

,85.68*

1 =x  ,42.25*

2 =x  .68.44*

3 =x   (8.5.2) 

and the fuzzy objective functions are 
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The membership functions of *

1

~
f , *

2

~
f , and *

3

~
f  in (8.5.3) are shown in Fig. 

8.13, respectively. 



Fuzzy Multi-Objective DSS 175 

 
Fig. 8.12: Solving the FMOLP problem (Example 1) by the FMOLP method 

     

 
Fig. 8.13: Membership functions of *

1

~
f , *

2

~
f , and *

3

~
f  in Example 1 
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Example 2: Marketing decision 
 

A marketing decision problem in an international toy manufacturing 

company is reformulated as an FMOLP model (8.5.4). The FMOLP 

model consists of simultaneous maximisation of three fuzzy objective 

functions subjective to five fuzzy constraints involving five decision 

variables. Three objectives are determined as follows: 
 

• Potential purchase families reached; 

• Potential unit sales; 

• Benefit/cost of advertising efforts. 

 

The FMOLP problem is modelled as follows. 
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In this model, the unified form for all membership functions of the 

parameters of the objective functions and constraints is as follows: 
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For simplicity, we only represent the above form of membership 

function as a quadruple pair (a, b, c, d). Then, for the FMOLP model 

(8.5.4), all membership functions of fuzzy parameters of the objective 

functions and constraints are to be represented in the quadruple pair form 

and listed in Tables 8.1, 8.2, and 8.3, respectively. 

Table 8.1: Membership functions of fuzzy objective functions’ parameters 

ij
c~

 1 2 3 4 5 

1 (0.5, 1, 1, 2.5) (8, 9, 9, 12) (9, 10, 10, 13) (0.5, 1, 1, 2.5) (2, 3, 3, 6) 

2 (8, 8.9, 9.2, 12) (1, 1.9, 2.2, 5) (1, 1.9, 2.2, 5) (6, 6.9, 7.2, 10) (3, 3.9, 4.2, 7) 

3 (2, 3.9, 4.2, 5) (4, 5.9, 6.2, 7) (5, 6.9, 7.2, 8) (2, 3.9, 4.2, 5) (6, 7.9, 8.2, 9) 

Table 8.2: Membership functions of fuzzy constraints’ parameters 

ij
a~  1 2 3 4 5 

1 (2, 3,3, 5) (8,9, 9, 11) (8, 9, 9, 11) (4, 5, 5, 7) (2,3, 3, 5) 

2 (-6,-4.1,-3.9,-3) (-2, -1.1, -0.9, -0.5) (2, 2.9, 3.1, 5) (-5, -3.1, -2.9, -2) (-4, -2.1, -1.9, -1)

3 (2, 2.9, 3.1, 5) (-11, -9.1, -8.9, -8) (-11, -9.1, -8.9, -8) (-6, -4.1, -3.9, -3) (0, 0, 0, 0) 

4 (4, 4.9, 5.1, 7) (8, 8.9, 9.1, 11) (9, 9.9, 10.1, 12) (0.5, 0.9, 1.1, 2) (-4, -2.1, -1.9, -1)

5 (2, 2.9, 3.1, 5) (-5, -3.1, -2.9, -2) (0, 0, 0, 0) (0.5, 0.9, 1.1, 2) (4, 4.9, 5.1, 7) 

Table 8.3: Membership functions of fuzzy right-hand-side’s parameters 

ib
~  1 

1 (1038, 1038.9, 1039.1, 1041) 

2 (93, 93.9, 94.1, 96) 

3 (60, 60.9, 61.1, 63) 

4 (923, 923.9, 924.1, 926) 

5 (419, 419.9, 420.1, 422) 

By the main steps of the IFMOLP method in Section 8.4.3, the 

procedure of solving the problem by using the FMODSS is as follows: 
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Stage 1: Initialisation 

Step 1: Initially, the FMOLP model of the problem (8.5.4) is input 

into the system. The result is shown in Fig. 8.5. 

 

Step 2: After having finished establishing the FMOLP model, 

decision makers will switch to windows as shown in Fig. 8.14 to solve 

the problem. Suppose the satisfactory degree α is set to 0.25, and each 

weight for three fuzzy objective functions is all equally set to 0.333.  

 

Step 3: Click Button Initiate, an initial solution to the FMOLP model 

is generated. The decision variables are  

45.60*

1 =x , 43.53*

2 =x , 0*
3 =x , 09.5*

4 =x , 77.38*

5 =x  (8.5.6) 

as displayed in the Output frame in Fig. 8.14, and the fuzzy objective 

functions are  
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 (8.5.7) 

By clicking the corresponding grids one by one in the row 

‘Objectives’ in the Output frame in Fig. 8.14, the membership functions 

of fuzzy objective functions *

1

~
f , *

2

~
f , and *

3

~
f  in (8.5.7) are shown in Fig. 

8.15, and the initial solution is logged and listed in the first row ‘Trial 1’. 

At this stage, the *

1

~
f , *

2

~
f , and *

3

~
f  are about 662.6828, 825.7988, and 

877.0659, respectively. 

 

Step 4: Since the Pareto optimal solution with the optimal decision 

variables *x  and fuzzy objective functions ( )*~
xf  exists, the procedure 

will move to the next step. 

 

Step 5: Suppose decision makers are not satisfied with the initial 

solution in Step 3, then the interactive process will continue to Stage 2. 
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Fig. 8.14: Main window shown when the initial solution obtained 

   

 

Fig. 8.15: Membership functions of *

1

~
f , *

2

~
f , and *

3

~
f  at Trial 1 
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Stage 2: Iterations 

Iteration No 1: 

Step 6: In this step, decision makers specify new fuzzy goals for the 

fuzzy objective functions to be achieved. Suppose these new fuzzy goals 

are assigned by decreasing the first and third fuzzy objective functions 

by 5% as the first and third fuzzy goals, respectively, and increasing the 

second fuzzy objective function by 5% as the second fuzzy goal based on 

the initial solution at Stage 1. That is, 

  ( ) ( ) ( ) ( )( )*

3

*

2

*

1

*

3

*

3

*

2

*

1

*

2

*

3

*

2

*

1

*

1321 ,,
~

*95.0  ,,,
~

*1.05  ,,,
~

*95.0 ~,~ ,~ xxxfxxxfxxxfggg =  (8.5.8) 

By clicking the corresponding grid in the row ‘By %’ in the Input 

frame in Fig. 8.16, the increasing and decreasing numbers are filled one 

by one in the textboxes.  

 

Step 7: Click Button Continue, the new solution based on the fuzzy 

goals (8.5.8) is generated. Consequently, the decision variables are 

11.63*

1 =x , 76.49*

2 =x , 0.0*

3 =x , 73.12*

4 =x , 54.33*

5 =x ,  (8.5.9) 

and the fuzzy objective functions are 
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The membership functions of *

1

~
f , *

2

~
f , and *

3

~
f  (8.5.10) are displayed 

in Fig. 8.17. The new solution is also logged and listed in the second row 

‘Trial 2’ in Fig. 8.16. At this iteration, the *

1

~
f , *

2

~
f , and *

3

~
f  are about 

625.5503, 873.7452, and 855.1154, respectively. Comparing the fuzzy 

optimal objective functions *

1

~
f , *

2

~
f  and *

3

~
f  in (8.5.7) with the ones in 

(8.5.10), *

1

~
f and *

3

~
f  got some decrement, and *

2

~
f  obtained some 

increment. That is the purpose of the fuzzy goals (8.5.8) at this iteration. 

 

Step 8: Suppose decision makers are not satisfied with the solution in 

Step 7, the interactive process will carry on to the next iteration and go 

back to Step 6. 
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Fig. 8.16: Main window with an IFMOLP method for solving an FMOLP problem 

     

 
Fig. 8.17: Membership functions of *

1

~
f , *

2

~
f  and *

3

~
f  at Trial 2 
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Iteration No 2: 

Step 6: Now, suppose decision makers set some new fuzzy goals as 

follows: 

( ) 







=

~~~

321 900,800,700~,~ ,~ ggg , (8.5.11) 

and the membership functions in quadruple pair format are listed as: 
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. (8.5.12) 

By clicking on the corresponding grids in the row ‘By value’ in the 

Input frame and Button Membership in Fig. 8.16, another Dialog Box 

similar to Fig. 8.9 will pop up. And the membership functions ,,
21 gg uu  

and 
3gu  in (8.5.12) can be input in this Dialog Box sequentially. 

 

Step 7: Clicking Button Continue, a compromise solution to the 

FMOLP problem based on the fuzzy goals in (8.5.11) and (8.5.12) is 

generated. The decision variables are 

42.46*

1 =x , 22.57*

2 =x , 0.0*

3 =x , 0.0*

4 =x , 28.51*

5 =x ,  (8.5.13) 

and the fuzzy objective functions are 
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The membership functions of *

1

~
f , *

2

~
f , and *

3

~
f  in (8.5.14) are shown in 

Fig. 8.18, respectively. The *

1

~
f , *

2

~
f , and *

3

~
f  are about 715.3107, 

721.8266, and 923.8416, respectively. The solution is also logged and 

listed in the row ‘Trial 3’ in Fig. 8.16. 
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Fig. 8.18: Membership functions of *

1

~
f , *

2

~
f , and *

3

~
f  in Trial 3 

Step 8: Suppose decision makers are now satisfied with the solution in 

Step 7, the whole interactive process stops, and the current solution is the 

final satisfactory solution of the FMOLP problem. 
 

During the interactive process with the IFMOLP method, decision 

makers may have some different satisfactory degree α ( )10 ≤≤ α . With a 

different degree α, fuzzy parameters of the FMOLP model and fuzzy 

goals will take some value in different ranges, and for the solutions, 

decision variables will also be different and the fuzzy objection functions 

will be in different ranges as well. Tables 4.4, 4.5 and 4.6 list solutions at 

different stages with different satisfactory degrees α ( )10 ≤≤ α . With the 

optimal decision variables *

1x , *

2x , *

3x , *

4x  and *

5x , the fuzzy objective 

functions *

1

~
f , *

2

~
f  and *

3

~
f  are obtained by 
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 (8.5.15) 

Table 8.4: Solutions at Initialisation Stage with some different satisfactory degree α 

α *

1x  *

2x  *

3x  *

4x  *

5x  

1.0 93.83 59.75 0.0 9.56 57.25 

0.9 86.51 58.51 0.0 10.25 53.36 

0.8 79.24 58.34 0.0 5.94 52.98 

0.7 74.49 58.13 0.0 6.08 49.81 

0.6 70.52 56.96 0.0 6.10 46.91 

0.5 67.16 55.83 0.0 6.01 44.26 

0.4 64.22 54.83 0.0 5.68 41.92 

0.3 61.63 53.88 0.0 5.29 39.77 

0.2 59.33 52.98 0.0 4.87 37.79 

0.1 35.60 41.92 0.0 33.05 40.08 

0.0 34.54 41.25 0.0 31.83 38.31 

Table 8.5: Solutions at Iteration 1 with some different satisfactory degree α 

α *

1x  *

2x  *

3x  *

4x  *

5x  

1.0 96.89 55.51 0.0 19.14 50.85 

0.9 89.38 54.43 0.0 19.45 47.32 

0.8 81.99 55.36 0.0 14.85 47.10 

0.7 77.13 54.27 0.0 14.67 44.14 

0.6 74.49 58.16 0.0 14.36 41.42 

0.5 69.71 52.17 0.0 13.96 38.94 

0.4 66.73 51.26 0.0 13.33 36.77 

0.3 64.14 50.41 0.0 12.65 34.71 

0.2 61.84 49.60 0.0 11.95 32.94 

0.1 60.56 47.76 0.0 13.46 29.70 

0.0 42.44 39.54 0.0 33.64 31.65 
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Table 8.6: Solutions at Iteration 2 with some different satisfactory degree α  

α *

1x  *

2x  *

3x  *

4x  *

5x  

1.0 66.01 0.00 55.11 0.00 27.61 

0.9 63.82 0.00 53.72 0.00 33.53 

0.8 60.95 11.62 41.53 0.00 42.53 

0.7 79.33 55.70 0.00 0.00 47.02 

0.6 51.65 20.41 41.95 12.57 42.00 

0.5 56.81 59.53 0.0 0.00 54.38 

0.4 55.32 58.26 0.0 0.00 50.88 

0.3 52.86 57.16 0.0 0.00 48.49 

0.2 49.73 56.21 0.0 0.00 46.97 

0.1 46.11 55.38 0.00 0.00 46.12 

0 42.12 54.66 0.00 0.00 45.82 

 

8.6 Summary 

A fuzzy multi-objective DSS takes into account how to reach a solution 

when multiple objectives and fuzzy parameters are involved in the 

decision problem. We have developed an FMODSS based on the 

methods given in Chapter 7. The FMODSS helps decision makers to 

solve a multi-objective decision problem in practice. The FMODSS 

contains three methods each of which has particular features to support 

FMODM. This structure improves the usefulness of the system by 

different requirements and preferences of decision makers in their 

decision problems. Readers are recommended to use the case-based 

example given in Section 4 with the FMODSS in the attached CD to 

learn more the use of the system. 
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Chapter 9 

Fuzzy MCDM 

In most real world contexts, an MCDM (MADM) problem at tactical and 

strategic levels often involves fuzziness in its criteria (attributes) and 

decision makers’ judgments. This kind of decision problems is called 

fuzzy multi-criteria decision making (FMCDM). We first give a case-

based example to illustrate what is an FMCDM problem, and then 

present a general FMCDM model. We will discuss two FMCDM 

methods, fuzzy TOPSIS and fuzzy AHP, and then present a hybrid 

FMCDM method that has been implemented into a DSS, FMCDSS. 

9.1 A Problem 

Fuzzy MCDM technique has been one of the fastest growing areas in 

decision making and operations research during the last two decades. A 

major reason behind the development of FMCDM is due to the large 

number of criteria that decision makers are expected to incorporate in 

their actions and the difficulty of expressing decision makers’ opinions 

by crisp values in practice. A typical FMCDM problem is performance 

evaluation. 

A university plans to give an award to an academic who has the 

highest performance among all applicants. This issue involves multiple 

aspects. Each aspect has multiple evaluation criteria, and these criteria 

have different important degrees. All applicants of the university can be 

seen as alternatives. Since the judgments from the assessment committee 

of the university are usually vague rather than crisp, and hence can only 

be described by linguistic terms. It is a typical FMCDM problem. 
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In general, an academic’s performance can be evaluated from three 

main aspects: teaching, research, and service. Each aspect contains a set 

of criteria and some criteria may also involve some sub-criteria. Fig. 9.1 

gives a hierarchy of performance evaluation. Totally, 13 criteria are 

listed in the hierarchy. 

The main criteria in the teaching aspect include course development 

(new subject design and existing subject update), teaching method 

research (innovative teaching method development and related grants, 

reports, and publications), teaching load (undergraduate subject teaching 

load, graduate subject teaching load, teaching material preparations, 

online teaching systems, and projects supervision), student performance 

(industry training and job finding), and student evaluation results 

(satisfaction on teaching contents, teaching methods, teaching attitude, 

assignments, and examination). 

The main criteria on the research aspect include the number of 

research grants (international, national and internal), the amount of 

money funded in these grants, the number of publications (such as books, 

book chapters, journal papers, and conference papers), the quality of 

publications (such as journal quality index, citations to published 

materials), and the number of completion of research students. 

The main criteria on the service aspect include service to  

the university (faculty and university committee members, 

leadership/participation in administration, and leadership/participation on 

management functions, and early career academic staff members), 

service to the professional society (referee or editor of scientific journals, 

invited speakers and guest lectures, member of national or international 

professional associations, organisation of conferences, and editorships), 

service to the community and related service performance (technical 

consultation, recommendation letters and sponsorship of visitors, and 

providing technical assistance to public policy analysis for local, state, 

national, and international governmental agencies). 
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Fig. 9.1: Hierarchy of criteria for academic performance evaluation 

 

Through the hierarchy of criteria from Fig. 9.1, the committee is able 

to assess all applicants’ performance. To determine the importance 

degree of each criterion with respect to the goal, a set of linguistic terms 

may be used by the committee members to express their opinions to each 

applicant’s performance. These linguistic terms are then represented by 

fuzzy numbers for achieving a final result. Table 9.1 lists some common 

used linguistic terms, described by triangle fuzzy numbers, for scoring 

Performance 
evaluation 

Teaching 

Research 

Service 

2. Teaching method research 

 

3. Teaching load 

 
4. Student performance 

5. Student evaluation results 

6. The number of grants  

7. The funding amount of grants 

8. The number of publications 

9. Publications quality 

10. Research student completion 

11. To the university 

12. To the professional society 

13. To the community 

1. Course development 
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weights of the three aspects and the 13 criteria in Fig. 9.1. Table 9.2 

shows the needed linguistic terms and related triangle fuzzy numbers for 

assessing each applicant by the committee.  

Table 9.1: Linguistic terms and related triangle fuzzy numbers for describing the weights 

 
 
 
 
 
 
 
 
 
 
 

Table 9.2: Linguistic terms and related triangle fuzzy numbers for scoring 

The scores Membership functions 

Lowest (0, 0, 1/6) 

Very low (0, 1/6, 1/3) 

Low  (1/6, 1/3, 1/2) 

Medium (1/3, 1/2, 2/3) 

High  (1/2, 2/3, 5/6) 

Very High  (2/3, 5/6, 1) 

Highest (5/6, 1, 1) 

 

After having the importance degrees of criteria and all scores for 

applicants, the committee can use an FMCDM method to show who has 

the highest score among all applicants.  

The importance degrees Membership functions 

Absolutely unimportant (0, 0, 1/6) 

Unimportant  (0, 1/6, 1/3) 

Less important (1/6, 1/3, 1/2) 

Important (1/3, 1/2, 2/3) 

More important (1/2, 2/3, 5/6) 

Strongly important  (2/3, 5/6, 1) 

Absolutely important (5/6, 1, 1) 
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9.2 Models 

As fuzziness may appear in different aspects and in different forms of an 

MCDM problem, FMCDM has been characterised in several ways. In 

principle, FMCDM constitutes the models of MCDM.  

Mathematically, as described in Section 2.4, a typical MCDM (here 

and in the following context represents MADM) problem can be 

modelled as follows: 

(MCDM) 





n

m

C

AAA

C ,,C ,  :.t.s

 ,, , :Select

21

21

…

…
 (9.2.1) 

where ( )mAAAA ,,, 21 …=  denotes m alternatives, ( )nCCCC ,,, 21 …=  

represents n criteria. The select here is normally based on maximising a 

multi-attribute value (or utility) function elicited from the stakeholders. 

The model can be described in a matrix format: 
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 (9.2.2) 

[ ]nwwwW     21 …=  

where 
mAAA ,,, 21 …  are alternatives from which decision makers choose; 

nCCC ,,, 21 …  are criteria with which alternative performances are 

measured; 
ijx , mi ,,1…= , nj ,,1…= , is the rating of alternative 

iA  with 

respective to criterion 
jC ; and 

jw  is the weight of criterion 
jC . 

 

Basically, there are two issues involved in the MCDM model.  

(1) The rating of alternative 
iA  with respect to criterion 

jC  given by 

decision makers expresses their judgments and preferences. These 

judgments and preferences are often described by linguistic terms, 

which are a kind of fuzzy values. That is, 
ijx  ( mi ,,1…= , nj ,,1…= ) 

can be fuzzy numbers.  

(2) When we utilise weights to assess the relative importance of these 

multiple criteria, the weight for each criterion 
jC  may also be 
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described by linguistic terms. That is, w  ( nj ,,1…= ) can be fuzzy 

numbers. 

 

Hence, an FMCDM problem can be modelled to achieve Formula 9.1 

in a matrix format as follows: 
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[ ]nwwwW ~  ~ ~~
 21 …=  

where 
ijx~  ji,∀  and 

jw~ , nj ,,1…=  can be linguistic variables that are 

described by any form of fuzzy numbers. For example, in triangular 

fuzzy numbers,  ( )ijijijij cbax ,,~ =  and ( )321 ,,~
jjjj wwww = . 

However, there are many types of FMCDM models. The first 

category contains a number of ways to find a ranking: degree of 

optimality, Hamming distance, comparison function, fuzzy mean and 

spread, proportion to the ideal, left and right scores, centroid index, area 

measurement, and linguistic ranking methods. The second category is 

built around methods that utilise various ways to assess the relative 

importance of multiple criteria: fuzzy simple additive weighting 

methods, analytic hierarchy process, fuzzy conjunctive/disjunctive 

methods, fuzzy outranking methods, and maximin methods. We will 

discuss some typical methods in the following sections. 

9.3 Fuzzy TOPSIS 

From Chapter 2, TOPSIS deals with an m-alternatives MCDM problem 

as an m-points geometric system in an n-dimensional space.  

Referring to the fuzzy decision matrix D
~

 (9.2.3), the fuzzy TOPSIS 

method can be implemented by the following steps (Chen and Hwang, 

1992):  

Step 1: Calculate the normalised fuzzy decision matrix R
~

 as 
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[ ]
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and B  and C  are the set of benefit criteria and the set of cost criteria, 

respectively (Chen and Hwang, 1992). 
 

Step 2: Calculate the weighted normalised fuzzy decision matrix V
~

 as 

[ ]
nmijvV

×
= ~~

 (9.3.2) 

where 
jijij wrv ~~~ ⋅= . 

 

Step 3: Identify the fuzzy positive-ideal solution (FPIS, *~
A ) and the 

fuzzy negative-ideal solution (FNIS, −
A
~

) as 

( )**

2
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1

* ~,,~,~~
nvvvA …= , (9.3.3) 

( )1

21
~,,~,~~

nvvvA …
−−− =  (9.3.4) 

where ( )1,1,1~ * =jv  and ( )0,0,0~ =−
jv , nj ,,2,1 …= . 

 

Step 4: Calculate the distances of each alternative from *~
A  and −

A
~

 as 

( )∑
=

=
n
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jiji vvdd
1
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( )∑
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where ),( ⋅⋅d  is the distance measurement between two fuzzy numbers. 

 
Step 5: Calculate the closeness coefficient of each alternative as   

−

−

+
=

ii
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i
dd

d
CC

*
, mi ,,2,1 …= . (9.3.7) 
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Step 6: Rank alternatives according to the values of 
iCC  in 

descending order and choose an alternative with the maximum 
iCC . 

9.4 Fuzzy AHP 

Fuzzy analytic hierarchy process (AHP) is a direct extension of Saaty’s 

AHP method (1980). Referring to the AHP method in Chapter 2, in this 

fuzzy AHP, the elements in the reciprocal matrices are represented by 

fuzzy numbers.  

The fuzzy AHP method has the following steps: 
 

Step 1: Determine the relative importance of the decision criteria. By 

a pairwise comparison, the matrix R
~

, containing fuzzy estimates for the 

relative significance of each pair of factors, is constructed. 
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 (9.4.1) 

 

Step 2: Calculate fuzzy estimates for the weights or priorities of the 

decision criteria based on the matrix R
~

 (9.4.1). 
 

Step 3: Make pairwise comparisons of alternatives under each of the 

criteria separately. Then, n matrices ( )n
RRR
~

,,
~

,
~ 21

… , each of which 

contains fuzzy estimates for the relative significance of each pair of 

alternatives, is constructed. 
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Step 4: Calculate fuzzy estimates for the weight of each alternative 

under each criterion separately, based on the matrices ( )n
RRR
~

,,
~

,
~ 21

…  

(9.4.2). 
 

Step 5: Obtain a final score for each alternative by adding the weights 

per alternative (obtained in Step 4) multiplied by the weights of the 

corresponding criteria (obtained in Step 2). 

9.5 A Hybrid Method 

To define positive and negative ideal solutions is an advantage of the 

TOPSIS method, and to make a consistence check is an advantage of 

AHP. A hybrid FMCDM method is proposed by integrating the two 

features to deal with a hierarchy decision problem. Particularly, in this 

hybrid method, fuzzy numbers can be described in any form to handle 

linguistic terms and other uncertain values. The method is designed by 

the following nine steps. 

 

Step 1: Set up weights for all aspects and related criteria 

Referring to a set of aspects ( )nFFFF ,,, 21 …= , let 

( )nWFWFWFWF ,,, 21 …=  be the weights of these aspects, where ∈iWF  

{Absolutely unimportant, Unimportant, Less important, Important, More 

important, Strongly important, Absolutely important}, as shown in Table 

9.1, for example, and are described by fuzzy numbers 
naaa ~,,~,~

21 … .  

For an aspect 
iF , let },,,,{ 21 iitiii CCCC ⋯= ni ,,2,1 …=   be a set of the 

selected criteria with respect to the aspect .iF Let 

},,,,{ 21 iitiii WCWCWCWC ⋯=  ni ,,2,1 …= , be the weights for the set of 

criteria, where 
ijWC   will be signed a value from the same linguistic term 

list as 
iWF above, for example, and are described by fuzzy numbers 

tccc ~,,~,~
21 … . For the example given in Fig. 9.1, ‘Teaching’ is an aspect 

of performance, five criteria to evaluate it are ‘Course development,’ 

‘Teaching method research,’ ‘Teaching load,’ ‘Student performance,’ 

and ‘Student evaluation results.’  
 

Step 2: Finalise these aspects and criteria by some rules 



Multi-Objective Group Decision Making 198 

For example, a criterion can be ignored when 

• it has a very low weight; 

• the degree of its weight is much less than others; or  

• its related sub-criteria are the subset of another criterion. 

 

Step 3: Set up the relevance degree of each alternative on each 

criterion 

Let ( )mAAAA ,,, 21 …=  be a set of alternatives, 

},,,{ 21

k

it

k

i

k

i

k

i i
ACACACAC ⋯=  be the relevance degree of alternative 

kA  on 

criterion 
iC , ni ,,2,1 …= , mk ,,2,1 …= , where k

ijAC ∈ {Lowest, Very 

low, Low, Medium, High, Very high, Highest}, as shown in Table 9.2, for 

example, and are described by fuzzy numbers 
kbbb

~
,,

~
,

~
21 … . Table 9.3 

further describes the relationships among these aspects, criteria, 

alternatives, their weights, and decision makers’ evaluation values 

(scores). 

Table 9.3: The relationships among the aspects, criteria, alternatives, their weights, and 

evaluation values 
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Step 4: Normalise the weights for criteria 

The weights for the criteria },,,,{ 21 iitiii WCWCWCWC ⋯=  ni ,,2,1 …=  are 

normalised and denoted as 

.,,2,1,,,2,1for,
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⋯⋯ ===

∑ =

 (9.5.1) 
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where the R

ijC
0

 is the right end of 0-cutset (Chapter 5). 

 

Step 5: Calculate the relevance degrees 

The relevance degree k

i
FA  of the alternatives 

kA  on the aspect 
i

F , 

,,,2,1 ni …= ,,,2,1 mk …=  are calculated by using k
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Step 6: Normalise the relevance degrees 

The relevance degrees k
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Step 7: Calculate the alternatives relevance degrees 

The relevance degree 
kS  of the alternatives 

kA  on the aspects F , 

mk ,,2,1 …=  is calculated by using ∑ =
×=×=

n

i i

k

i

k

k WFFAWFFAS
1

  

.,,2,1 mk …=  Here, 
kS  is still a fuzzy number. 

 

Step 8: Calculate the positive and negative distances 

The results mkSk ,,2,1, ⋯=  are normalised as positive fuzzy 

numbers, and their ranges belong to the closed interval [0, 1]. We define 

fuzzy positive-ideal solution (FPIS, *
S ) and fuzzy negative-ideal 

solution (FNIS, −
S ) as: 

.0and1* == −SS  

The distance between each 
kS  and *

S  is called a positive distance, and 

the distance between 
kS  and −

S  is called a negative distance. The two 

kinds of distances are calculated respectively by  

mkSSddSSdd kkkk ,,2,1),,(and),( **
⋯=== −− ,  (9.5.3) 

where 



Multi-Objective Group Decision Making 200 

2

1
1

0

22 ])()[(
2

1
)

~
,~( 










−+−= ∫ λλλλλ dbababad

RRLL  (9.5.4) 

is the distance measure between two fuzzy numbers a~  and b
~

. 

 

Step 9: Get the satisfactory solution 

A closeness coefficient is defined to determine the ranking order of 

alternatives once the 
−

kk dd and*
 of each alternative 

kA , mk ,,2,1 …=  

are obtained. The closeness coefficient of each alternative is calculated 

as: 

( ) .,,2,1,)1(
2

1 * mkddD kkk ⋯=−+= −  (9.5.5) 

The alternative 
kA  with the largest 

kD , { }
m

DD ,,max 1 … , is the best 

solution for the decision problem. 

9.6 Case-Based Examples  

This hybrid FMCDM method has been implemented in a fuzzy multi- 

criteria DSS (FMCDSS). Here, we give two examples to demonstrate the 

use of the system. 

 
Example 1: Buying a car 

 

Chris wants to buy a car. He has three alternatives in his mind: 

Toyota, Audi, and Ford. He also has two aspects to consider for the 

selection: Cost and Capacity, and has more concern on Cost over 

Capacity. For the Cost, he has three criteria: purchase price, mileage, 

and service cost (repair frequency and average cost per time). For the 

Capacity, he has two criteria: safety and comfort.    

Firstly: he sets up the problem as shown in Fig. 9.2: two evaluation 

aspects and three alternatives.  

Secondly, he inputs the name of the three alternatives: Toyota, Audi, 

and Ford (Fig. 9.3) and all criteria: purchase price, mileage, service cost, 

safety, and comfort (Fig. 9.4). 

Thirdly (corresponding to Steps 1 and 2 in the hybrid FMCDM 

method), he chooses the weights for all aspects and criteria (Fig. 9.5). 
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For example, the aspect, Cost, is ‘more important,’ and the criterion, 

Price, is ‘strongly important.’ 

Fourthly (corresponding to Step 3), he sets up the relevant degree (a 

score with a linguistic term) of each alternative on each criterion as 

shown in Fig. 9.6. We can see that Toyota has a good purchase price, so 

he puts a ‘very high’ satisfactory degree on the Cost. 

Finally (corresponding to Steps 4 to 9), he obtains the result for the 

problem as shown in Fig. 9.7. Toyota is selected as the best one for his 

situation. 

 
Fig. 9.2: Hierarchy of criteria for ‘Buy a car’ 

 

 

 
Fig. 9.3: Input aspects and alternatives 

Buy a car 

2. Mileage 

 

3. Service cost 

 
4. Safety 

5. Comfort 

1. Purchase price 

Cost 

Capacity 
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Fig. 9.4: Input criteria 

 
Fig. 9.5: Choosing the weights for aspects and criteria 

 
Fig. 9.6: Set up the relevant degree of each alternative on each criterion 
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Fig. 9.7: Showing the final result  

Example 2: Performance evaluation 

 

We use the example given in Section 9.1. Suppose there are three 

academic staff as applicants, and the academic performance evaluation 

criteria are as the ones listed in Fig. 9.1. 

Firstly, the committee sets up the FMCDM problem, which has three 

alternatives, three evaluation aspects, and totally 13 criteria. 

Secondly (corresponding to Steps 1 and 2 in the hybrid FMCDM 

method), they choose weights for the three aspects and each aspect’s 

related evaluation criteria as shown in Fig. 9.8. We can see that 

‘Teaching’ has a ‘strongly important’ weight, and ‘Research’ is ‘more 

important.’ 

Thirdly (corresponding to Step 3), they set up the relevant degree of 

each alternative on each criterion as shown in Fig. 9.9. For example, 

Applicant 2 has received a ‘high’ score on ‘student performance.’ 
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Finally (corresponding to Step 4 to Step 9), the committee obtains the 

result for the evaluation problem (Fig. 9.10). The result shows that 

Applicant 2 has the highest score (0.4964), and can thus obtain the award. 

 

The two examples show how to use the proposed FMCDM method 

and the FMCDSS to solve some evaluation decision problems.  

 

 
Fig. 9.8: Choose weights for aspects and each aspect’s related evaluation criteria 
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Fig. 9.9: Set up the relevant degree of each criterion on each alternative 

 
Fig. 9.10: The final result for the performance evaluation 
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9.7 Summary 

Many decision problems involve a complex situation in which some 

qualitative criteria are with in a hierarchy and must be considered 

simultaneously. The judgments from decision makers are often in vague 

rather than in crisp numbers. It is more suitable to express their 

preferences in criteria and their judgments for alternatives by linguistic 

terms (fuzzy numbers) instead of crisp numbers. Fuzzy AHP, fuzzy 

TOPSIS, and hybrid FMCDM methods are presented in this chapter, and 

two case-based examples are given to illustrate how to use these 

FMCDM methods to many real world problems. Chapter 16 will further 

illustrate a real world application of the hybrid FMCDM method. 
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Chapter 10 

Fuzzy Group Decision Making  

Group decision making takes into account how people work together in 

reaching a decision. Uncertain factors often appear in a group decision 

process. After giving a rational-political group decision model, we first 

identify three main uncertain factors involved in a group decision-

making process: decision makers’ roles, preferences for alternatives, and 

judgments for assessment-criteria. We then present an intelligent fuzzy 

multi-criteria group decision-making (FMCGDM) method to deal with 

the three uncertain factors and generate a group satisfactory decision. 

The solution is in the most acceptable degree of the group. Inference 

rules are particularly introduced into the method for checking the 

consistence of individual preferences. Finally, we illustrate the proposed 

group decision-making method by a case-based example. 

10.1   The Rational-Political Model 

A group satisfactory solution is the one that is the most acceptable by the 

group of individuals as a whole. Since the impact of the group decisions 

(the selection of the satisfactory solution) affects organisational 

performance, it is crucial to make the group decision-making process as 

efficient and effective as possible. Three factors may influence the 

assessment of utility of alternatives and the deriving of the group 

satisfactory solution.  

The first one is an individual’s role (weight) in the ranking and 

selection of the satisfactory solutions. There may be a group leader or 

leaders who play more important roles in a particular group decision-

making process. Although decision makers try to influence other 
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members to adopt their viewpoint, powerful members will sway strongly 

decision making than other members. Group members thus have 

different weights in a group decision-making process, and the situation 

should be reflected on the generation process of the group satisfactory 

solution.  

The second factor is an individual’s preference for alternatives. Group 

members may not know all information relate to a decision problem or 

may not consider all relevant information to the decision problem. Also, 

they may have different understanding for the same information, 

different experiences in the area of current decision problems, and 

different preferences for different alternatives. The different preferences 

of group members may have impact directly on the deriving of the group 

satisfactory solution.  

The third factor is criteria for assessing these alternatives. 

Assessment-criteria are usually determined through discussions within 

decision groups. Goals or priorities of decision objectives are often as 

assessment-criteria for MODM problems. In a real situation, different 

group members may have different viewpoints in assessment-criteria for 

a decision problem because of workload, time and inexperience at 

assessing a problem all affect determining assessment-criteria. Different 

members may often have different judgments in comparing the 

importance between a pair of assessment-criteria, for instance, which 

criterion is more important than another. Obviously, what assessment-

criteria are used and how priority of each assessment-criterion is 

processed will directly influence the ranking of these alternatives and 

selection of the group satisfactory solution. 

Based on our discussion about group decision-making models in 

Chapter 3, here we present a rational-political model for group decision 

making to support the achievement of group consensus in an uncertain 

environment by considering the three uncertain factors.  

The rational-political model is consensus rule-based and takes 

advantage of both rational and political models of group decision 

making. By inheriting the optimisation property of the rational model, it 

shows a sequential approach to make a group decision and to get the best 

solution for the group decision. By considering the political model, it 

allows decision makers to have inconsistent assessment, incomplete 
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information and inaccurate opinions for alternatives. The model deals 

with the three identified uncertain factors together based on the use of 

linguistic assessments: decision makers’ weights in reaching a 

satisfactory solution, decision makers’ preferences for alternatives, and 

decision makers’ judgments for solution assessment-criteria. 

As shown in Fig. 10.1, the model is assumed that a decision problem 

is defined, requirements are determined, and objectives are established. 

Group members will propose alternatives for the decision problem, and 

then rank these alternatives to select N of them. A set of assessment-

criteria for assessing or ranking these alternatives will be nominated by 

these group members or generated through running a suitable model 

operated by them. Finally, T criteria will be used. Group members are 

awarded or assigned weights before or at the beginning of the decision-

making process. Although group members may have different 

experiences, opinions and information at hand for the decision problem, 

they must participate in the group aggregation process to ensure that the 

disparate individuals come to share the same decision objectives. These 

group members will be required to give their individual judgments for 

the priority of the proposed assessment-criteria and preferences for 

alternatives under these assessment-criteria by linguistic terms. As a 

result, it allows incorporating more human consistency in group decision 

making.  

To apply this model in developing a practical group decision-making 

method, we need define related linguistic consensus degrees and 

linguistic distances acting on the three uncertain factors. The consensus 

degrees will indicate how far a group of individuals is from the 

maximum consensus, and the linguistic distances will indicate how far 

each individual is from current consensus labels over the preferences. 

These will be discussed in following sections. 
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Fig. 10.1: The rational-political group decision-making model 

10.2   Uncertain Factors 

Any individual role in a decision process, a preference for alternatives, 

and a judgment for assessment-criteria are often expressed by linguistic 

terms. For example, an individual role can be described by using 

linguistic terms ‘normal,’ ‘more important,’ or ‘most important.’ 

Similarly, to express decision makers’ preference for an alternative, 

linguistic term such as ‘low’ and ‘high’ could be also used.  Similarly, to 

express decision makers’ judgment for comparison of a pair of 
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assessment-criteria, ‘equally important’ or ‘A is more important than B’ 

could be used as well. However, precise mathematical approaches are not 

efficient enough to tackle such uncertain variables and derive a 

satisfactory solution. Since these linguistic terms reflect the uncertainty, 

inaccuracy and fuzziness of decision makers, fuzzy numbers and fuzzy 

operations can be directly applied to deal with them. 

 Much research has been conducted in the area of group decision-

making under the application of fuzzy set theory and fuzzy decision-

making theory. Some of them have also applied the concept of linguistic 

variables to handle linguistic terms and approximate reasoning in a group 

decision-making problem. Several typical fuzzy group decision-making 

methods have been developed and focused respectively on the three 

uncertain factors identified above. Some researches have been carried out 

in describing the uncertainty of individual preferences for alternatives 

and aggregating these fuzzy individual preferences into a group 

consensus decision. The uncertainty of individual roles, or individual 

weights, in attempting to reach a group satisfactory solution has been 

discussed in the literature of this area. Also, some comprehensive 

researches including the applications of fuzzy decision-making methods, 

comparison between some methods and survey-based approach analysis, 

have been reported in literature. 

The result presented in this chapter firstly extends the decision-

making method to deal with all these three uncertain factors mentioned 

in Section 10.1 together as they may exist in group decision-making 

simultaneously. Secondly, it allows these uncertain factors to be 

described by linguistic terms with fuzzy numbers. The third one is that it 

adds intelligent checking for logical consistence of individual decision 

makers’ preferences. Each individual’s preferences should not be self-

conflict and the information provided by decision makers should be 

consistent. To avoid inconsistency-causing errors, intelligence-based 

inference should be functioned in a group decision-making process. 
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10.3   An Intelligent FMCGDM Method 

In this section, we propose an intelligent fuzzy multi-criteria group 

decision-making (FMCGDM) method. 

Let P = {P1, P2, …, Pn}, n ≥  2, be a given finite set of decision 

makers to select a satisfactory solution from alternatives or identify a 

number of important issues with raking for the decision problem. The 

proposed method consists of ten steps within three stages: 

 

Stage 1: Alternatives, assessment-criteria, and individual weights 

generation 

Step 1: When a decision problem is proposed in a group, each 

member can raise one or several possible strategies or alternatives. Let 

},......,,......,....,{ 2121

# 1

1

11 n

pn

nn

p

p

m

ppp

m

pp
SSSSSSS = , where ip

js  is the jth alternative 

for a decision problem raised by group member pi’. Through a discussion 

and summarisation, S = {S1, S2, …, Sm}, 2≥m  is selected from #
S  as 

alternatives for the decision problem. 
 

Step 2: If the decision problem is a multi-objective problem, the 

objectives can be as assessment-criteria. In a general situation, each 

group member Pk (k = 1, 2, ..., n) can propose ak assessment-criteria 

),,,( 21
k

a

kk

k
CCC ⋯  for ranking and assessing these alternatives. All 

members’ assessment-criteria are put into a criterion pool and top-t 

criteria, C = {C1, C2, …, Ct}, are chosen as assessment-criteria for the 

decision problem in the group. 
 

Step 3: As group members play different roles in an organisation and 

hence have different degrees of influence for the selection of the group 

satisfactory solution. That means the relative importance of each decision 

maker may not equal in a decision group. Some members are more 

powerful than the others for a specific decision problem. Therefore, in 

the method, each member is assigned with a weight that is described by a 

linguistic term nkvk ,,2,1,~ ⋯= . These terms are determined through 

discussions in the group or assigned by a higher management level (say, 

the leader) before or at the beginning of the decision process. For 
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example, Pk is assigned with ‘important’ and Pl ‘more important.’ 

Possible linguistic terms used in the factor are shown in Table 10.1. 

Table 10.1: Linguistic terms for describing weights of decision makers 

Linguistic terms Fuzzy numbers 

Normal c1 

Important c2 

More important  c3 

Most important c4 

Stage 2: Individual preference generation 

Step 4: Each decision maker Pk (k = 1, 2, ..., n) is required to express  

their opinion for assessment-criteria by a pairwise comparison of the 

relative importance of these criteria of fuzzy AHP method. 

An initial pairwise comparison matrix E = 
tt

k

ije ×]~[  is firstly 

established, where k

ije~  represents the quantified judgments on pairs of 

assessment-criteria Ci and Cj (i, j =1, 2, …, t, i≠ j). The comparison 

scale belongs to a set of linguistic terms that contain various degrees of 

preferences required by decision makers Pk (k = 1, 2, ..., n), or take a 

value ‘*’. The linguistic terms are shown in Table 10.2. Character ‘*’ 

represents that decision makers Pk (k = 1, 2, ..., n) do not know or cannot 

compare the relative importance of assessment-criteria Ci and Cj. 

Table 10.2: Linguistic terms for the comparison of assessment-criteria 

Linguistic terms Fuzzy numbers 

Absolutely less important a1 

Much less important  a2 

Less important a3 

Equally important a4 

More important a5 

Much more important  a6 

Absolutely more important a7 
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By using the following various linguistic inference rules, the 

inconsistence of each pairwise comparison matrix E = 
tt

k

ije ×]~[  is 

corrected: 

 

Positive-Transitive rule: If )7,6,5,4(~ == sae s

k

ij
 and 

t

k

jm ae =~  

)7,6,5,4( =t , then 
),max(

~
ts

k

im ae = . For example, if Ci is as ‘equally 

important’ as Cj (s = 4), and Cj is ‘much more important’ than Cm (t = 6), 

then Ci is ‘much more important’ than Cm. 
 

Negative-Transitive rule: If )1,2,3(~ == sae s

k

ij
 and 

t

k

jm ae =~  ),1,2,3( =t  

then .~
),min( ts

k

im ae = For example, Ci is ‘absolutely less important’ than Cj (s 

= 1), Cj is ‘less important’ than Cm (t = 3), then Ci is ‘absolutely less 

important’ than Cm. 
 

De-In-Uncertainty rule: If ),7,6,5,4(~ == sae s

k

ij
 ),1,2,3(~ == tae t

k

jm
 or 

‘*,’ then 
i

k

im ae =~  for any sit ≤≤  or ‘*.’ For example, Ci is ‘more 

important’ than Cj (s = 5) and Cj is ‘much less important’ than Cm (t = 2), 

then Ci can have any relationship between ‘much less important’ and 

‘more important,’ such as ‘equally important (i = 4)’ or ‘*,’ with Cm. 
 

In-De-Uncertainty rule: If )1,2,3(,~ == sae s

k

ij
 or ‘*,’ and 

t

k

jm ae =~  

),7,6,5,4( =t  then 
i

k

im ae =~  for any tis ≤≤  or ‘*.’ For example, Ci is 

‘less important’ than Cj (s = 3) and Cj is ‘much more important’ than Cm 

(t = 6), then Ci can have any relationship between ‘less important’ and 

‘much more important,’ such as ‘equally important (i = 4)’ or ‘*,’ with 

Cm.  
 

Consistent weights ),,2,1( tiwk

i ⋯=  for every assessment-criterion 

can be determined by calculating the geometric mean of each row of the 

matrix 
tt

k

ije ×]~[  where ),,2,1( k

k

ij ije ⋯= is not ‘*,’ and then the resulting 

fuzzy numbers are normalised and denoted as ,~,,~,~
21

k

t

kk www ⋯ where 

)(~ * RFw T

k

i ∈  and 

.,,2,1;,,2,1for,~

1 0

nkti
w

w
w

t

i

Rk

i

k

ik

i ⋯⋯ ===
∑ =

 (10.3.1) 
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Step 5: Against every selection criterion Cj (j = 1, 2, ..., t), a belief 

level can be introduced to express the possibility of selecting a solution Si 

under the criterion Cj for decision makers Pk. The belief level k

ijb  

),,2,1,,,2,1,,,2,1( nkmjti …⋯⋯ ===  belongs to a set of linguistic 

terms that contain various degrees of preferences required by decision 

makers Pk ),,2,1( nk …= under the jth assessment-criterion 

).,,2,1( mj ⋯=   The linguistic terms for variable ‘preference’ are shown 

in Table 10.3. Notation ‘**’ can be used to represent that decision 

makers Pk do not know or could not give a belief level for expressing the 

preference for a solution Si under the criterion Cj. 

Table 10.3: Linguistic terms for preference belief levels for alternatives 

Linguistic terms Fuzzy numbers 

Lowest  b1 

Very Low  b2 

Low  b3 

Medium  b4 

High b5 

Very high  b6 

Highest  b7 

Step 6: Belief level matrix ( ) ),,2,1( nkbk

ij ⋯=  is aggregated into belief 

vectors ( )k

jb  ( j = 1, 2, ..., m, k = 1, 2, ..., n). 

,~~~
2211

k

jj

k

j

k

jj

k

j

k

jj

k

j

k

j ss
bwbwbwb ∗++∗+∗= ⋯   (10.3.2) 

where ),,2,1( sib
k

jji
⋯=  is not ‘**.’ Based on belief vectors ( )k

jb , 

decision makers Pk (k = 1, 2, ..., n) can make an overall judgment on the 

alternatives,  an individual assessment vector. All individual selection 

vectors can compose a group of selection matrixes ( )k

jb . 

 
Stage 3: Group aggregation 

Step 7: Each member Pk has been assigned with a weight that is 

described by a linguistic term nkvk ,,2,1,~ ⋯= as shown in Table 10.1. A 

weight vector is obtained: 
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},,2,1,~{ nkvV k ⋯== . 

The normalised weight of decision makers Pk (k = 1, 2, ..., n) is 

denoted as 

.,,2,1for,
~

~

1 0

*
nk

v

v
v

n

i

R

i

k

k ⋯==

∑ =

 (10.3.3) 

 

Step 8: Considering the normalised weights of all group members, we 

can construct a weighted normalised fuzzy decision vector 

( ) ( ) ,~,,~,~~,,~,~

21
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where .~~
1

*∑ =
=

n

k

k

jkj bvr  

 

Step 9: In the weighted normalised fuzzy decision vector the elements 

mjv j ,,2,1,~ ⋯= , are normalised as positive fuzzy numbers and their 

ranges belong to the closed interval [0, 1]. We can then define a fuzzy 

positive-ideal solution (FPIS, r
*) and a fuzzy negative-ideal solution 

(FNIS, r-) as: 

.0and1* == −rr  

The positive and negative solution whose distances between each 

jr~ and r*
, 

jr~  and r
- can be calculated as: 

,,,2,1),,~(and),~( **
mjrrddrrdd jjjj ⋯=== −−  (10.3.5) 

where d(., .) is the distance measurement between two fuzzy numbers. 

 

Step 10: A closeness coefficient is defined to determine the ranking 

order of all alternatives once the 
−
jj dd and*

 of each Sj (j = 1, 2, ..., m) 

are obtained. The closeness coefficient of each alternative is calculated 

as: 

( ) .,,2,1,)1(
2

1 *
mjddCC jjj ⋯=−+= −  (10.3.6) 

The alternative Sj that corresponds to  Max (CCj, j=1, 2, …, m) is the 

best satisfactory solution of the decision group, and the top N issues 
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(alternatives) that correspond to the top N higher raking CCj are the 

critical issues to consider for the decision problem. 

10.4   A Case-Based Example 

Strategic planning must include an assessment of the organisation’s 

situation. It stresses the importance of focusing on the future within the 

context of an ever-changing environment. A key component of an 

organisation’s situation assessment is the evaluation of effectiveness and 

efficiency of its strategies. This evaluation will provide data about 

whether to continue or discontinue each program or strategy, maintain it 

at its existing level, expand or change its direction, market it 

aggressively, and so on. Most business strategy assessments focus on 

both outcome and process. Outcome evaluation looks at whether a 

project achived its planned results. Process evaluation looks at internal 

project management, both staff performance and the extent to which the 

project in successfully implemented. The strategy assessment can be 

based on a set of criteria that involve quatitative and/or qialitative data. 

Quantitive data consists of fact-based information such as record review, 

describtive statisitics, and examinations results. It is more easily 

collected but less easily disputed because it translates experience into 

quanlitifiable data that can be counted, compared, and measured. 

Qualitative data consists of what people think the programs based on 

observations informal feedback, surveys. Skills at assessing business 

situation and then being proactive in responding to that situation (i.e., 

strategic planning) determines how to effectively identify critical issues, 

deal with their situation and achive business goals. 

As a consequence, the situation assessment outlines the process of 

identifying the issues, gathering decision makers’ perceptions needed to 

make an explicit evaluation of organisational strategies, and analysing 

the impact of the strategy on clients and other business aspects through 

various assessments. Often a group of people participate in an 

organisational situation assessment with their personal opinions and 

information. At the conclusion of the situation assessment, strategic 

planners (decision group members) will have quality information about 



Multi-Objective Group Decision Making 218 

which are the most critical issues the organisation needs to deal with in 

the strategic planning process. We will apply the intelligent FMCGDM 

method to such a business situation assessment. 

Suppose an executive group consists of three members P1, P2 and P3 

to participate assessing their company’s situation through identifying 

critical and urgent key issues for the company’s business development. 

The three members come from three functional departments of the 

company and have collected related environment information 

respectively, but their weights are same. Their weights, preferences for 

raised alternatives and judgements for proposed assessment criteria can 

be described by linguistic terms, as shown in Tables 10.4, 10.5, and 10.6, 

respectively. 

 

 

Table 10.4: Linguistic terms and related fuzzy numbers for weights of decision makers 

Linguistic terms Fuzzy numbers 

Normal ]
10

2449
,

10

916
[

]1,0[

λλ
λ

λ

−+

∈

∪
 

Important ]
10

3281
,

10

2524
[

]1,0[

λλ
λ

λ

−+

∈

∪
 

More important ]
10

19100
,

10

4932
[

]1,0[

λλ
λ

λ

−+

∈

∪
 

Most important ]1,
10

8119
[

]1,0[

∪
∈

+

λ

λ
λ  
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Table 10.5: Linguistic terms and related fuzzy numbers for comparison scales of criteria 

Linguistic terms Fuzzy numbers 

Absolutely less important  ∪
]1,0[

]
10

1
,0[

∈

−

λ

λ
λ

 

Much less important  ]
10

89
,

10
[

]1,0[

λλ
λ

λ

−

∈

∪
 

Less important ]
10

1625
,

10

18
[

]1,0[

λλ
λ

λ

−+

∈

∪
 

Equally important ]
10

2449
,

10

916
[

]1,0[

λλ
λ

λ

−+

∈

∪
 

More important ]
10

3281
,

10

2524
[

]1,0[

λλ
λ

λ

−+

∈

∪
 

Much more important  ]
10

19100
,

10

4932
[

]1,0[

λλ
λ

λ

−+

∈

∪
 

Absolutely more important  ]1,
10

8119
[

]1,0[

∪
∈

+

λ

λ
λ  

Table 10.6: Linguistic terms and related fuzzy numbers for belief levels of preferences 

Linguistic terms Fuzzy numbers 

Lowest ∪
]1,0[

]
10

1
,0[

∈

−

λ

λ
λ

 

Very low ]
10

89
,

10
[

]1,0[

λλ
λ

λ

−

∈

∪
 

Low ]
10

1625
,

10

18
[

]1,0[

λλ
λ

λ

−+

∈

∪
 

Medium  ]
10

2449
,

10

916
[

]1,0[

λλ
λ

λ

−+

∈

∪
 

High ]
10

3281
,

10

2524
[

]1,0[

λλ
λ

λ

−+

∈

∪
 

Very high ]
10

19100
,

10

4932
[

]1,0[

λλ
λ

λ

−+

∈

∪
 

Highest  ]1,
10

8119
[

]1,0[

∪
∈

+

λ

λ
λ  

In the three tables, all linguistic terms are described by fuzzy numbers. 

To have a good understanding, these terms are displayed by figures. For 
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examples, Fig. 10.2 shows the linguistic term ‘Medium,’ and Fig. 10.3 

shows the linguistic term ‘Very high.’ 

 
Fig. 10.2: Linguistic term ‘Medium’ 

 
Fig. 10.3: Linguistic term ‘Very high’ 

The problem-solving process by using the proposed FMCGDM 

method is described as follows. 
 

Stage 1: Alternatives, assessment-criteria, and individual weights 

generation 

Step 1: To initiate the assessment, group members first list all 

issues/strategies related to business strategies to explore. Each member 
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proposes one or more possible critical issues/strategies they concerned 

for the business situation. These issues/strategies are listed as alternative 

}......,......,....,{ 3

3

331

1

11

2121

# p

m

ppp

m

pp

pp
SSSSSSS = , where ip

js  is the jth issue 

proposed by the member pi.  Through merging some similar issues an 

alternative list is finally determined for the decision group 

},,,{ 4421 SSSSS = :  

S1: developing new products (New-prod); 

S2: increasing international market development investigation (Int-

market);  

S3: reduce product storage costs (Stro-cost); and  

S4: re-structural customer relationship management department (Cust-

relation).  

 

Step 2: These members have different concerns and opinions for 

assessing and raking these proposed alternatives. The group must assess 

each alternative by considering how urgent and critical the issue is and 

how effective will the issue enable the company to meet its objectives. 

Based on these alternatives, each of the three group members proposes a 

few assessment-criteria for assessing these alternatives. Through 

summarising concerns some similar criteria are merged. Finally, five 

assessment-criteria C1, C2, C3, C4, and C5 are determined for the group: 

C1: internal and external stakeholders’ perceptions about these 

issues/strategies (Perception) 

C2: the impact of a new program, such as a new product or new 

customer relationship management departments, on clients (Impact); 

C3: a program’ cost and benefit (Cost-benefit); 

C4: a new program’s competitive analysis (Competitive); and 

C5: defining previous implied strategies (Previous) 

As the three members have the same weight in the group, all are 

assigned with ‘normal.’ 
 

Stage 2: Individual preference generation 

Step 4: Each member gives an individual judgment for the five 

assessment-criteria by using pairwise comparison. Based on Tables 10.1-

10.6, three pairwise comparison matrices E1, E2, and E3, are thus 

established for the three members.  
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By using the linguistic inference rules, we get finalised pairwise 

comparison matrices to express the possibility of selecting a solution 

under  certain criteria.  
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Through computing the geometric mean of each row of these 

matrices, the normalised resulting numbers are obtained. As 
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Step 5: Three belief level matrices are obtained, where bij
k expresses 

the possibility of selecting Si under the assessment-criteria Ci by the 

group member Pk. 
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Step 6: The three belief vectors are then generated through 

aggregating the above belief level matrices: 
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Stage 3: Group aggregation 
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Step 8: We construct a weighted normalised fuzzy decision vector: 
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Step 9: We calculate distances between positive and negative 

solutions  for these four alternatives: 
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Step 10: Finally, for assessing or ranking these alternatives we 

calculate the closeness coefficient of each alternative:  
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The result shows the ranking of the four alternatives are S2, S1, S3, S4 as 

4132 CCCCCCCC =>> . The alternative S2 can be selected as the most 

critical issue for the business’s situation. That is, ‘increasing 

international market development investigation’ is identified as the key 

strategy for the current business situation. The result aggregates 

maximally all group members’ roles, judgments and preferences for a 

solution in whole. 

10.5   Summary 

Uncertain factors often affect a group decision making. In this chapter, 

we identify three main uncertain factors, namely, makers’ roles, 

preferences for alternatives, and judgments for assessment-criteria. We 

present an intelligent FMCGDM method to deal with the three uncertain 

factors and generate a group satisfactory decision. The proposed method 
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has been implemented in a Web-based fuzzy group DSS, which will be 

presented in Chapter 11. More applications of the system will be 

presented in Chapter 15. 
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Chapter 11 

A Web-Based Fuzzy Group DSS  

Following the previous chapter, we will present a Web-based fuzzy 

group DSS (FGDSS). This system allows decision makers distributed in 

different locations to participate in a group decision-making activity 

through the Web. It manages the group decision process through criteria 

generation, alternative evaluation, opinion interaction, and decision 

aggregation using linguistic terms. We first outline the main features of 

the Web-based FGDSS, and then present this system’s configuration and 

working process. Finally, we give two examples to demonstrate the 

system. To help readers use the system, we have also developed an off-

line version of the system in the attached CD. 

11.1   System Features 

Decision group members may be distributed geographically in different 

locations. Nowadays, the Web is often acting as a mechanism for the 

support of decision making in geographically distributed organisations. 

Group decision support systems (GDSS) can therefore be implemented 

as a kind of Web-based services, and have been moving to a global 

environment. With the advance of Web technology, Web-based GDSS 

have been applying in widespread decision activities with the unified 

graphical user interface. 

Web-based GDSS and FGDSS have basically four features. 

 

(1) Supporting asynchronous communications among group members 

An important feature provided by GDSS or FGDSS is to support the 

interpersonal communication and coordination among group members. 
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This feature aims at achieving a common understanding of the issues 

revealed and arriving at a group satisfactory decision. The 

communication and coordination activities of group members are 

facilitated by technologies that can be characterised along the three 

continua of time, space, and level of group support. By using the Web, 

group members can communicate asynchronously by emails, bulletin 

board systems, Internet newsgroups, and specific Web-based GDSS. 

 

(2) Extending application ranges of traditional GDSS 

Web-based GDSS or FGDSS can use the Web environment as a 

development and delivery platform. More recently, both e-business and 

e-government are increasing the demands for more online data analysis 

and decision support. This Web platform lends Web-based GDSS or 

FGDSS to have widespread use and adoption in organisations.  At the 

same time, organisations can use Web-based GDSS or FGDSS to 

provide group decision support capabilities to managers over a 

proprietary Intranet, to customers and suppliers over an Extranet, or to 

any stakeholder over the global Internet. 

 

(3) Reducing technological barriers 

Web-based GDSS or FGDSS have reduced technological barriers and 

made less costly to develop and delivery themselves and provide 

decision-relevant information. Traditionally, GDSS or FGDSS required 

specific software on user computers, specific locations to set up, and 

users needed proper training to learn how to use a GDSS. Thanks to the 

Web platform, the use of GDSS can overcome these shortcomings. 

Furthermore, GDSS or FGDSS have a convenient and graphical user 

interface with visualisation possibilities and are automatically available 

to many decision makers. 

 

(4) Improving  decision making performance 

Web-based GDSS and FGDSS can increase the range and depth of 

information access, and therefore solve group decision problems more 

effectively. Decision making, especially at upper management levels, 

relies heavily on data sources outside the organisations. They integrated 

with Web mining and related Web intelligence techniques allow decision 
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makers to access internal and external data sources, such as competitors’ 

product/service offerings, during the decision making process. In 

particular, under an uncertain environment, the organisations will find 

that Web-based FGDSS can more effectively assist their decision groups 

in making organisational strategic decisions where group members are 

distributed in different locations and with linguistic terms. 

It is evident that Web-based GDSS and FGDSS can extend the 

applications of traditional GDSS and FGDSS to support more effectively 

organisational decision making. The development of a Web-based 

FGDSS will extend the current results by proving the ability of dealing 

with linguistic terms in a distributed group decision activity. 

We developed two versions of FGDSS, one is Web-based online 

version, and another is off-line. We mainly describe the design of the 

Web-based version in this chapter, but to help readers using this system 

we put the off-line version in the attached CD, which can be used in a 

PC.  

11.2   System Configuration 

We adopt the client/server pattern in the Web-based FGDSS. At the 

client side, all group members access the system with the browser via the 

Web. The interface that is generated on the server side will be presented 

on the client side, and group members can also interact with the server 

for getting and supplying information by the browser. 

At the server side, the Web server manages all Web pages of the 

system, traces user information, and provides simultaneously services to 

multiple group members through sessions, applications, and coking 

facilities. All Web pages developed in the Web-based FGDSS, for 

interacting dynamically with group members in solving their decision 

problems with linguistic terms, are created on the Web server. By using a 

server side application program, the Web server can manage and 

implement client tasks. 

There are four components on the Web server: (1) Presentation, (2) 

Aggregation, (3) Model management, and (4) Data management. In 

addition, there are three bases: (a) Database, (b) Method-base, and (c) 
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Model-base. These bases are linked to the corresponding management 

components respectively. 

The system is developed and implemented mainly in JSP combined 

with HTML and JavaScript. The typical characteristic of the JSP is that it 

can create dynamic web pages based on the different requests from the 

clients. For the system, when receiving a request from the client side, the 

web server will relay the request to the presentation component. The 

presentation component also delivers it to the management component or 

aggregation component. When the presentation component receives the 

result from the corresponding component, it will create an HTML file 

dynamically, and the web server sends this HTML file back to the client. 

Fig. 11.1 shows the structure of the Web-based FGDSS. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     Group leader                             Group member       ……           Group member 

Fig. 11.1: The structure of the Web-based FGDSS 
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11.3   System Working Process 

The working process of a decision group with the Web-based FGDSS is 

with five main steps. Fig. 11.2 shows the working process of Web-based 

fuzzy group decision making.  

 
 

         

                        

             

Fig. 11.2: Working process of the Web-based FGDM 
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Fig. 11.2: Working process of the Web-based FGDM 
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The process can be further described by the following steps: 

 

Step1: Setting up a decision group 

The group leader first uses the browser to login to the system as 

shown in Fig. 11.3, and then defines a decision group as shown in Fig. 

11.4 and Fig. 11.5 including: 

• The title of the group; 

• The problem description; 

• The number of group members; 

• The number of the alternatives; and  

• The details of alternatives. 

 

The server checks the group title assigned by the group leader. If the 

group title is valid, the server registers the decision group in the database 

and sends an approval to the client side.  

 

Step 2: Input criteria by all group members 

After the group leader sets up a decision group, other members can 

login to the group similar as Fig.11.6. Then the group information 

including the alternatives will be fetched from the database and sent to 

the client side by the server. Based on these alternatives, each group 

member including the group leader proposes some criteria as shown in 

Fig. 11.7 and Fig. 11.8 for selecting an alternative as the group 

satisfactory solution. All proposed criteria are then collected by the 

server application. 

 

Step 3: Choose the top-t criteria and assign weights to group members 

Referring to the criteria received from all members, the group leader 

chooses the top-t criteria as the assessment-criteria for the decision 

problem in the group. As group members play different roles, the leader 

will assign weights, described by linguistic terms, to all group members 

as shown in Fig. 11.9. All data about the top-t assessment-criteria and 

member’s weights will be sent to the server, and then to the database 

server for its storage.  
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For other group members at the moment, as shown in Fig. 11.10, they 

will just be waiting until the leader sends the top-t criteria and weights 

for all group members back to the web server for a further procedure. 

 

Step 4: Fill the criteria comparison matrix 

Based on the assessment-criteria and alternatives received, each group 

member will fill a pairwise comparison matrix of the relative importance 

of these criteria as shown in Fig. 11.11. 

 

Step 5: Fill the belief level matrix 

Each group member will fill a belief level matrix to express the 

possibility of selecting a solution under some criteria as shown in Fig. 

11.11. 

 

Step 6: Generate the final result of the group decision-making 

problem 

Once group members’ two matrices are received, the server 

application first corrects the inconsistence of each pairwise comparison 

matrix of the assessment-criteria based on linguistic inference rules, then 

calculates the belief level matrices, the belief vector, the normalised 

weights of group members, the weighted normalised fuzzy decision 

vector, and the closeness coefficients of all alternatives consecutively. 

Finally, the web server constructs a final group decision page where the 

most satisfactory group solution, which is corresponding to the 

maximum closeness coefficient, is displayed to all the group members. 

11.4   Case-Based Examples 

Example 1 (using Web-based FGDSS): Course software evaluation  

 

A department of a university tries to determine which online course 

software to be used in its teaching task. Four course softwares are 

available from four education consulting firms. Each has its advantages 

and disadvantages. The software S1, S2, S3, and S4 are as four alternatives 

for the department. The decision group consists of three members: Peter, 
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David, and Kim, and Peter is the group leader. The three members have 

different opinions for selecting which course software. The group must 

evaluate each of software with its consulting firm by considering how to 

meet the department’s teaching objectives. 

Following the working process of a decision group using the Web-

based FGDSS, the problem described above can be solved as follows: 

Step 1: First, the group leader Peter logins to the system as shown in 

Fig. 11.3 and defines a decision making group. In Fig. 11.4, the number 

of group members is set to 3, and the number of alternatives is set to 4. 

The alternatives are entered as in Fig. 11.5. 

 
Fig. 11.3: Web page for a group leader to login 

 
Fig. 11.4: Web page for a group leader to define a group 
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Fig. 11.5: Web page for a group leader to input alternatives 

 

 

Step 2: After Peter has set up the decision group, other members can 

login to the group as shown in Fig. 11.6. Totally, three members join the 

decision making group. 

Based on the four proposals (alternatives), three group members 

propose several criteria. Suppose Peter proposes ‘Price’ and 

‘Development time’ as criteria for selecting a satisfactory firm from the 

four candidates shown in Fig. 11.7.  David proposes ‘Experience’ and 

‘Quality’ as criteria as shown in Fig. 11.8, and Kim proposes ‘Service’ 

and ‘Cost,’ as criteria.  
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Fig. 11.6: Web page for a group member to login 

 
Fig. 11.7: Web page to input the number of criteria 

 
Fig. 11.8: Web page to input criteria  
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Step 3:  Peter collects the criteria from all three group members. 

There are totally six criteria received. Suppose Peter regards ‘Price’ and 

‘Cost’ as similar criterion, and selects ‘Service,’ ‘Development time,’ 

‘Experience,’ ‘Quality,’ and ‘Cost’ as the final top five assessment-

criteria as shown in Fig. 11.9.  

Also, Peter assigns weight ‘Most important’ to himself, ‘Important’ to 

David, and ‘Normal’ to Kim as shown in Fig. 11.9. 

 
Fig. 11.9: Web page for choosing the criteria and assigning weights 

 
Fig. 11.10: Web page for waiting assessment-criteria sent back from the server 
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Step 4: Based on criteria received, each group member fills a pairwise 

comparison matrix of the relative importance of these criteria. Suppose 

Peter fills the matrix as in Fig. 11.11. In the criteria comparison matrix, 

the criterion Cost is thought as ‘equally important’ as the criterion 

Development time; also the criterion Quality is ‘much more important’ 

than the criterion Service, etc.  

 

Step 5: Based on criteria and alternatives received, each group 

member fills a belief level matrix to express the possibility of selecting a 

solution under some criteria. In Fig. 11.11, comparing with other 

alternatives under the criterion Cost, the preference belief level of the 

alternative Software 1 is regarded as ‘high,’ the alternative Software 2 is 

set as ‘high,’ the alternatives Software 3 as ‘high’ and the alternative 

Software 4 as ‘medium,’ etc.  

After having filled two matrices and sent them to the server, the group 

members will just be waiting for the result. 

 
Fig. 11.11: Web page to input criteria comparison matrix and belief level matrix 

Step 6: After all group members’ matrices are received, the server 

application does a series of calculations to the belief vector, the weighted 

normalised fuzzy decision vector and the closeness coefficients of 
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alternatives. The second closeness coefficient is the highest. Then the 

result is sent back to all group members as shown in Fig. 11.12. 

Finally, suppose the group reaches the consensus to the solution for 

this determining software problem, and software 2 is selected as the 

course software to be used in the department. 

 
Fig. 11.12: Web page for showing the final result 

 

Example 2 (using the off-line FGDSS in the attached CD): Research 

project selection  

 

A research management committee of a university is required to 

assess a number of individual research projects and can only fund one. 

These projects proposed come from different departments, different 

kinds of researchers (earlier or established), with different research 

topics, and different budgets. In deciding which of the proposed 

project(s) are to be funded for the year, a number of criteria have to be 

taken into account, involving the aspects of significance of the project, 

research methodology, potential to attract external funds, personnel 

development, and so on. The committee members will discuss to finalise 



Multi-Objective Group Decision Making 242 

some criteria used in the selection. Support we have three members: 

Peter, Chris, and Tom, in the committee, and five proposals received: (1) 

Water resource management (Water-magt); (2) E-government 

personalisation (E-govt); (3) Data mining for bank customer 

classification (Data-mining); (4) E-learning system development (E-

learning); and (5) Risk management (Risk-magt). The process to make a 

decision for this selection using the FGDSS is described as follows. 
 

Step 1: Set up a decision making group 

The committee chair Peter sets up a decision making group, including 

the title of the group and the issue description (Fig. 11.13), the names of 

group members (Fig. 11.14) and alternatives (Fig. 11.15). 

 
Fig. 11.13: Setting up a group 

 
Fig. 11.14: Input the names of group members 
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Fig. 11.15: Input alternatives 

Step 2: Input criteria by all group members respectively 

Here, Peter proposes four criteria (Fig. 11.16), Chris gives three 

criteria (Fig. 11.17), and Tom gives other three criteria as well (Fig. 

11.18). 

 
Fig. 11.16: Peter’s four criteria 

 
Fig. 11.17: Chris’s three criteria 
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Fig. 11.18: Tom’s three criteria 

Step 3: Choose the top-t criteria and assign weights 

All individual criteria proposed by group members in Step 2 are 

listed. Obviously, some criteria can be merged or combined, and some 

may be not relevant to the decision problem. Finally, the following four 

criteria are chosen as assessment-criteria for the decision problem in the 

group (Fig. 11.19): 

(1) Track record 

(2) Significance and innovative 

(3) Methodology and plan 

(4) Justification of budget 

 

Also, assign weights for all members. Here, Peter is assigned as ‘most 

important,’ Chris is assigned as ‘important,’ and Tom is assigned as 

‘normal’ (Fig. 11.19). 

 

Step 4: Fill the criteria comparison matrix  

Based on the assessment-criteria, every member fills a pairwise 

comparison matrix of the relative importance of these criteria (Fig. 

11.20). For example, Peter thinks the criterion ‘Track record’ is ‘much 

more important’ than the criterion ‘Methodology and plan.’ 

 

Step 5: Fill the belief level matrix 

Based on the assessment-criteria and alternatives, every member fills 

a belief level matrix to express the possibility of selecting a solution 

under some criteria (Fig. 11.18). For example, under the criterion ‘Track 
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record,’ the preference belief level of the alternative ‘Water-magt’ is 

regarded as ‘very high.’ 

 
Fig. 11.19: Choosing the criteria and assigning weights 

 
Fig. 11.20: Filling the criteria comparison matrix and the belief level matrix 
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Step 6: Generate the final result of the problem 

Finally, the research project ‘E-govt’ is chosen by the committee as it 

received the highest closeness coefficient value 0.5172 (Fig. 11.21). 

 
Fig. 11.21: The window for showing the result 

However, if the university can fund more projects, ‘E-learning’ will 

be selected as it received the second highest value (0.4277).   

11.5   Summary 

A Web-based FGDSS and examples illustrated how to use the system in 

distributed decision making. To help readers use FGDSS, an off-line 

version is available in the attached CD to run the given example. 
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Chapter 12 

Multi-Objective Group DSS 

An MODM problem has multiple non-commensurable objectives needed 

to be achieved. Balancing tradeoffs between multiple objectives will be 

more important in group than for individuals due to conflicting 

objectives and opposing viewpoints. We focus on multi-objective group 

decision-making (MOGDM) techniques, and present an MOGDM 

framework with five multi-objective group aggregation methods in this 

chapter. We particularly introduce an intelligent multi-objective group 

DSS (IMOGDSS) developed, including its architecture, design, and 

implementation. 

12.1   Frameworks 

Generally, an MODM problem (also see Chapter 2) can be formulated as 

follows: 

(MODM)  
( )

( ){ }



≥≤∈=∈    0,|      s.t.

max    

xbxgRxXx

xf

n
 (12.1.1) 

where ( )xf  represents n conflicting objective functions, ( ) bxg ≤  

represents m constraints, and x is an n-vector of decision variables, 
n

Rx ∈ . 

Group decision making for solving an MODM problem is named as 

multi-objective group decision making (MOGDM). It provides a group of 

decision makers with feedback to individual preferences regarding 

possible solutions to the MODM problem. With several alternatives to 

the MODM problem, the group members’ preferences are aggregated 

and a final compromise consensus solution is reached. The solution 
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process of the MODM problem can be as the first part of the MOGDM 

process, and be mixed with the whole group decision process. We 

therefore have two kinds of frameworks: asynchronous and synchronous. 

An asynchronous MOGDM framework, as presented in Fig. 12.1, has 

three stages to complete the process of MOGDM for solving an MODM 

problem in a group. 
 

 

Fig. 12.1: A framework of the MOGDM 

In Stage 1, the initialisation, a decision group is set up and an MODM 

problem including its variables, objectives, and constraints are 

determined. Each member can define their goals or weights to these 

objectives, which are used to generate individual solutions to the MODM 

problem. 

In Stage 2, the individual solution, each decision maker obtains an 

optimal solution by using a suitable MODM method under their goals 

and preferences among several methods that are available. They then 
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report their solutions and the aspiration levels for each objective into the 

group.   

In Stage 3, the group solution, these individual solutions are as 

alternatives to form the group’s solution for the problem. The decision 

group members exchange their ideas, express their preferences or 

judgements on the alternatives, and identify desirable solutions. Each 

member is given a weight, if it needs, and a utility group aggregation 

method is then used to determine the ‘best’ alternative, a compromise 

solution in general, to the MODM problem through aggregation of 

individual solutions and their weights. To generate the group solution, 

each decision maker’s individual solution may be given an equal or non-

equal priority. 

A synchronous MOGDM framework consists of three major stages as 

well. The first stage elicits the decision problem, the weight for each 

decision maker, and their goals and their minimum acceptable attainment 

levels for each objective.  

The second stage requires group members to indicate their demands 

for the decision problem. Demands are incorporated into the MODM 

model as goals in a goal programming formulation.  An initial solution 

for the group is then generated.  

In the third stage, group members can indicate their wants, which are 

not just acceptable levels but desired levels of attainment on these 

objectives. The wants are then formulated into different prioritised goals 

to form a new group goal for the problem. A new solution is then offered 

to the decision group. Group members can also relax one or more 

objectives so as to allow improvements in other objectives. The 

interaction with decision makers continues until a final solution is 

accepted by the group. Obviously, under this framework, group decision 

methods and MODM methods are mixed to achieve a solution for group. 

An MOGDM framework is implemented in a DSS, called an 

MOGDSS. An MOGDSS, as a specific GDSS, offers multiple decision 

makers with supporting to reach an agreement on decision involving 

multi-objectives under a framework of DSS. In general, an MOGDSS 

provides an interactive procedure for dealing with group decision making 

problems in which the decision is formulated as an MODM form. For 

example, Iz (1992) presented two GDSS prototypes based on MOLP 
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with an integrated technique. One aggregated decision makers’ 

individual rankings of the efficient solutions from the Tchebycheff 

method (Steuer and Choo, 1983) into a group ranking by solving a pure 

network model suggested by Cook and Kress (1985). Another one 

embedded the Tchebycheff method into AHP. In Section 12.3, we will 

introduce an intelligent MOGDSS, which integrates an MODM method-

base, a multi-objective based group aggregation method-base, and a 

knowledge-base into a DSS. 

12.2   Multi-Objective Based Aggregation Methods 

Based on the asynchronous framework and with some interactive 

features of the synchronous framework, we propose five multi-objective 

based aggregation methods (also known as multi-objective group 

aggregation methods): (1) Average solution method (ASM), (2) 

Weighting objective method (WOM), (3) Weighting member method 

(WMM), (4) Ideal solution method (ISM), and (5) Solution analysis 

method (SAM). They are used in Stage 3 of the MOGDM framework 

presented in Fig. 12.1, but the SAM is interactive and can be used in a 

synchronous case. In these methods, the term ‘solution’ means the 

objective function values under an optimal solution of an MODM 

problem. 

12.2.1 Average solution method 

The ASM is also called the shortest average distance method. The 

concept of the shortest distance is applied with a single distance criterion, 

an average solution, in the method. The objective of the ASM is to obtain 

the average compromise solution from the existing set of solutions 

provided by group members. The average solution represents the 

direction of the compromise solution.  

Let ),,,( 21 nSSSS ⋯= , n be the number of decision makers )2( >n , 

),,,( 21 imiii sssS ⋯=  be the optimal objective function values under an 

optimal solution of an MODM problem for simplicity, called ‘solution’ 

(the same for other four methods), from the ith group member. The 
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MODM problem consists of m objectives (m>1).  Mathematically, the 

ASM is formulated as follows. 

 
find   p  (12.2.1) 
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The solution process involves the following six steps:  

Step 1: Input all solutions and establish a solution matrix S 
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Step 2: Calculate the maximum value for each decision objective and 

establish a relative solution matrix S' 

Let 
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Obviously,  

[ ]1,0∈′
ijs  

 

Step 3: Calculate the average solution AV 
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Step 4: Estimate the distance for each objective of solutions to the 

average solution. A distance matrix D for each objective of the solutions 

from the average solution is thus established. 
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where 
jijij avsd −′= , ni ,,1…= , mj ,,1…= . 

 

Step 5: Sum the distances from different objectives of each solution, 

we have  

∑
=

=
m

j

iji dd
1

, ni ,,1…=  

 

Step 6: Find the solution that has the shortest distance 

In order to find the solution, the following simple auxiliary problem 

should be solved. 
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find   p 

s.t.   { }niddd ip ,,2,1,min*
…=== , ,1 np ≤≤  

where d* is the shortest total distance between the solutions and the 

average solution, the pth solution (the optimal objective function values 

and related optimal solution) is the best compromise solution of this 

MODM problem for the group. The value chosen for p reflects the way 

of achieving a compromise by minimising the relative-distance sum of 

the deviations of objectives from the reference point (average solution). 

12.2.2 Weighting objective method 

The WOM is also called the weighted shortest average distance method, 

which aims to combine group members’ preferences and their ranking 

for each objective into a relative average solution.  

Let ),,,( 21 nSSSS ⋯= , ),,,,( 21 imiii sssS ⋯=  ,,,1 ni ⋯=  be a solution of 

an MODM problem from the ith group member, 
jij ww ∈  be the weight 

of the jth objective provided by the ith decision maker. Mathematically, 

the WOM is formulated as follows.  

find   p  (12.2.2) 
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The solution process involves eight steps:  

Step 1: Establish a solution matrix S 
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Step 2: Calculate the maximum value for each decision objective and 

establish a relative solution matrix S' 

Let 

{ }njjjj ssss ,,,max~
21 …= , mj ,,1…= , 

( )mssss ~,,~,~
21max …= , 





==
=

≠
=′ mjni

s

sss
s

j

jjij

ij ,,2,1,,,2,1
,0~if0

;0~if~/
⋯⋯ . 

We obtain  



















′′′

′′′

′′′

=′

nmnn

m

m

sss

sss

sss

S

⋯

⋮⋱⋮⋮

⋯

⋯

21

22221

11211

, 

where [ ]1,0∈′
ijs . 

 

Step 3: Calculate an average solution AV 

( )mavavavAV ,,, 21 …=  
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, mj ,,1…= . 

 

Step 4: Evaluate the intensity of importance for each decision 

objective 

Each group member assigns an intensity of importance for each 

objective as the weight of this objective. Each weight’s determination 

involves the comparison with other elements and their relative 

importance to the group members with respect to each objective. A 

weight matrix 
mnW ×

 is generated as a result of this process, where the 

weight is defined according to the interpretation of the scale as follows. 
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1--Less important: experience and judgment slightly favours one of 

these objectives; 

3--Important: experience and judgment strongly favour one of these 

objectives; 

5--More important: an objective is strongly favoured and its 

dominance is demonstrated by past experience; 

7--Absolutely important: very strong evidence favouring one objective 

over others; and 

2,4,6--intermediate values used when further compromise is needed. 

We therefore have 
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where ( )7,6,5,4,3,2,1∈ijw , ni ,,1…= , mj ,,1…= . 

 

Step 5: Obtain the average weight for each objective 

The weights at each objective from these group members are 

processed to determine the average weights of the objective. The major 

assumption behind the method is that the solutions have reflected 

decision makers’ preferences for their goals, but group members often 

have conflicting goals for each objective. The weight matrix W is 

expected to address the conflicts. To reveal decision makers’ preferences 

for each objective the average weights are calculated.  
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Step 6: Estimate the distance of each solution to the average solution. 

 A distance matrix D is thus established. 
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where 
jijij avsd −′= , ni ,,1…= , mj ,,1…= . Obviously, 10 <≤ ijd . 

 

Step 7: Calculate the weighted distances from different objectives of 

each solution. 

The weighted distances id  of each solution iS , ,,,1 ni …=  from 

distance matrix D are obtained. 

,
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Step 8: Calculate the solution that has the shortest weighted distance. 

The following simple auxiliary problem should be solved: 

find   p 

s.t.   { }niddd ip ,,2,1,min*
…=== , np ≤≤1 . 

The solution
pS  is found as the shortest weighted distance and it is 

thus the ‘best’ compromise solution of this MODM problem in the 

group. 

12.2.3 Weighting member method 

This method aims to combine group members’ preferences and the 

ranking of each group member into an average solution of the MODM 

problem. The degrees of importance of group members are often 

different. Particularly, when a group meeting has a leader, this leader’s 

preference should be reflected more in the final solution. Thus, this 

leader may have a higher weight for the solution than other members. In 

this case, the aggregation of alternative solutions is not only the 

aggregation of the objective values of the solutions, but also of group 

members’ weights.  
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Let ),,,( 21 nSSSS ⋯= , ),,,,( 21 imiii sssS ⋯=  ,,,1 ni ⋯=  be a solution of 

an MODM problem from the ith group member, 
jij ww ∈  be the weight 

of the ith member provided by the jth objective. Mathematically, the 

WMM is formulated as follows.  
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The aggregation process involves eight steps, which are similar to 

those of the WOM presented in Section 12.2.2 except Steps 4 and 5.  

In Step 4, the intensity of importance is assigned for each group 

member. The determination of each weight involves the comparison with 

other group members’ relative importance.  
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where ( )7,6,5,4,3,2,1∈ijw , ni ,,1…= , mj ,,1…= . 

In Step 5, the weights obtained for group members are processed to 

determine the average weights of these group members. 

( )mwwww ,,, 21 …= ,  
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In Step 6, the distance matrix D is obtained. 
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where 
jijij avsd −′= , ni ,,1…= , mj ,,1…= . 

Step 7 calculates the weighted distances id  of each solution iS , 

i=1,2,..,n, from the distance matrix D. 
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In Step 8, the problem is solved by the following formula: 

find   p 

s.t.   { }niddd ip ,,2,1,min*
…=== , np ≤≤1 . 

The solution 
pS  has the shortest weighted distance and it is thus the 

best compromise solution. A new solution can be generated by changing 

these weights. 

12.2.4 Ideal solution method 

In this method, the distance from the ideal solution is used to evaluate all 

solutions provided by group members. The method aims to obtain the 

‘best’ compromise solution, which is the one that is the closest to the 

ideal solution, that is, it has the shortest distance from the ideal solution. 

Let ),,,( 21 nSSSS ⋯= ,  ),,,,( 21 imiii sssS ⋯=  ,,,1 ni ⋯=  be a solution of 

an MODM problem from the ith group member, m be the number of 

objectives (m>1). ),...,( 002,010 msssS =  be the ideal solution. 

Mathematically, the ISM is formulated as follows.  

find   p (12.2.4) 

s.t.   },,2,1;min{* niddd ip ⋯===  
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The group aggregation process involves six steps, which are similar to 

those of the ASM presented in Section 12.2.1 except the average solution 

is changed to the ideal solution. The calculation of an ideal solution is the 

same as those of the ISGP method (discussed in Table 2.1). 

When an ideal solution ( )msssS 002,010 ,...,=  is generated, the algorithm 

starts to measure the distance of the ideal solution to each other solution. 

A distance matrix D for each objective of solutions to the ideal solution 

is thus established. 
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where 
jijij ssd 0−′= , ni ,,1…= , mj ,,1…= . 

The distances from different objective values of each solution are 

obtained: 

∑
=

=
m

j

iji dd
1

, ni ,,1…=  

The final solution that has the shortest distance is then found from 

find   p 

s.t.    { }niddd ip ,,2,1,min*
…=== , np ≤≤1 , 

where *d  is the shortest total-distance between the solutions and the 

ideal solution, the pth solution is the most closest solution as the final 

compromise solution of this MODM problem in the group. 
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12.2.5 Solution analysis method 

This method is designed to use a relaxation process for these objective 

values based on a preliminary solution, which can be produced by the 

ISM presented in Section 12.2.4.  The method provides more interaction 

and negotiation for group members.  

Let ),,,( 21 nSSSS ⋯= , ),,,,( 21 imiii sssS ⋯=  ,,,2,1 ni ⋯=  be a solution 

of an MODM problem from the ith group member, m be the number of 

objectives (m>1). Mathematically, the SAM is formulated as follows. 

Find  p’ through relaxing 
ps  based on 

{ 

find  p  (12.2.5) 
s.t.   },,2,1;min{* niddd ip ⋯===  
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} 

The solution process involves two stages:  

Stage 1: Produce a preliminary solution by using Steps 1 to 6 of ISM;   

Stage 2: If some of the objectives are satisfactory and others are not, 

we will use the STEM (see Table 2.1) method to relax one of the 

satisfactory objectives enough so as to allow improvements in 

unsatisfactory objectives. A new solution is generated. If it is not 

accepted, we will have next iterative cycle. The interaction with decision 

makers continues until a compromise solution for the MODM problem is 

accepted in the group. In some cases decision makers’ relaxation values 

are not feasible. By using this method, when a relaxation fails, the 

method will enable users to continue to re-enter a new set of relaxation 

values. 
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12.3   An Intelligent MOGDSS 

We now present an intelligent multi-objective group DSS (IMOGDSS), 

which could be applied to solve MOLP problems in a decision group. To 

utilise the potential of the MODM method-base effectively, this 

IMOGDSS is designed to include seven popular MODM methods and 

has the capability of guiding decision makers to select the most suitable 

MODM method from the seven methods for solving their particular 

problems. A knowledge-based intelligent guide is provided to achieve 

the aim. As the IMOGDSS is used in a decision group, after each group 

member gives a solution for an MODM problem, a group subsystem is 

launched to exchange ideas for decision objectives and their goals, and to 

identify acceptable and desirable solutions. Usually a negotiation about 

their solutions is processed so that this decision group achieves a 

compromise but consensus solution of the MODM problem. A GDM 

method-base that consists of five group aggregation methods described 

in Section 12.2 is utilised to find a compromise solution. In these 

methods, SAM provides a possibility to have more interaction in a  

group, and can be suitable for both frameworks of asynchronous and 

synchronous. 

As shown in Fig. 12.2, the IMOGDSS has five bases: (a) database, (b) 

MODM method-base, (c) GDM method-base, (d) model-base, and (e) 

knowledge-base. These resources can be accessed by seven major 

subsystems: (1) interface subsystem, (2) problem input subsystem,  

(3) intelligent guide subsystem, (4) method subsystem, (5) result 

(management) subsystem, (6) model (management) subsystem, and (7) 

group (aggregation) subsystem. 
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Fig. 12.2: The structure of the IMOGDSS 

Some methods are more suitable and efficient than others in the 

solution of a particular decision problem of particular decision makers. 

Hence, the IMOGDSS contains seven methods in its method-base for 

decision makers to select the most suitable one for solving their 

problems. These methods are: 
 

• Efficient Solution via Goal Programming (ESGP) (Ignizio, 1981), 

• Interactive Multiple Objective Linear Program (IMOLP) (Quaddus 

and Holzman, 1986), 

• Interactive Sequential Goal Programming (ISGP) (Hwang and Masud, 

1979), 

• Linear Goal Programming (LGP) (Ignizio, 1976), 

• Step Method (STEM) (Benayoun et al., 1971), 

• STEUER (Steuer, 1977), and  

• Zionts and Wallenius (ZW) (Ziont and Wallenius, 1975).  
 

(More details have been shown in Table 2.1 in Chapter 2). 

We have also implemented the five group aggregation methods 

presented in Section 12.2 in the GDM method-base. The focus of these 

  

Interface of IMOGDSS 

Method 
subsystem 

Result 
subsystem 

Model 
subsystem 

Intelligent 
guide 

subsystem 

Group 
subsystem 

Problem 
input 

subsystem 

   MODM      
  Method-base 

Database Model- 
base 

GDM  
Method-base 

Decision makers 

   Knowledge-     
   base 



Multi-Objective Group DSS 265 

methods is to determine a compromise solution to an MODM problem, 

which best conforms to the preferences of the group members. These 

methods are implemented as independent executables to facilitate the 

flexibility required of the system. These methods share similar data 

acquisition routines and these routines are developed as independent 

modules so that data acquired could be accessed by all the methods. 

The selection of the most suitable method from the MODM method-

base is always difficult to accomplish because of the dearth of expertise 

and experience needed to understand the specific features of the available 

MODM methods, as well as the ability to match an MODM model with 

current decision needs. Usually, only experts in the field are able to take 

advantage of an MODM method-base. This is because sophisticated 

analytical skills on the part of decision makers are required to identify 

the problems and match each problem with an appropriate MODM 

method. Therefore, an intelligent technique is needed to support the 

selection of methods. A knowledge-base system is utilised to provide the 

guidance on the selection of suitable MODM methods according to 

different problem situations and decision makers’ situations. With the 

design, the IMOGDSS allows non-technical decision makers to interact 

fully with the system and get recommendations for a suitable decision 

method. 

12.4   Design of the Intelligent Guide Subsystem 

The knowledge-based intelligent guide subsystem plays an important 

role in the IMOGDSS. Through helping decision makers choose a 

suitable method, it can effectively improve their confidence and truthness 

to use this DSS to solve their problems. Its design is described in this 

section. 

12.4.1 Knowledge acquisition process  

The knowledge acquisition is the process of capturing the experts’ 

knowledge about a domain into a system. The process includes two main 

phases: the identification and collection of knowledge, then the 
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representation of the facts representing the expertise to be kept in a 

system’s knowledge-base. The following steps are used to identify and 

collect the experts’ knowledge about MODM methods: 

 

• Method identification: identifying a number of traditional and popular 

MODM methods to build an MODM method-base. 

• Validity recognition: a number of validities are recognised. They are 

conceptual validity, logical validity, experimental validity, and 

operational validity. 

• Methods comparison: comparing all methods included in this system 

through different points of view and classes. 

• Characteristics and concepts identification: the characteristics and 

concepts of the MODM methods are identified. 

• Selection of the type of knowledge representation: there are four main 

types of knowledge representation schemes in a knowledge-base: 

production rules, semantic nets, frames, and logic. We used the type 

of production rules. 

12.4.2 Characteristics analysis models 

To build the knowledge-base in the intelligent guide subsystem, the 

knowledge for the selection of MODM methods is first structured by 

capturing both the MODM methods and their characteristics.  

The characteristics of MODM methods are classified into four  

classes, that is, DMs (decision makers)-related, Methods-related, 

Problems-related, and Solutions-related characteristics. By studying the 

characteristics of the seven methods implemented in the IMOGDSS 

prototype, four analysis models for the four classes of characteristics are 

produced respectively. 

The DMs-related characteristics analysis model includes the 

characteristics that are related to decision makers’ preference for 

selecting a method to solve a decision-making problem. Some of these 

characteristics are decision makers’ desire to interact with the system, 

decision makers’ ability to provide data for a specific MODM method. 

The Methods-related characteristics analysis model consists of the 

characteristics that are related to the solution process of MODM 
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methods, such as whether to use a linear programming technique or a 

goal programming, whether to define an ideal solution. The problems-

related characteristics analysis model includes the characteristics that are 

dependent on the actual decision problem. For example, some MODM 

methods such as IMOLP and LGP require the provision of weights for 

each objective, while ISGP and LGP need to provide the goals for each 

objective. The solutions-related characteristics analysis model consists of 

the characteristics that are related to the types of solution processed. 

Some MODM methods such as ESGP, ISGP, LGP produce only a subset 

of the efficient solutions, while others such as STEUER produces all 

efficient solutions. 

12.4.3 Novice and intermediate modes 

To ensure the consistency of knowledge in a knowledge-base, the 

principle of assimilation is applied for combining the characteristics in 

each characteristic model and to produce the characteristic-method 

models. To provide the appropriate guidance for decision makers 

possessing different levels of knowledge about MODM methods, we 

capture the characteristics into two groups in order to build the question 

models as a front-end for the knowledge-base. The two groups of 

characteristics are provided, namely, the novice and intermediate modes. 

The novice mode includes non-technical characteristics that are 

applied to decision makers who are totally unfamiliar with MODM 

methods. The novice mode will correspond to a set of general non-

technical questions regarding a decision problem, its expected 

solution(s), and its decision makers’ preferences. From the answers 

obtained from decision makers, the most suitable method will be found 

and recommended. A total of 10 characteristics are identified for the 

novice mode as listed in Table 12.1, and will be used in the fact-base of 

the expert system we developed in this system. 

The intermediate mode is designed for decision makers who are 

familiar with some methods of MODM, or not so familiar with the 

methods but have basic knowledge on MODM models and solution 

process. It consists of 14 characteristics of MODM methods. It will be 

used to find methods corresponding to a set of inputs for decision makers 
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using the intermediate mode. Decision makers can discover which 

method corresponds to a set of inputs by responding to some technical 

questions based on their decision problems, desired solutions, and data 

preparation. We only discuss the novice mode here. 

Table 12.1: Characteristics (Char.) and facts related for the novice mode 

Char. No. Char. Name Char. Definition Char. Facts 

1 Interaction more interaction with the system Char. 1 

2 Subset system provides a set of solutions Char. 2 

3 Unique  system provides a unique solution Char. 3 

4 S-Selection  system selects one satisfactory solution Char. 4 

5 D-Selection  user selects one satisfactory solution Char. 5 

6 Analyse  
solution analysis (e.g. improving/ 
sacrificing the value of objectives) 

Char. 6 

7 Ideal  system defines an ideal solution Char. 7 

8 Weight set up weights for objectives Char. 8 

9 Goal set up goals for objectives Char. 9 

10 Priority set up priorities for objectives Char. 10 

12.4.4 Logical connectivity and characteristics  

We conduct a connection analysis between the seven MODM methods 

and the 10 characteristics for the novice mode (and 14 characteristics for 

the intermediate mode). Fig. 12.3 shows the logical connectivity among 

the seven MODM methods and the 10 characteristics for the novice 

mode. We can see that each method is connected with several 

characteristics. For example, the ISGP method is connected with the 

characteristics of the ‘interaction,’ ‘subset,’ ‘D-selection,’ ‘ideal,’ and 

‘goal.’ 
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Fig. 12.3: Logical connectivity between MODM methods and their characteristics 

12.4.5 Questions and responses 

Based on the two modes, two groups of questions are designed to the two 

levels of decision makers, respectively. They are shown through a series 

of dialog boxes in the IMOGDSS. Each dialog box shows one question, 

with two response items: T (yes or the first option) and B (not or the 

second option), and a list of weights to choose for indicating the intensity 

of importance of the preferred characteristics. Four levels of the weights 

are defined in the system: 

 

(1) Very important,  

(2) Important, 

(3) General, and 

(4) Less important.   
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These responses are used to match the characteristics of one method. 

The weights are used to measure which method is the most appropriate if 

no method fully matches with decision makers’ preferred characteristics. 

The relationships among these questions, responses, and characteristics 

for the novice mode are shown in Table 12.2. 

Table 12.2: Questions (Que.), responses (Res.), and characteristics (Char.) for the novice 

mode 

No Questions Resp. Char. Name Char. No 

T Interactive 1 
1 

Would you like to have more 

interaction with the system? B Not Not 

T Subset 2 
2 

Would you like the system to provide a 

set of solutions or a unique solution? B Unique  3 

T S-Selection  4 
3 

Would you like the system or yourself to 

select a satisfactory solution? B D-Selection  5 

T Analyse 6 
4 

Would you like to analyse solutions 

(e.g., improving/sacrificing the value of 

objectives)? B Not  Not 

T Ideal  7 
5 

Would you like the system to define an 

ideal solution? B Not Not 

T Weight 8 
6 

Have you prepared a weight for every 

objective? B Not Not 

T Goal 9 
7 

Have you prepared a goal for every 

objective? B Not Not 

T Priority 10 
8 

Have you prepared a priority for every 

objective? B Not Not 

 

12.4.6 Inference process 

We first give the definitions of completed match and n-step match, and 

then introduce ignoring characteristic match strategy (ICMS). 

Let },...,,{ 721 MMMM =  be a method set, C  be a characteristics set of 

MODM methods, ),,...,,( 21 ikiii CCCC =  CCij ∈ ),...,2,1( kj =  be 

characteristics of ,iM  ),..,,( 21 kRRRR =  be characteristics of decision 

makers preferences (it is covered by the responses of decision makers for 

the questions listed in Table 12.2). For any },...,2,1{ kp ∈  there exists an i 
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and j such that  ,pij RC =  ),..,,( 21 kWWWW =  is a weighted vector for R, k 

=10 for the novice mode. 

 

Definition 12.1 RC Completed match: if there exists an i∈{1,2,..,7} such 

that for any j∈{1,2,..,k},  

ijj CR = , 

we then  say R and iM  is a RC completed match and denote it as 
iCR ≡  

or .00

iCR =  A completed match means the characteristics of a method 

completely match with decision makers’ preferred characteristics. 

 

Definition 12.2 RC n-step match: set ),,...,,( 21 nkjjj
n

RRRR −=  and 

},,..,,{},...,,{ 2121 kjjj RRRRRR
nk

⊂
−

 ,1,..2,1 −= kn  if there exists an 

i∈{1,2,..,7} such that },..,,{ 21 nkjjjj −∈∀  

ij

n

j CR = , 

we then say R and iM  is a RC n-step match and denote it as ij
n

j CR = , 

and n is called a match degree, where  },...,,{
21

nkijijij

n

i CCCC
−

=  

},..,,{ 21 ikii CCC⊂ . An n-step match means that only k-n characteristics of 

a method match with decision makers’ preferred characteristics. 

 

Theorem 12.1 If for any i∈{1,2,..,7}, and R and iM  is not a completed 

match, then there exists kn < ,  such that R and iM  is RC n-step match. 

Proof. Obvious. 
 

We describe the inference process as follows:  

Each preferred characteristic is given a weight by decision makers. A 

weighted vector of characteristics is therefore built. Through this 

weighted vector, the lowest weight lW  ( kl ≤≤1 ) is obtained from the 

weight vector W, lR  and lCi  (i=1,...,7) that according to lW  are then 

found and ignored, if for any i, R and iC  is not a completed match. If 

there is an existing iM such that R and iC  is a 1-step match, this method 

iM  is then recommended to decision makers. Otherwise, the second 

lowest weight is determined, another characteristic is ignored and a RC 
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2-step match is measured. Based on Theorem 12.1, an n-step match 

method will be found after ignoring process (n<k) n times. This strategy 

is called the ignore characteristic match strategy. According to this 

strategy, two different methods may be recommended to two different 

decision makers for the same decision problem because they are assigned 

different weights for characteristics even though their responses for the 

questions are the same.  

Decision makers’ responses and weights for these questions are 

converted to a response vector R  that consists of the characteristics 

decision makers need, and a weighted vector W that consists of the 

weight of each characteristic. If decision makers’ responses are a RC 

completed match with the characteristics of an MODM method, this 

method is recommended without the use of ICMS. However, it is not 

often that decision makers’ responses exactly match the characteristics of 

one method. The ICMS is thus used based on Theorem 12.1 to find Mi0 

such that a RC n-step match is found. The objective of this method is  

to combine decision makers’ preferences and the weights for each 

characteristic to find the most suitable method that best satisfies decision 

makers’ requirement. 

12.5   Implementation 

This section describes the implementation of three major subsystems: 

MODM method subsystem, intelligent guide subsystem, and group 

subsystem in the IMOGDSS. 

12.5.1 The MODM method subsystem 

The MODM method subsystem is used to execute the seven selected 

MODM methods. As described in Section 12.4, these methods share 

similar data acquisition routines so that data acquired could be accessed 

by all the methods.  

Interactions are carried out during a solution process in this 

subsystem. Interactive approach explores promising solutions rather than 

simply finding the optimal solution. Through interaction with the 
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problem owners, i.e., decision makers, the solution process generates 

solutions that reflect their preferences at most. Interactions can generate 

multiple alternative solutions for evaluation and selection, and it thus 

becomes a learning process for decision makers to understand problems 

better. There are different types of interactions among the seven methods 

and each method takes one or more of these types. As introduced in 

Chapter 2, Table 2.2, the first type of interaction, pre-interaction, is 

performed before the solution process even starts. In this type, explicit 

preference function of decision makers is needed. In the second type, 

pro-interaction, the preference information of decision makers is needed 

during the solution process. In this case, decision makers are required to 

provide online preference information, but no explicit preference 

function is needed. This type of approach is widely known as an 

interactive approach. The third type of approach, post-interaction, 

requires preference information after a set of candidate solutions has 

been generated. In this case, decision makers are simply required to 

choose the most satisfactory solution from the final set.  

The solution process of each method is quite different. For example, 

LGP uses pre-interaction with users via collecting the weights, goals and 

priorities of the objectives. On the other hand, IMOLP and ISGP use all 

the three interactions. The IMOGDSS takes care of all interactions via 

windows and produces the final accepted solution (decision variables and 

objectives) by decision makers. Referring to the production planning 

example given in Chapter 2, Section 2.3.4, Fig. 12.4 shows such a final 

solution selected by decision makers using the ISGP method. 

 
Fig. 12.4: A final solution selected by decision makers using the ISGP method 
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The solution shows that when producing 33.041 units of product 1x , 

59.030 units of 2x , and 43.480 units of 3x , the company will obtain 

maximised profits, quality, and work satisfaction. 

12.5.2 The intelligent guide subsystem 

The intelligent guide subsystem consists of five sub-sub systems (we  

just call subsystems for simplicity): question, response, method-show, 

ignoring (missing) characteristic strategy (ICS), and main-control 

subsystems, and a knowledge-base. The knowledge-base includes a set 

of facts to define the knowledge about the MODM methods and a set of 

rules for finding a suitable method for a particular decision maker  

(Fig. 12.5). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12.5:  Intelligent guide subsystem and its working principle 
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The IMOGDSS uses the inference engine provided by the expert 

system shell CLIPS. The question subsystem first questions decision 

makers by using an elicitation technique. The responses are received and 

analysed by the response subsystem. The responses to each question are 

asserted in the working memory by the inference engine, and responses 

to the weight of each question are sent to the ICS subsystem. If a suitable 

method is found the name of the method will be displayed to decision 

makers by the method-show subsystem. Otherwise a fuzzy (n-step) 

match strategy is performed. 

Facts are one of the basic high-level forms for representing 

information in a knowledge-base system. Each fact represents a piece of 

information that has been in the current list of facts. The knowledge-base 

for the selection of MODM includes several groups of facts that have 

different functions. The basic knowledge about each MODM method and 

its various characteristics are described by a group of facts as listed in 

Table 12.1. Another group of facts is to relate the response of each 

question to the facts to be asserted by the inference engine into the 

working memory. We also need to get a number of facts to relate each 

characteristic to its corresponding question. The next group of facts 

relates to follow-up questions to follow given responses. It is necessary 

to get a set of facts to relate facts that are grouped under the same class. 

The last set of facts is used to initialise the inference process.  

The knowledge is represented using ‘def-templates’ and ‘def-facts.’ 

Every ‘def-facts’ defines directly a fact. A def-template defines a group 

of related fields in a pattern similar to the way in which a record is a 

group of related data. The definition of a piece of def-facts is shown in 

the following code: 
 

method: an MODM method and its characteristics 

(deffacts  Method1 

(Method  

    (Number 1) 

    (Name ESGP) 

    (Char1 interaction) 

    (Char2 subset) 

    (Char5 d-selection) 

    (Char6 analyse) 

    (Char7 ideal) 

) 
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    ) 

Rules are used to represent heuristics to specify a set of actions to be 

performed for a given situation. This study defines a set of rules, which 

collectively works together for the method selection. The method 

selection knowledge-base system attempts to match all the characteristics 

of a method to those already asserted into the working memory. If the 

match failed, a characteristic which has the least weight will be ignored. 

A method will be selected if all its characteristics (or after ignoring) are 

found in the working memory. We have also incorporated many 

heuristics that assist the system in the conflict resolution phase of the 

inference. For example, the rule to inform the user that a suitable method 

has been found shall have priority over other rules. The definition of an 

example of rules is shown in the following code:  

call-question: a rule relating to get the questions’ number and its 
responses’ number.  

(defrule get-question 

   (declare (salience 10)) 

    ?v1 <- (Question (Number ?num1)) 

      (test (neq ?num1 -1)) 

=> 

   (retract ?v1) 

   (bind ?response (quest ?num1)) 

   (assert (Response (Question ?num1)(Answer ?response))) 

) 

All patterns must be satisfied by the facts in the fact-list for the rules 

to fire. A program won’t start running unless there are rules whose left-

hand side (LHS) is satisfied by the facts. The inference engine sorts the 

activations according to their salience. This sorting process eliminates 

the confliction of deciding which rule should be fired next.  

A DELPHI-CLIPS interface program supports the execution of the 

CLIPS operations in the DELPHI working environment. Within this 

interface program, the intelligent subsystem can assert a set of facts by a 

public method or a function, such as AssertString through the TClips 

code. The subsystem can also use FactCount and Fact properties for 

getting all the facts in the fact-base, such as the Assert and Retract 

methods to assert and retract a fact.  The Tclips component also has a set 

of events to be used to monitor CLIPS and its execution. 
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When CLIPS is called, the intelligent guide subsystem first checks if 

the CLIPS supporting files are in the correct location. The subsystem 

then calls Initialise CLIPS for initialisation. The subsystem again calls 

procedure Clear to clear the fact-base. The next step is to load the CLIPS 

file that includes all fixed facts and rules. After this file is loaded, the 

subsystem executes Reset procedure and all fixed facts are entered into 

the agenda. The last function, Run is then called. All responses of 

decision makers will be converted into the facts and the intelligent 

subsystem asserts them in the fact-base. At the same time, the rules are 

fired and the subsystem starts an inference process. The CLIPS system 

attempts to match the patterns of rules with the facts in the fact-list. If all 

the patterns of a rule match the facts, the rule is activated and put on the 

agenda. The agenda is a collection of activations that are those rules that 

match pattern entities. Fig. 12.5 shows the intelligent subsystem and its 

working principle. 

12.5.3 The group subsystem 

The group subsystem in the IMOGDSS is used to aggregate multiple 

decision makers’ solutions for an MODM problem. It includes two input 

schemes: online scheme and offline scheme. The online schema is used 

to read solution data from a text file, and the offline one obtains data 

through the keyboard.   

Different methods offer different solution processes, and have 

different input requirements. For example, WMM method needs 

members to give weights (see Fig. 12.6 for the production planning 

example) and ISM needs showing an ideal solution.  

All decision makers’ solutions (here, still mean the optimal objective 

function values), the average solution and the ideal solution, can be 

shown in a chart in order to view and understand the distances between 

the average (or ideal) solution and the decision makers’ solutions. Fig. 

12.7 displays three group members’ solutions and an average solution 

for the production planning problem. We can see from the figure that two 

members’ solutions (Solutions 1 and 3) are very close in Objective 2 

(Quality) and have the almost same value in Objectives 1 (Profits) and 3 
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(Worker satisfaction). The average solution (indicated in white circles) 

has its three objectives’ values close to Solution 1 and Solution 3. 

 
Fig. 12.6: A screen of WMM in the group aggregation process 

 
Fig. 12.7: A graphical display for a group of solutions with an average solution 

 
Example: Production planning  

 

Now we suppose a decision group has four members for making the 

product planning described in Section 2.3.4. They used the IMOGDSS 

and obtained individual optimal solution (optimal objective function 

values) for this problem. Fig. 12.8 shows the four members’ solutions, 
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for example, Solution 1 (member 1’s solution) is (8800.00, 7800.777, 

10660.194).  

 

 
Fig. 12.8: A digital display for a group of solutions with an average solution 

The group determines to use the shortest average distance method, 

that is, ASM to get a solution for this group. The average solution is 

obtained (8538.932, 8455.250, 10272.457) as shown in Fig. 12.8. 

Calculation result shows that Solution 3 has the ‘shortest distance’ to 

the average solution. It is therefore selected as the final solution for the 

group for the product planning problem. 

12.6   Summary 

Many multi-objective decisions are often taken in a group environment, 

which is called the multi-objective group decision making (MOGDM). 

We focused on the development of MOGDM methods and system in this 

chapter. Under a three-stage framework of MOGDM, we presented five 

multi-objective group aggregation methods. This framework and the five 

methods have been implemented in an IMOGDSS with the design and 

support of an intelligent guide subsystem. 
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Chapter 13 

Fuzzy Multi-Objective Group DSS  

Combining fuzzy multi-objective decision making with group decision 

making methods, we will present a method and a system to solve fuzzy 

multi-objective linear programming (FMOLP) problems in a group. We 

also use a case-based example to illustrate how an FMOLP problem is 

solved in a group supported by a DSS. 

13.1   A Decision Method  

As discussed in Chapter 6, an FMOLP problem can be formulated as 

follows: 

(FMOLP) 
( )

{ }




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=

   0,
~

  
~

|     s.t.

~~
max   

xbxARxXx

xCxf

n
≺

 (13.1.1)  

where C
~

 is a nk ×  matrix, A
~

 is an nm ×  matrix, b
~

 is an m-vector, and 

x  is an n-vector of decision variables, n
Rx ∈ . Here, all parameters of 

objective functions and constraints in (13.1.1) are fuzzy numbers. 

When this problem is solved in a group, we call it as fuzzy multi-

objective group decision making (FMOGDM). Similar as the MOGDM 

framework shown in Fig. 12.1, the working process for the FMOGDM is 

split into three stages: the initialisation, the individual solution, and the 

group consensus solution. We use an FMOLP problem to describe the 

decision method.  

Stage 1: Initialisation 

Step 1: Set up a decision group. This work includes determining 

group members, clarifying a group decision problem, and formulating 
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the problem into an FMOLP model (decision variables, objective 

functions, and constraints). 

Step 2: Input the FMOLP problem, including objective functions, 

constraints, and membership functions of fuzzy parameters in these 

objective functions and constraints. 

Stage 2: Generating individual solution 

Step 3: According to the understanding and preference to the problem, 

group members generate their own solutions to the FMOLP problem by 

using any FMOLP method.  

Step 4: All group members report their own solutions to the group. 

Stage 3: Generating group consensus solution 

Step 5: The group leader collects group members’ solutions to the 

FMOLP problem. These solutions are as alternatives for the following 

group decision making. 

Step 6: Each group member including the group leader proposes one 

or more criteria for assessing these alternatives. All criteria are put into a 

criterion pool and top-t criteria are chosen as assessment-criteria used for 

finding the group satisfactory solution. 

Step 7: Each group member expresses an opinion to the assessment-

criteria by pairwise comparison of the relative importance of these 

criteria. Each member has a criteria comparison matrix. The comparison 

scale between each criterion is described as linguistic terms by means of 

fuzzy numbers (also see Table 10.2). 

Step 8: Each group member expresses their opinion to the alternatives 

with respect to each criterion. This can be carried out by introducing a 

belief level that represents the possibility of selecting a solution under a 

criterion. Then, a belief level matrix is generated from each group 

member. Also, the belief level is associated with a set of linguistic terms 

that contain various degrees of preferences to the alternatives under the 

assessment-criterion. These linguistic terms are represented by fuzzy 

numbers (also see Table 10.3).  
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Step 9: By aggregating the information in the criteria matrix and the 

belief level matrix, the preference ranking of each group member to the 

alternatives is obtained. 

Step 10: The group leader assigns each group member with a weight 

that is described by a linguistic term. Fuzzy numbers (as shown in Table 

10.1) are used to deal with these linguistic terms. 

Step 11: The ranking to the alternatives in the group is generated by 

combining all group members’ the preference ranking to the alternatives 

in Step 9 with the different weights of group members in Step 10. 

Consequently, a group compromise solution to the FMOLP problem is 

obtained as the alternative with the top rank. 

Step 12: If the consensus to the solution is reached at this stage, the 

whole group decision-making process stops. Otherwise, the process will 

go back to modify some opinions in the group level for getting the 

consensus solution for the FMOLP problem. 

Figure 13.1 shows the working process of the proposed FMOGDM 

method. Obviously, this method combines the FMODM method and the 

FGDM method. The individual solution for an FMODM problem is as an 

alternative in the group decision making. 
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Fig. 13.1: Working process of the FMOGDM method 

Formulate an FMOLP problem 

The preference ranking of each member to the 
alternatives is obtained  

The ranking to the alternatives in the group is generated 

End 

Group leader collects all solutions as the alternatives 

Group leader assigns a weight to each member 

Start 

Group members send their solutions to the group 

Set up a decision group 

Group members generate their own FMOLP solutions 

Group members propose their criteria, and top-t criteria 
are chosen as assessment-criteria 

Each group member fulfills a criteria comparison matrix 

Each group member fulfills a belief level matrix 
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13.2   System Configuration 

An FMOGDSS is developed by implementing the methods presented  

in Section 13.1 for solving FMOLP problems under a group 

environment. The FMOGDSS consists of five major software 

components: (1) Input-and-display management component, (2) Model 

management component, (3) Method management component, (4) 

Aggregation component, and (5) Data management component. It  

also has four bases: (a) database, (b) FMOLP method-base, (c) FGDM 

method-base, and (d) model-base. These bases are linked to the 

corresponding management components, respectively. Fig. 13.2 shows 

the structure of the FMOGDSS. 

With the first component, input data includes information about the 

decision group, the FMOLP models, the alternative definition, the 

assessment criteria, the criteria matrix, and the belief level matrix, etc.; 

output data includes the individual solutions to the FMOLP problem and 

the group satisfying solution to the FMOLP problem, etc. These 

input/output data with the initial, intermediate, and final data during 

algorithms/methods running will be stored in the database by the data 

management component. 

A model management component is combined with a model-base in 

the system. The model-base is used for storing user application models. 

The model management component is to define and structure an FMOLP 

problem and to generate users’ decision- making models based on their 

data input for the further processing. This component has functionalities 

to build a new model, open an existing model stored in the model-base, 

or store the current model to the model-base for the further use or 

modification. Generally, the model management component is connected 

with the database and the data management component. It also links to 

the input-and-display management component. 

An FMOLP method-base has three methods: FMOLP, FMOLGP, and 

IFMOLGP (presented in Chapter 7). Depending on the selection of a 

suitable method from group members for solving their decision 

problems, the method management component picks up the method from 

the FMOLP method-base and retrieves the related data from the 

database. The results from the component will be also stored in the 
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database, and be displayed by the input-and-display management 

component. 

An aggregation component is combined with an FGDM method-base 

in the system. Currently, an FGDM method is implemented and stored in 

the FGDM method-base. Based on the FMOLP solutions from decision 

makers as the alternatives, by combining all decision makers’ 

preferences and opinions to the alternatives, the aggregation component 

will generate the ranking to the alternatives. The results will be also 

stored in the database and be displayed for the further group consensus 

decision. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   … 

 

Fig. 13.2: The structure of the FMOGDSS 

13.3   System Interface 

The interface of the FMOGDSS consists of a system desktop with a pull-

down menu bar at the top. There are five menus that form the functions 

Database Model-base 
FMOLP 

method-base 

Data management 

component 
Method 

management 
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Model 
management 
component 

Input-and-display 
management component 

Group leader 

FGDM 
method-base 

Aggregation 
component 
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of the user interface:  File, Individual Decision Making, Group Decision 

Making, Display, and About. 

Following the three stages of the FMOGDM method described, the 

system interface is basically split into three parts as follows: 

(1) Initialisation 

By clicking the item of New Application in the File menu, a procedure 

starts for setting up a new decision group for solving an FMOLP 

problem. A window pops up for defining a decision-making group. The 

group title, the issue description and the number of group members are 

entered. Then another window is shown in Fig. 13.3 for entering the 

name of all group members. 

By clicking the item of New FMOLP Model in the Individual 

Decision Making menu, we can input a new FMOLP problem. Based on 

the FMOLP model (13.1.1), a window shown in Fig. 13.4 is to input the 

number of decision variables, the number of fuzzy objective functions, 

and the number of fuzzy constraints. The parameters of fuzzy objective 

functions and fuzzy constraints also need to be input for set up the 

FMOLP problem. Fig. 13.5 shows the general information about the 

FMOLP problem. 

(2) Individual solution 

By clicking the item of FMOLP in the Individual Decision Making 

menu, a window as Fig. 13.6 is used for each group member including 

the group leader to generate solutions to the FMOLP problem. Each 

group member can choose one of the three methods from the window. 

Click on the Run button with the choice of a method, one of the three 

windows, which is as Fig. 13.7, Fig. 13.8 or Fig. 13.9, will show up. 

These three windows are for the FMOLP method, the FMOLGP method, 

and the IFMOLP method, respectively. Each group member can generate 

a solution to the FMOLP problem by using one of the three windows. 

The details about how to use these functions are already described in 

Section 8.4. 

The solutions generated by group members with Fig. 13.7, Fig. 13.8, 

or Fig. 13.9 will be sent back to the main FMOLP window as Fig. 13.6, 

and are displayed. Click on the Add button, the current solution will be 

put into a solution pool. 
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(3) Group consensus solution 

Based on the alternatives generated from Stage 2, each group member 

can propose several criteria for selecting an alternative as the group 

satisfactory solution. By clicking the item of Individual Criteria in the 

Group Decision Making menu, a window is shown for each group 

member to input the number of criteria. Click the Continue button, 

another window shown in Fig. 13.11 is to input the criteria. After all 

group members have finished their criteria input, all proposed criteria are 

then collected and put into a criteria pool. 

By clicking the item of Criteria and Weights in the Group Decision 

Making menu, a window is shown in Fig. 13.12 for the group leader to 

assign weights for group members and to choose assessment-criteria for 

evaluating the alternatives. In the window, each member is set to a 

weight by the leader with a linguistic term.  

After getting assessment-criteria, each member can express opinions 

to these assessment-criteria by pairwise comparison of the relative 

importance of them. Also each member can express opinions to the 

alternatives with respect to each criterion. By clicking the item of 

Individual Preference in the Group Decision Making menu, a window is 

shown in Fig. 13.13 for this purpose. 

Finally, by clicking the item of solution in the Group Decision 

Making menu, a window is shown in Fig. 13.14 for displaying the 

solution of the group. Obviously, it is generated by fully considering the 

weights to group members and their preferences. 

13.4   A Case-Based Example 

In this section, we consider the production-planning problem (Example 1 

in Section 8.5), which can be described as the following FMOLP model: 
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In this model, the unified form for all membership functions of fuzzy 

parameters of the objective functions and constraints is as follows: 

( )
( ) ( )

( ) ( )











≤<−−

=

<≤−−

<<

=

cxbbcxc

bx

bxaabax

xcax

x

2222

2222

~
1

or    0

αµ
       (13.4.2) 

All membership functions of fuzzy parameters of the FMOLP model 

(13.4.1) are listed in the triple pair form in Tables 13.1 and 13.2, 

respectively. 

 

Table 13.1: Membership functions of fuzzy objective functions’ parameters 

ij
c~  1 2 3 

1 (45, 50, 55) (90, 100, 110) (15.75, 17.5, 17.25) 

2 (82.8, 92, 101.2) (67.5, 75, 82.5) (45, 50, 55) 

3 (22.5, 25, 27.5) (90, 100, 110) (67.5, 75, 82.5) 
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Table 13.2: Membership functions of fuzzy constraints’ parameters 

ij
a~  1 2 3 

ib
~  

1 (12.8, 12, 13.2) (15.3, 17, 18.6) (0, 0, 0) (1260, 1400, 1540) 

2 (2.7, 3, 3.3) (8.1, 9, 9.9) (7.2, 8, 8.8) (900, 100, 110) 

3 (9, 10, 11) (11.7, 13, 14.3) (13.5, 15, 16.5) (1575, 1750, 1925) 

4 (5.4, 6, 6.6) (0, 0, 0) (14.4, 16, 17.6) (1192.5, 1325, 1457.5) 

5 (0, 0, 0) (10.8, 12, 13.2) (6.3, 7, 7.7) (810, 900, 990) 

6 (8.55, 9.5, 10.45) (8.55, 9.5, 10.45) (3.6, 4, 4.6) (967.5, 1075, 1182.5) 

Based on the FMOGDM method given in Section 13.1, the procedure 

for solving the production-planning problem in a group is as follows: 

Stage 1: Initialisation 

Step 1: Set up a decision group, with Peter as the group leader and 

David and Kim as group members (Fig. 13.3). 

 

 
Fig. 13.3: Set up a decision group 

 

Step 2: Set up the FMOLP problem (Fig. 13.4) and its model (13.4.1) 

as shown in Fig. 13.5. 
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Fig. 13.4: Set up the ‘Production-planning’ problem  

 
Fig. 13.5: General information about the ‘Production-planning’ problem 
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Stage 2: Generating FMOLP solutions at the individual level 

Step 3:  Suppose the three group members, Peter, David, and Kim, 

generate their solutions to the FMOLP problem using FMOLP method, 

FMOLGP method, and IFMOLP method, respectively as shown in Figs. 

13.7, 13.8, and 13.9. The results are collected as in Fig. 13.6. That is, the 

solution generated by Peter is ,7569.68*

1 =x  ,4063.25*

2 =x and 

1126.45*

3 =x ; the David’s solution is ,5281.37*

1 =x  ,3371.55*

2 =x  and 

7079.33*
3 =x ; and the Kim’s solution is ,8217.44*

1 =x  ,5013.50*

2 =x  

and .4878.41*

3 =x  Obviously, they have different solutions. 
 

Step 4: Each group member sends their own solutions to the group 

level for the further group decision making.  

 

 
Fig. 13.6: The FMOLP window for all group members 
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Fig. 13.7: The window for the FMOLP method 

 
Fig. 13.8: The window for the FMOLGP method 
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Fig. 13.9: The window for the IFMOLP method 

 

Stage 3: Generating the group consensus solution at the group level 

Step 5: The group leader, Peter, collects group members’ solutions as 

the group alternatives. These alternatives are summarised in Fig. 13.10. 

The plan proposed by Peter, ,7569.68*

1 =x  ,4063.25*

2 =x and 

1126.45*

3 =x , is as alternative 1; the David’s plan, ,5281.37*

1 =x  

,3371.55*

2 =x  and 7079.33*
3 =x , is as alternative 2; and the Kim’s plan 

,8217.44*

1 =x  ,5013.50*

2 =x  and ,4878.41*

3 =x  is as alternative 3. 
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Fig. 13.10: All alternatives generated by group members 

Step 6: Based on the FMOLP solutions (alternatives), each group 

member proposes one or more criteria for getting a group satisfactory 

solution. Suppose Peter proposes two criteria, which are ‘Profit’ and 

‘Pollution’ as shown in Fig. 13.11. David also proposes two criteria, 

‘Quality’ and ‘Worker satisfaction,’ and Kim proposes ‘Environment’ as 

one more criterion. Then these five proposed criteria are collected into a 

criteria pool. 

 

Step 7: The group leader, Peter, assigns ‘important,’ ‘normal,’ and 

‘most important’ to David, Kim, and himself, respectively, and choose 

four criteria as assessment-criteria from the criteria pool for evaluating 

the alternatives as shown in Fig. 13.12. 
 

 
Fig. 13.11: Input assessment-criteria 
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Fig. 13.12: Choosing weights and criteria 

Step 8: Each group member inputs a criteria comparison matrix with 

pairwise comparisons of the relative importance of these criteria similar 

as in Fig. 13.13. 
 

Step 9: Each group member inputs a belief level matrix with the 

preference to the alternatives against each criterion similar as in Fig. 

13.13. 
 

Step 10: The ranking to the alternatives in the group is obtained as in 

Fig. 13.14, and the second alternative, proposed by David, has the 

highest rank. 
 

Finally, the group reaches the consensus to the solution for this 

production-planning problem as ,5281.37*

1 =x  ,3371.55*

2 =x  and 

.7079.33*

3 =x  That is, 37.5281 units of product 
1x , 55.3371 units of 

product 
2x , and 33.7079 units of product 

3x  will be produced, 

respectively. The profit *

1

~
f  is about 8000 units, the quality *

2

~
f  is about 

9288 units, and the worker satisfaction *

3

~
f  is about 9000 units. The 

membership functions of the fuzzy objective functions *

1

~
f , *

2

~
f  and *

3

~
f  

are shown in Fig. 13.15, respectively. 
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Fig. 13.13: Criteria comparison matrix and belief level matrix 

 
Fig. 13.14: Alternative ranking 
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Fig. 13.15: Membership functions of the fuzzy objective functions for the solution  

13.5   Summary 

The procedure for a group to make a decision on fuzzy multi-objective 

problem needs three stages, in general. After the initialisation, each 

group member first generates an individual solution, based on their 

preference, supported by FMOLP methods. All group members’ 

solutions are then aggregated to get a group solution through a multi-

criteria decision-making method. This FMOGDSS is an extension of 

FMODSS from individuals to groups. It is also a special case of group 

decision support systems. 



 

 
 
 
 
 
 
 
 

Part V 

Applications
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Chapter 14 

Environmental Economic Load Dispatch  

The increasing energy demand and decreasing energy resources have 

necessitated the optimum use of available resources. Economic dispatch 

is the optimisation scheme intended to find the generation outputs that 

minimise the total fuel cost subject to several unit and system constraints. 

We first present a novel environmental economic load dispatch model, 

which has the cost and emission objective functions with uncertain 

parameters. We then convert the model into a single objective 

optimisation problem, and develop a hybrid genetic algorithm with 

quasi-simplex techniques to solve the corresponding single objective 

optimisation problem. Finally, we validate the model and the 

effectiveness of the algorithm for a real economic dispatch problem. 

14.1   The Problem 

The conventional economic dispatch problem mainly concerns the 

minimisation of operating cost subject to diverse units and system 

constraints. Recently, the environmental pollution problem caused by 

electricity generation has been proposed and discussed by both industry 

managers and researchers. How to decrease the emission of maleficent 

gases has become an important issue in the electricity generation.  

Some related feasible strategies have been proposed to reduce the 

atmospheric emissions. These include (1) installation of pollutant 

cleaning equipments, (2) switching to low emission fuels, (3) 

replacement of the aged fuel-burners, and (4) generator units, and 

emission dispatching. The first three strategies should be as long-term 

options. The emission dispatching option is an attractive short-term 
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alternative. In fact, those three options should be determined by the 

generation companies, but not by regulation departments, especially in 

the environment of the power market. As the aim to pursue in a long run 

is to reduce the emission of harmful gases, we should reduce the 

emission of maleficent gases of the generation companies by regulating 

principles. Therefore, the environmental economic load dispatch problem 

considering the emission of harmful gases becomes a key issue in the 

power market. 

Many uncertain factors are involved in modelling the cost and 

emission functions for environmental economic load dispatch problems. 

However, most existing environmental economic load dispatch models 

lack a suitable consideration for the uncertainty issue. We therefore 

apply fuzzy number to represent uncertain values of parameters to build 

an environment economic load dispatch model, called a fuzzy dynamic 

environmental economic load dispatch (FDEELD) model. To get an 

optimal solution from the model, a weighting ideal point method 

(WIPM) is proposed. The WIPM converts the FDEELD model into a 

single objective fuzzy non-linear programming problem. A hybrid 

genetic algorithm with quasi-simplex techniques is then developed to 

seek optimisation solutions for the single objective non-linear 

programming problem. A fuzzy number ranking method is applied to 

compare the fuzzy function values of different points for the single 

objective function to obtain the optimal solution for the FDEELD 

problem. 

14.2   A Fuzzy Dynamic Model 

The basic structure of the power market presented in the literature (Watts 

et al., 2002) consists of Power Exchange (PX) and Independent System 

Operator (ISO). In this market structure, PX is in charge of the spot 

trade, the economic load dispatch is the main task of the PX and ISO 

takes responsibility for network security and auxiliary service. Therefore, 

the load dispatch model may neglect the network constraints and 

spinning reserve. But it must consider the ramp rate limit in order to 

assure an optimum solution. As the parameters of cost and emission 
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functions are with uncertainties, they are denoted by fuzzy numbers. The 

proposed FDEELD model is described as follows: 
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where T  is the number of time segments; N  is the number of committed 

units; )(tPj
 is the output active power of the unit j  at the time segment t ; 

c is a cost (fuel) function, 
jjj cba ~,

~
,~  are fuzzy parameters of the cost 

function of unit j ; e is an emission function, , ,
j j j

α β γɶɶ ɶ  are fuzzy 

parameters of the emission function of the unit j ; 
minjP and 

maxjP  are 

minimum and maximum outputs of the unit j , respectively; )(tPD
 is a 

load demand at the time segment t ; )(tPL
 is network loss at time 

segment t ; 
jD  is a down ramp rate limit of the unit j , 

jR  is an up ramp 

rate limit of the unit j . We also define 

{ }
jjjjlow DtPPMaxtP −−= )1(,)( min

 (14.2.2) 

{ }
jjjjhigh RtPPMintP +−= )1(,)( max

 (14.2.3) 

Obviously, the FDEELD model is a fuzzy bi-objective non-linear 

programming problem. In Section 14.5, we will solve a real-case 

problem, with 24=T  and ,7=N  by a proposed algorithm. 

14.3   A Transformation Method 

Both the weighting and reference point methods are effective in finding 

the Pareto optimal solutions for multi-objective non-linear programming 

problems. Strictly speaking, the weighting method only represents the 

relative importance of the goal values of an objective rather than of 

different objectives. It is hard to know the magnitude of effect of the set 

of weights to each objective function value. The reference point method 

is a relatively practical interactive approach to multi-objective 
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optimisation problems. It introduces the concept of a reference point 

suggested by decision makers that present in some desired values of the 

objective functions. It is very hard to determine weights and reference 

points in applications, besides the interactive approach increases heavily 

computing burden. A weighting ideal point method (WIPM), proposed 

here, does not require any interaction, and can predict the effect 

magnitude the weights to each objective function value. 

To describe the proposed WIPM method, we write a general multi-

objective non-linear programming problem as 

1 2 min ( ) ( ( ), ( ), , ( ))k
x S

f x f x f x f x
∈

= ⋯  (14.3.1) 

where 
1( ), , ( )

k
f x f x⋯  are k distinct objective functions and S  is the 

constraint set defined by 

{ | ( ) 0, 1, , }n

jS x R g x j m= ∈ ≤ = ⋯  (14.3.2) 

Let 
minmin

2 21 1
1 min min

1

( ) ( ) ( )k k
k

k

f ff f
g x w w

f f

−−
= + +⋯  (14.3.3) 

where ),(minmin
xff i

Sx
i

∈
=  ,0min ≠if  .,,2,1 ki ⋯=  min min min

1( , , )
k

f f f= ⋯  is  

so-called an ideal or utopia point, 
1( , , ) 0kw w w= >⋯ , 1

1

=∑
=

k

i

iw  is a 

weight vector. 

To get the Pareto optimal solution, it can be transformed to solve the 

single objective optimisation problem (14.3.3) below: 

min ( )
x S

g x
∈

 (14.3.4) 

Since the values of different objective functions in (14.3.1) can be 

very different, it is hard to know the effect magnitude of the weights to 

each objective function value. In the model (14.3.4), all objectives are 

converted into the same level by using the formula  

min

min

i

ii

f

ff − .  

We can therefore predict the effect quantity of the weights to each 

objective function value. For example, if 
1 22w w= , then 
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* min * min

2 2 1 1

min min

2 1

2
f f f f

f f

− −
≈  

where * *( ),   1, 2i if f x i= = , *
x is the optimal solution. In other words, the 

weights given in WIPM can reflect the trade-off rate information among 

the values of objective functions. When the parameters of non-linear 

objective functions are fuzzy numbers, we also use the model (14.3.4) to 

convert (14.3.1) into a corresponding single objective fuzzy optimisation 

problem. 

14.4   A Solution Technique 

To solve the single objective problem (14.3.4), a hybrid genetic 

algorithm with quasi-simplex techniques is proposed. Simplex method is 

one of the widely accepted conventional direct search methods. A 

simplex in an n-dimensional space is defined by a convex polyhedron 

consisting of 1+n  vertices, which are not in the same hyper-plane. 

Assume that there are 1+n  points in an n-dimensional space, denoted by 

ix  and the objective function values over these points are denoted by 
if , 

.1....,,1 += ni  The worst and the best points in terms of function values 

are denoted by Hx  and B
x , respectively, and can be determined by 

i
i

H
fxf max)( = ,   ,1....,,1 += ni  (14.4.1) 

and 

i
i

B
fxf min)( = ,   .1....,,1 += ni  (14.4.2) 

The quasi-simplex technique uses two search directions in generating 

prospective offspring. One direction is the worst-opposite direction, 

which is used in the conventional simplex techniques, and the other is the 

best-forward direction, which is a ray from the centroid of a polyhedron 

whose vertexes are all the points but the best one towards the best point 

of the simplex. Along the worst-opposite direction, four individuals will 

be generated by using the reflection, expansion and compression 

operations, respectively, and can be determined by 

)( HCC xxxx −+= α  (14.4.3) 

where C
x  is the centroid and can be calculated by 



Multi-Objective Group Decision Making 306 

nxxx H
n

i

iC









−







= ∑

+

=

1

1

, (14.4.4) 

α  is a parameter whose value determines the position of the 

corresponding potential better point along this direction. For example, 

,1=α  ,1>α  ,01 <<− α  and 10 << α  are corresponding with the 

reflection point R
x , the expansion point E

x , compression points M
x and 

Nx , respectively. 

Along the best-forward direction, four individuals e
x , r

x , m
x and n

x , 

will be calculated by the operations that are similar to the expansion, 

reflection, and compression operations used in the conventional simplex 

method by the following formula 

)( DBB xxxx −+= β  (14.4.5) 

where Dx  denotes the centroid of the polyhedron whose vertexes are all 

the best points and can be calculated by 

nxxx B
n

i

iD









−







= ∑

+

=

1

1

 (14.4.6) 

β  is a parameter whose value determines the position of the 

corresponding calculated point on the best-forward line. The four 

prospective points along the best-forward direction are with the 

corresponding value ranges of ,1>β  ,1=β  ,01 <<− β  and 10 << β , 

respectively. 

In contrary to conventional optimisation method, genetic algorithms 

(GA) have a strong global search capability and a weak local search 

ability. To increase search performance, it is common to combine GA 

with conventional optimisation methods. Based on this idea, a new 

optimisation method, hybrid GA with quasi-simplex techniques 

(GAQST) is proposed to solve general single non-linear optimisation 

problems with the following iteration steps:  

Step 1: Initialise a population of size ( )1+= nKµ . 
 

Step 2: Evaluate the fitness values for each individual
i

x  of the 

population based on the objective function ( )if x . 
 

Step 3: Subdivide the population into K subpopulations. 
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Step 4: For each subpopulation, create an offspring by genetic 

operations and quasi-simplex techniques in parallel. In order to increase 

subpopulation varieties, select respectively the best point as offspring 

from the points obtained by (14.4.3) and (14.4.5). The rest offspring of 

subpopulation are created by reproduction, crossover and mutation 

operations. 
 

Step 5: Unite all offspring created in Step 4 to form a new generation 

population. 
 

Step 6: Stop the iteration if the termination criterion is satisfied, and 

an optimal solution is obtained. Otherwise, go back to Step 2. 
 

Through these steps, the proposed GAQST can solve a general single 

objective non-linear optimisation problem 

( )xg
nRx∈

min .  (14.4.7) 

14.5   A Case Study 

By combining the proposed WIPM, GAQST and fuzzy number ranking 

methods, we present an approach to solve the environmental economic 

load dispatch problem, which is described by a bi-objective fuzzy non-

linear programming (14.2.1). Here, we have seven committed units, and 

the number of time segment is 24. Firstly, we convert the FDEELD into 

the single objective optimisation problem by using WIPM. Secondly, use 

the Lagrange relaxation method to form a Lagrange function. Finally, use 

GAQST to optimise the Lagrange function. In the process of the 

iteration, the fuzzy number ranking method is used to compare fuzzy 

function values of different points for the single objective function. 

By the Lagrange relaxation method, a penalty function ( h ) can be 

written as 
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 (14.5.1) 

where, ,24...,2,1=t  .7...,2,1=j  

Tables 14.1 to 14.3 show the data of the units output, the fuzzy 

parameters of cost (fuel) function (c), and the fuzzy parameters of 

emission function (e), respectively, for the environmental economic load 

dispatch problem. We use triangular fuzzy numbers to describe these 

fuzzy parameters, which are obtained form a set of experiments. 

Table 14.1: Limits of unit output and ramp rate 

Unit No. (j) )(min MWPj
 )(max MWPj

 
jD  

jR  

1 20 125 40 30 

2 20 150 40 30 

3 35 225 50 40 

4 35 210 50 40 

5 130 325 60 50 

6 120 310 60 50 

7 125 315 60 50 

Table 14.2: Fuzzy parameters of the cost (fuel) function 

ja~  
jb

~
 

jc~  Unit 

No. 

(j) 0a  
1a  

2a  
0b  

1b  
2b  

0c  
1c  

2c  

1 800.95 825.72 846.36 37.46 38.53 39.46 0.168 0.162 0.166 

2 625.96 645.32 661.45 41.32 42.51 43.53 0.120 0.122 0.126 

3 1107.49 1135.89 1158.61 38.83 39.83 40.62 0.027 0.027 0.026 

4 1168.89 1198.86 1222.84 36.90 37.85 38.60 0.034 0.035 0.035 

5 1555.00 1586.73 1610.54 36.58 37.32 37.92 0.025 0.025 0.026 

6 1269.74 1295.65 1315.09 38.29 39.08 39.70 0.017 0.017 0.017 

7 1466.72 1496.65 1519.10 36.52 37.27 37.86 0.020 0.020 0.020 
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Table 14.3: Fuzzy parameters of the emission function 

jα~  
jβ

~  
jγ~  Unit 

No. 

(j) 0α  
1α  

2α  
0β  

1β  
2β  

0γ  
1γ  

2γ  

1 15.18 15.65 16.04 0.28 0.29 0.29 0.00382 0.00392 0.00400 

2 15.18 15.65 16.04 0.28 0.29 0.29 0.00382 0.00392 0.00400 

3 34.69 35.58 36.29 -0.54 -0.53 -0.52 0.00698 0.00712 0.00725 

4 34.69 35.58 36.29 -0.54 -0.53 -0.52 0.00698 0.00712 0.00725 

5 42.04 42.89 43.54 -0.52 -0.51 -0.50 0.00453 0.00461 0.00468 

6 40.92 41.76 42.38 -0.53 -0.52 -0.51 0.00464 0.00472 0.00479 

7 40.92 41.76 42.38 -0.53 -0.52 -0.51 0.00464 0.00472 0.00479 

As 24=T , we list all correspondent load demand (D(t)) in each time 

segment )24...,2,1( =tt  in Table 14.4. 

Table 14.4: Load demand 

t 1 2 3 4 5 6 7 8 9 10 11 12 

D(t) 690 670 670 680 730 800 870 840 890 920 950 910 

t 13 14 15 16 17 18 19 20 21 22 23 24 

D(t) 890 890 930 970 930 950 1070 1040 950 850 760 730 

t--time segment; D(t)--correspondence load demand 

The penalty function h  is a high-dimension non-linear function, and 

therefore it is hard to know where the global minimum point is. To 

demonstrate the effectiveness of the proposed algorithm, the mean and 

standard deviation of fuzzy cost, fuzzy emission, and fuzzy total value 

corresponding to the optimal outputs are tested. In addition, to compare 

the effect magnitude the weights to fuzzy cost and fuzzy emission, we 

calculate three group weights. Table 14.5 lists the means and standard 
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deviations of fuzzy cost, fuzzy emission, and fuzzy total cost by the 

proposed algorithm through running independently 10 times, where MC, 

ME, and MT present the means of the cost, emission, and total, 

respectively; STDEV-C, STDEV-E, and STDEV-T present 

corresponding standard deviations. 

 

Table 14.5: The comparison of the results obtained for different weights 

1 2( , )w w  MC STDEV-C ME STDEV-E MT STDEV-T 

(0.3, 0.7) 
1067359 
1092154 
1112300 

291.4 
303.8 
312.4 

11423.23 
11993.81 
12539.55 

2.2 
2.5 
2.7 

1078780 
1104148 
1124838 

290.7 
300.7 
310.4 

(0.5, 0.5) 
1061711 
1086218 
1106213 

472.8 
377.1 
615.9 

11466.7 
12041.25 
12596.67 

4.2 
5.3 
9.4 

1073181 
1098320 
1118805 

468.5 
540.6 
607.9 

(0.7, 0.3) 
1053936 
1078110 
1097695 

57 
58.3 
60 

11600.89 
12184.12 
12744.69 

1.3 
1.4 
1.5 

1065537 
1090295 
1110440 

55 
58.2 
60.9 

 

As the standard deviations of every result are all significantly small, 

the results are believable. The fuel cost decreases and the emission 

increase when the weight of the fuel cost is assigned higher. 

Table 14.6 shows the optimal power output of units on one run for the 

weights (0.3, 0.7) for the two objectives of cost and emission. We can 

see that within 24 time segments, we obtain optimal power output for 

each of the seven units. 
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Table 14.6: An optimal power output of units for weights (0.3, 0.7) 

Unit number (j) ( )tPj
 

Time  

segment (t) 1 2 3 4 5 6 7 

1 51.46 53.05 91.02 88.99 136.41 134.07 134.99 

2 49.21 49.30 89.04 88.18 131.88 130.08 132.34 

3 49.52 49.59 88.67 87.94 132.89 129.43 131.96 

4 50.27 50.22 89.99 89.38 133.92 133.12 133.10 

5 56.06 61.42 95.36 93.57 141.20 140.42 141.96 

6 68.33 71.53 100.77 99.66 153.84 152.07 153.80 

7 76.66 82.65 110.36 107.55 165.83 164.45 162.50 

8 69.73 78.13 106.59 105.29 160.19 160.29 159.79 

9 80.40 86.77 111.39 110.45 168.51 165.29 167.20 

10 86.43 90.07 114.66 112.83 174.17 170.07 171.78 

11 90.33 92.03 119.42 116.21 181.36 174.44 176.22 

 12 86.41 87.87 113.15 112.45 171.72 168.67 169.74 

13 80.76 85.96 111.19 110.33 169.91 165.58 166.26 

14 75.09 88.24 111.12 110.66 169.85 165.97 169.07 

15 87.70 89.80 116.03 112.73 176.57 172.51 174.67 

16 94.07 98.21 119.83 116.49 183.22 177.82 180.37 

17 86.22 90.68 118.52 114.26 175.70 172.11 172.51 

18 87.79 93.94 120.20 116.19 181.15 176.30 174.42 

19 103.47 111.97 132.23 130.48 200.75 195.36 195.75 

20 106.17 104.57 128.55 126.04 194.27 190.44 189.96 

21 89.82 92.90 119.69 115.03 181.85 174.92 175.78 

22 68.41 81.11 109.17 105.86 163.49 161.03 160.93 

23 57.34 66.97 98.25 97.35 147.49 145.48 147.11 

24 55.12 62.23 94.79 94.43 141.83 140.30 141.30 

Table 14.7 shows the two optimal objective function values described 

by triangular fuzzy numbers. 
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Table 14.7: Two objective values described by triangular fuzzy numbers 

Objectives  Cost (c) Emission (e) 

Triangular fuzzy 

numbers 
(1066800, 1091570, 1111700) (11427.6, 11998.6, 12544.8) 

14.6   Summary 

A new environmental economic load dispatch model is proposed with a 

consideration of uncertainty in the parameters of cost and emission 

functions. It integrates the weighting ideal point method, hybrid genetic 

algorithm with quasi-simplex techniques and fuzzy number ranking 

method to solve the optimisation problem with two main advantages: (1) 

more precisely characterising the cost and emission; and (2) providing 

more information than real number-based methods. A case study displays 

the fuzzy multi-objective optimisation problem in details. 
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Chapter 15 

Team Situation Awareness 

Situation awareness (SA) is an important element to support making 

right decisions to crisis problems. The process of achieving SA is 

performed through situation assessments. As a given situation is 

normally required to be assessed by a given group, the group SA features 

including collaboration and information sharing become non-negligible 

issues. In the meantime, various uncertainties are involved in situation 

information obtained and awareness generation. Also, when the 

collaboration is across distances, the Web-based technology can facilitate 

the form of team SA. The Web-based fuzzy group DSS (FGDSS) from 

Chapter 11 can support the creation of team SA. We present applications 

of the Web-based FGDSS to support team SA by introducing the 

background of SA, identifying three uncertain issues in SA, and 

demonstrating the working process of the system to support a team SA. 

15.1   Situation Awareness 

Critical situation management mainly focuses on the immediate 

aspect of a disaster and its post-disaster recovery. It also pays more 

attentions on finding ways to avoid crisis problems in the first place if 

possible and preparing suitable responses to minimise the lose for those 

that undoubtedly will occur, such as fires, floods, epidemic, and even 

terrorism. This mission requires technical support in effectively 

analysing information about a situation, providing awareness information 

to emergency management officers for understanding the situation, and 

making suitable decisions. SA has been considered as an important 
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element to help emergency management officers take responses and 

make decisions for criteria situations correctly and accurately. 

Severe acute respiratory syndrome (SARS) is an example of 

emergency problems. Suppose a group of similar SARS reports is 

discovered in a region. The health organisation for that region would 

start a process responsible for understanding the nature of SARS there 

and containing the outbreak. The process primarily involves interviewing 

doctors and patients, communication with the World Health Organisation 

(WHO), and communication with news agencies and doctors involved in 

containing the outbreak. The whole process includes various types of 

information processing, such as information gathering, representation, 

judgment, filtering and integration, and related SARS awareness 

deriving. Such a situation is also required to be assessed in a group. 

Reaching a consensus SA in the group is a pre-emptive requirement for a 

group decision making. Typically, collaboration and information sharing 

are the main features in a group to achieve awareness for a situation. 

15.2   Uncertainty, Inconsistency, and Distributed Environment 

Situation awareness is defined by Endsley (1995) “as the perception of 

elements in the environment, the comprehension of their meaning in 

terms of task goals, and the projection of their status in the near future.” 

The process of achieving SA is called situation analysis or situation 

assessment. Situation assessment is based on acquired situation 

information that can be implicit or explicit. Awareness information (or 

call SA information) is derived as results of situation assessment. The 

term SA is commonly used in the human-computer interaction 

community where the concerns are to design computer interfaces so that 

a human operator can achieve SA in a timely fashion. It is also used in 

the data fusion community where it is more commonly referred to as 

situation assessment. SA has been largely studied as an important 

element in diverse military and pilot systems using observation, 

experiments, and empirical methods. There are three main issues that 

influence situation analysis and awareness deriving to be solved. 
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(1) Situation information uncertainty: there are two basic elements 

needed to support the generation of SA. The first is the 

representation of a situation. The second is the approaches or tools 

for situation assessment. Naturally, in a real world people often only 

imprecisely or ambiguously know a situation and use uncertain 

(fuzzy) information to present it. Particularly, some explicit situation 

information cannot be expressed into precise information. Therefore, 

SA has to be generated based on imprecise and inaccuracy 

information through suitable fuzzy information processing. 
 

(2) Team SA inconsistency: Controlling large dynamic systems, such as 

an emergency co-ordination among several large organisations, is 

beyond the competence of one single individual. Instead a team 

works cooperatively to coordinate and control the environment. The 

degree to which every team member possesses SA for task 

performance is called team SA. The level of overall SA across the 

team becomes an important issue, possibly leading to performance 

errors in team SA. An example of this can be found in the context of 

a building security control room. Several security personnels need to 

know certain pieces of information to safely and effectively 

complete a work process. If one person acting as a supervisor is 

aware of the critical information, but another person in direct control 

of the process is not, the SA of the team may be deficient. 

Consequently, performance and system safety may suffer from this 

case. This is a typical SA inconsistency situation. Team members 

often use linguistic terms to communicate each other and to describe 

their identification and judgment for a situation in attempting to 

reach an optimal solution. In a sequence processing, relevant SA 

information is passed on to the next person that may produce fewer 

uncertain hypotheses. Parallel processing would make team 

members develop different situation models that at the end might 

lead team members to talk about different conceptions of the 

ambiguous situation.  

 

(3) Distributed environment: Perceiving, recognising, and understanding 

activities of other members are basic requirements for a collaborative 
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team work and more generally for members’ communication and 

interaction. When team members collaborate in a face-to-face 

environment, they can easily share information obtained for a 

situation in a group session. Although each individual may have 

personal prior knowledge, experience, and opinions, the shared 

physical environment provides a common reference to support the 

communication among team members and develop an information 

sharing working environment. When individuals collaborate across 

distances, each individual’s SA, including the awareness of the local 

and remote situations, would be facilitated and supported by 

technologies (Sonnenwald et al., 2004). The Web-based technology 

is an approach to deal with the issue. The Web-based FGDSS 

presented in Chapter 11 provides a way to support such group’s 

awareness for a situation through online information sharing, 

interaction, and assessment. 
 

The three issues identified above generate a crucial requirement for 

team SA with uncertain information processing technique in a distributed 

environment support by related software systems. 

15.3   A Case-Based Example 

The following example is a demonstration on using the Web-based 

FGDSS to support reaching a team SA.  

Addressed to national health authorities, WHO has set out a series of 

guidance for the global surveillance and reporting of SARS as an 

ongoing strategy for rapidly detecting cases and preventing further 

national or international spread. WHO guidelines aim at the early 

detection and investigation of individuals with clinically apparent SARS-

associated infection. The late revised guidelines draw on experiences 

during four incidents in which cases of SARS occurred following 

breaches in laboratory bio-safety, or human exposure to an animal 

reservoir or other environmental source. Apart from demonstrating the 

importance of continued vigilance, these incidents revealed the need for 

more precise guidance on laboratory testing and on the requirements for 
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official reporting to WHO. According to the guidelines, it is necessary to 

identify and be aware of the risk levels of SARS epidemic in a region 

based on various evidences and criteria such as if SARS is circulating in 

a big human populations, the detection of human chains of transmission, 

or the evidence of international spread. 

Suppose a survaillance team is collaboratively observing the SARS 

outbreak and epidemic for a certain region. The team consists of five 

members: Officer 1, Officer 2, Officer 3, Officer 4, and Officer 5. Here 

Officer 1 is the Chief Observer (who takes intellectual responsibility for 

the survaillance and report) and other four members are the Partner 

Observers. The five members come from different organisations and play 

different roles in the group. After receiving and studying reports from 

different resources, each member judges the current situation of the 

region’s SARS epidemic. These individuals’ awareness for the situation 

will be combined into a consensus SA in the team for further activity 

recommendations. During the information sharing process, each member 

has their own understanding to the current situation, and has different 

opinions about which risk level of SARS epidemic is in that region. At 

this stage, a consensus SA should be reached in order to issue a suitable 

SARS alert.  

As the data shown in these reports has uncertainty, inconsistence, and 

incompleteness, it is hard to directly use the obtained data to determine 

the risk level of SARS epidemic for the region. The group defines four 

risk levels: Level 1 (low risk epidemic), Level 2 (middle risk epidemic), 

Level 3 (high risk epidemic), and Level 4 (very high risk epidemic). 

These group members need to have consensus awareness on the level of 

current SARS epidemic in the region through the meeting so that to 

determine the degree of SARS alert. The developed Web-based FGDSS 

can support, in some degree, reaching a consensus team SA on the risk 

level of SARS epidemic, which is described as follows. 
 

Step 1: Officer 1 logins to the system first and sets up a discussion 

group. A collaboration and information sharing environment is formed. 
 

Step 2: All members express their opinions about the current SA of 

that region’s SARS epidemic. Both Officer 1 and Officer 2 believe that 
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the current situation of SARS epidemic in the region is with Risk level 1, 

Officer 3 and Officer 4’s are Risk level 2, and the Officer 5’s is Risk level 

3. To support further discussion and get a consensus SA, the three kinds 

of opinions as alternatives for the team SA problem are shown in  

Fig. 15.1. 

 
Fig. 15.1: Three SA alternatives proposed by all members 

 

Step 3: Each group member proposes a few criteria for ranking and 

assessing these SA alternatives. Officer 1 proposes two criteria that are 

‘The atypical presentations’ and ‘The epidemic time’ as shown in Fig. 

15.2; other officers propose criteria including ‘The clinical symptoms and 

signs,’ ‘The number of infected patients,’ ‘The number of death,’ and 

‘The epidemic time.’ All these criteria are put into a criterion pool and 

finally four of them are chosen as assessment-criteria in the group,  

which are as shown in Fig. 15.3. The information sharing here is very 

important. It fully uses all members’ knowledge and experiences to show 

their opinions and communicate with each other. 
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Fig. 15.2: The criteria proposed by Officer 1 

 

 
Fig. 15.3: Four assessment-criteria and group members’ weights 
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Step 4: As group members have different experience and play 

different roles in the group, each member is assigned with a weight that 

is described by a linguistic term. Here, Officer 1 is assigned as ‘Most 

important,’ Officer 2, Officer 3, and Officer 4 are assigned as 

‘Important,’ respectively, and Officer 5 as ‘Normal,’ which are shown in 

Fig. 15.3. 
 

Step 5: Based on the criteria proposed, each group member fills a 

pairwise comparison matrix of the relative importance of these criteria 

and a belief level matrix to express their opinion about the current SA 

under the four assessment-criteria. Suppose Officer 1 fills the two 

matrices as in Fig. 15.4. In the criteria comparison matrix, the criterion 

‘The atypical presentations’ is thought as ‘more important’ than the 

criterion ‘The epidemic time;’ also the criterion ‘The number of infected 

patients’ is ‘less important’ than the criterion ‘The number of death,’ etc. 

Also in the preference belief level matrix, comparing with other 

alternatives under the criteria ‘The atypical presentations,’ the preference 

belief level of Risk level 1 for the current SA epidemic is regarded as 

‘very high,’ Risk level 2 as ‘high,’ Risk level 3 as ‘medium,’ etc. 

Obviously, group members’ preferences are fully expressed here. 
 

Step 6: Based on the normalised weights of all group members 

proposed in Step 4, and the criteria comparison matrices and the belief 

level matrices generated by all members in Step 5, all opinions of the 

members are aggregated. The final ranking result as shown in Fig. 15.5. 

 

Based on the result generated, the consensus SA in the team is that  

the current situation of SARS epidemic in that region is about on Risk 

level 2. 
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Fig. 15.4: Criteria comparison matrix and belief level matrix filled by Officer 1 

 
Fig. 15.5: The final result for the consensus SA in the research group 
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15.4   Summary 

Generally, SA is the continuous extraction, integration and use of 

environmental knowledge by a single person. When the concept of SA is 

extended to teams, the team SA will have the meaning of understanding 

of the activities of the others, which may affect the whole team’s goals 

and/or procedures. Various inconsistence and uncertainties are involved 

in situation information and its processing. When individual team 

members collaborate across distances, they have not only different 

knowledge and abilities, but also different physical environments. Each 

individual SA would be facilitated and supported by information 

technologies. The use of the Web-based FGDSS is an optional approach 

for this purpose. 
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Chapter 16 

Reverse Logistics Management  

Reverse logistics has gained increasing importance as a profitable and 

sustainable business strategy. As a reverse logistics chain has strong 

internal and external linkages, the management of a reverse logistics 

chain becomes an area of organisational competitive advantage, in 

particular, with the growth of e-business applications. To be effectively 

managed a reverse logistics chain always involves a decision 

optimisation issue in which uncertain information, individual situation, 

multiple criteria, and dynamic environment all need to be considered.  

In this chapter, we address the need of supporting reverse logistics 

managers in selecting an optimal alternative for goods return. After 

briefly introducing reverse logistics, we first analyse the main 

operational functions in a reverse logistics chain and the characteristics 

of decision making in selecting the best way to handle reverse logistics. 

We then establish a multi-stage multi-criteria decision support model for 

the reverse logistics management. Finally, we use the hybrid FMCDM 

method presented in Chapter 9 to illustrate how to support goods return 

decision making in the reverse logistics. 

16.1   Reverse Logistics Chain 

As companies are increasing their levels of outsourcing, buying goods or 

services, they are spending increasing amounts on supply related 

activities. Logistics, the key of supply chain management, has become a 

hot competitive advantage. 

There are two logistics channels in a supply chain system of a 

company. Forward logistics channel concerns the movement of goods 
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from source to the point of consumption. A backward movement can be 

happened to return goods to suppliers called reverse logistics. Forward 

logistics usually brings profit to all operational departments involved, 

while reverse logistics usually cannot. However, the high rate of goods 

return from online purchases, the increasing environmental regulations 

and standards, and the growing consumer awareness of recycling have 

brought a need to rethink the significance of reserve logistics. Some 

reports have shown that companies trying to hide from the significance 

of reverse logistics miss tremendous profit making opportunities. The 

reason is that companies can use reverse logistics as an opportunity for 

maintaining customer support, building good customer relationship, and 

reaching the ultimate business aspect of profitability. Moreover, many 

companies have discovered that effective management for a reverse 

logistics chain such as the reductions in inventory carrying costs, 

transportation costs, and waste disposal costs can be also substantial with 

the supply chain program. 

Products may become obsolete, damaged, or non-functioning and 

need to be returned to their source points for replacing, repairing, or 

disposition. This procedure forms a reverse logistics chain. The reverse 

logistics is therefore defined as the process of planning, implementing, 

and controlling flows of raw materials, in process inventory, and finished 

goods, from a manufacturing, distribution or use point to a point of 

recovery or point of proper disposal. 

A reverse logistics chain involves a series of stages, each concerns a 

kind of activities associated with the management of goods (can be 

products, materials or components) return, with different facilities. These 

stages/facilities are interrelated in a way that a decision made at previous 

stage affects the decision making in the following stages. In general, the 

stages of a reverse logistics chain typically include collection, combined 

testing/sorting/inspection/separation process, reprocessing/repairing or 

direct recovery, and redistribution/resale/reusing or disposal which can 

be also happened with other operational functions such as testing. As 

shown in Fig. 16.1, Supply, Manufacture, Distribution, and Consumer 

form a flow of forward logistics. A reverse logistics flow has a backward 

movement from Consume to Supply. The stage Collection refers to all 

activities rendering goods to be returned available and physically moving 



Reverse Logistics Management 325 

them to some point where a further treatment is taken care of stage. 

Testing (or inspection) determines whether collected goods are in fact 

reusable or how much work needs to be paid in order to make it usable. 

Sorting (or separation) decides what to do with each or a set of collected 

goods, including reprocessing and disposal. Thus, testing and sorting will 

result in splitting the flow of collected goods according to distinct 

treatment options. Reprocessing means the actual transformation  

of returned goods into usable products again. The transformation  

may take different forms including recycling, reconditioning, and 

remanufacturing. Disposal could be an option at this stage as well. 

Redistribution refers to directing reusable products to a potential reuse 

market and to physically moving them to future end customers. 

Therefore, the reverse logistics can simply be just reselling a product, or 

can be accompanies by a series of processes, as shown in Fig. 16.1, from 

collection to reuse or disposal.  

 

 
 
 
 
 
 
 
 
 
 
 

Fig. 16.1: Forward logistics chain and reverse logistics chain 

16.2   Characteristics of Decision Making in the Reverse Logistics 

There are several kinds of actors involved in reverse logistics activities  

in practice. They are independent intermediaries, specific recovery 

companies, reverse logistics service providers, municipalities taking care 

of waste collection, and public-private foundations created to take of 

  

Supply Manufacture Distribution Consumer 

Reuse market 

Redistribution Reprocessing 

 

Disposal 

Forward logistics Reverse logistics 

Sorting 

Testing 

Collection 
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goods recovery. The aims of different kinds of actors in a reverse 

logistics chain are different. For example, a manufacture may do 

recycling in order to prevent jobbers reselling its products at a lower 

price, while a collector may collect used products in order to establish a 

long-term customer relationship. These actors can also be logically 

differentiated into returners, receivers, collectors, processors, and sales 

persons based on the features of their roles in a reverse logistics chain. 

The most important type of actors is returner as any stage can be a 

returner, including customers, in the whole reverse logistics chain, hence 

suppliers, manufactures, wholesalers, and retailers. 

Returners always need to decide how to best move current returned 

goods, such as to return it to a factory for repairing or disposal it locally. 

Returners at different stages or at the same stage but with different goods 

returns may have different alternatives and different selection criteria to 

find the best way. For example, at the stage of collection, the decision is 

mainly about planning and scheduling of recovery operations, and the 

transportation and the warehousing of returns have to be dealt with.  At 

the stage of sorting, returners need to determine whether or not to do 

recovery and which type of recovery if do. The decisions for a goods 

return at a previous stage will become constraints given for and impact 

directly on the decision activities of its following stages. For example, 

when one product is identified to be not usable any other decisions on 

storage, treatment, transportation for reusing process are not considerable 

except transportation for disposing processed wastes. Therefore, every 

decision has to bear the impact on the decisions at its previous stages. 

The following characteristics have been seen through the above 

analysis:  

(1) Reverse logistics management involves decision making at 

multiple stages. All the stages involved in the chain are interrelated in a 

way that a decision made at one stage affects the performance of next 

stages. 

(2) Decisions made at different stages are based on different 

alternatives and selection criteria. For example, the alternatives to deal 

with a goods return in a collection stage are totally different from one in 

a redistribute stage. 
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(3) At each stage, returners’ business aspects, related alternatives, and 

evaluation criteria are dynamic changed. The change is caused by both 

the features of returned goods and the actions of previous functions of 

the reverse logistics chain. The analysis reminds a multi-stage multi-

criteria decision support model to help the selection of the best way to 

handle a goods return in a reverse logistics chain. 

(4) The importance degrees of these operational functions are 

different in a goods return. Some functions may play more important 

roles than others for a particular goods return. The degree of importance 

of each operational function is also variable for different goods returns. 

This variance is mainly dependent on the business aspect of the reverse 

logistics management. For example, if the company’s reverse logistics 

management is to provide customer services in warranties, then the 

function of collection may play a more important role in the reverse 

logistics than the reprocessing for the disassembly of products. If the 

business aspect is more environmentally related such as ‘reclaiming 

parts,’ the function of sorting may be more important. 

From Fig. 16.1, returners can be classified into four basic types: 

collector, tester/sorter, processor, and redistributor, as shown in Table 

16.1. The four types of returners are at four main functional stages of a 

reverse logistics chain respectively. For each type of returners, possible 

business aspects are shown in the column two of Table 16.1. Once a 

returner’s business aspects for a particular goods return are determined, a 

set of alternatives can be identified. For example, two business aspects of 

a collector are to maximise customer relationship and to minimise 

customer services cost. Related alternatives are thus recycling, 

reconditioning, and disposal as shown in the column three of Table 16.1.  
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Table 16.1: Example of relationships among returners’ types, business aspects, and 

alternatives in a reverse logistics chain 

Returner 

types 
Business aspects (F) Alternatives (A) 

Collector 

Maximising customer relationship 
Minimising customer service cost in 
warranties 

Replacement 
Local storage  
Customer post 

Tester/Sorter 

Minimising total operational cost 
Maximising customer relationship 
Maximising satisfying environmental 
regulation 

Recycling  
Remanufacturing  
Reuse  
Disposal 

Processor 

Minimising total operational cost 
Maximising customer services in 
warranties of repair 

Local remanufacturing  
Recycling  
Disposal 

Redistributor 

Maximising business profit 
Maximising reclaiming parts 
Minimising time 

Resale 
Disposal 
Storage 

To evaluate these alternatives, each business aspect can be extended 

to a number of criteria, which are strongly dependent on the 

corresponded business aspects. If necessary, each criterion can be further 

described by a number of items (sub-criteria). For example, when a 

company’s business aspect for a goods return is to minimise customer 

services, time is one criterion, and its related items include collect time, 

treatment time, and transportation time, which are the assessment items 

for the selection of a solution from related alternatives. Table 16.2 lists 

the possible business aspects (F), related selection criteria (C), and 

involved assessment items (I) as an example. 
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Table 16.2: Example of relationships among business aspects, selection criteria, and 

related items in a reverse logistics chain 

Business  

aspects (F) 

Selection 

criteria (C) 
Related items (sub-criteria) (I) 

Minimising 

total 

operational 

cost 

 

Cost 

Collection cost  
Storage cost 
Treatment cost 
Transportation cost for reusing processed wastes 
Transportation cost for disposing processed 
wastes Repair cost  

Minimising 

customer 

services in 

warranties 

Time 
Collecting time 
Treatment time 
Transportation time 

Maximising 

customer 

relationship 

Customer 
satisfaction 

Product life stages (Introduction, Growth, 
Maturity, and Decline) 
Time 
Usability 

Maximising 

business profit 
Benefit/cost 

Reusability 
Resale income 
Repair cost 
Transportation cost 
Redistribute cost 

16.3   A Multi-Stage Multi-Criteria Decision Support Model  

We propose a multi-stage multi-criteria decision support model for 

reverse logistics management as shown in Fig. 16.2. This model 

describes a whole decision-making process of a returner at any stage of a 

reverse logistics chain. In the model, when a returner’s type is known, its 

business aspects can be identified based on the relationships shown in 

Table 16.1. After business aspects are determined, the returner is allowed 

to indicate a weight for each aspect based on individual experience and 

knowledge. Related alternatives are then determined based on the 

relationships shown in Table 16.1 as well.  

As the alternatives of a goods return decision are totally related to its 

business aspects, when an aspect’s weight is very low, its related 

alternatives and selection criteria won’t be considered. To evaluate these 
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Get the type of a returner and the 

feature of a goods return 

Determine selection 
criteria and/or sub-

criteria 

Returner  Decision support system 

alternatives, a set of selection criteria is determined based on information 

shown in Table 16.2. The types of returners and their preferences for 

business aspects may result in different sets of alternatives. Obviously, 

this decision process involves multiple layers of relationships: from the 

type of a returner to determining its business aspects, then alternatives, 

and finally selection criteria (and/or sub-criteria).  

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 16.2: A multi-stage multi-criteria decision support model of reverse logistics 

management 

 

In practice, reverse logistics managers (returners) often imprecisely 

know the values of related constraints and evaluation criteria in selecting 

an optimal alternative. They often describe and measure the degree of 

weights and their preferences in linguistic terms, such as ‘important,’ 

‘high,’ or ‘low’ since a numerical evaluation is sometimes unacceptable. 

Each criterion may involve a number of related selection items (sub-

criteria), estimation of these items’ values is needed and these estimated 

values are often with imprecision. For example, when minimising the 

Determine business 

aspects 

Give weights to these          
aspects 

Find the best alternative to handle 

the goods return 

Determine related 

alternatives  

Give judgments to these       

criteria 

Give preferences to these      
alternatives 

Aggregate the weights, 
preferences and 

judgments 
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total operational cost is the business aspect of a goods return at an 

operational stage, five major time-related cost items may need to be 

estimated and measured: collection cost, storage cost, treatment cost, 

transportation cost for reusing processed wastes, and transportation cost 

for disposing processed wastes. All these estimations and measures often 

involve imprecise values. 

The uncertainty and imprecision features will affect on the processing 

of a decision evaluation. When several layers of a goods return decision 

evaluation are synthesised into an aggregated result, that is, the weights 

of business aspects will be combined with the preferences of related 

criteria to selection alternatives, the uncertainty and imprecision features 

will be integrated into the final outcome, an optimal plan, for the 

particular goods to be returned. 

Now we will apply the hybrid FMCDM method, presented in Section 

9.4, in this decision problem. The method has been implemented into a 

DSS called FMCDSS, which can effectively handle multi-stage, multi-

criteria decision making with uncertainty in the reverse logistics 

management. 

16.4   A Case Study 

A returner at the collection stage of a reverse logistics chain needs to 

make a decision for a particular goods return. The returner has currently 

two main business aspects to concern: 

( )21, FFF =  = {minimise service cost, 

 maximise customer relationship},  

and three alternatives  

( )321 ,, AAAA =  = {replacement, taking to local store for testing (test), 

asking customer to post it to the collector (post)}  

for the goods return. The first aspect can be evaluated by three criteria  

( )131211 ,, CCC  = {collection cost, storage/testing cost,  

new product cost},  

and the second one can be evaluated by two criteria  

( )2221,CC  = {time, convenience}.  
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The relationships among these business aspects, alternatives, and 

evaluation criteria are shown in Fig. 16.3. The aim of the decision is to 

get a solution from the alternatives that can maximally reach the goals of 

these business aspects will be selected. 
 

 
 
 
 
 
 
 
 
 

Fig. 16.3: An example of the interrelation among aspects, criteria, and alternatives 

The logistics manager (returner) needs to give his/her preference and 

evaluation for the three ways of goods return. 

Table 16.3: The relationships among the elements in logistics 

 A1 A2 A3 

C11 WC11 
1

11AC  2

11AC  3

11AC  

C12 WC12 
1

12AC  2

12AC  3

12AC  F1 WF1 

C13 WC13 
1

13AC  2

13AC  3

13AC  

C21 WC21 1

21AC  2

21AC  3

21AC  

F2 WF2 
C22 WC22 1

22AC  2

22AC  3

22AC  

In Table 16.3, 
iWF  and 

ijWC  provided by returners are the weights 

and can be linguistic terms, which are described by fuzzy numbers as 

shown in Table 16.4. The linguistic terms about k

ijAC  are the evaluation 

values described by fuzzy numbers, as shown in Tables 16.5. 

 

F1 F2 

C11 C22 C21 C13 C12 

A1 A2 A3 



Reverse Logistics Management 333 

Table 16.4: An example of linguistic terms for 
iWF  and 

ijWC  weights and related fuzzy 

numbers 

Linguistic terms Fuzzy numbers 

Absolutely unimportant ∪
]1,0[

]
10

1
,0[

∈

−

λ

λ
λ

 

Unimportant  ]
10

89
,

10
[

]1,0[

λλ
λ

λ

−

∈

∪
 

Less important ]
10

1625
,

10

18
[

]1,0[

λλ
λ

λ

−+

∈

∪
 

Important ]
10

2449
,

10

916
[

]1,0[

λλ
λ

λ

−+

∈

∪
 

More important ]
10

3281
,

10

2524
[

]1,0[

λλ
λ

λ

−+

∈

∪
 

Strongly important  ]
10

19100
,

10

4932
[

]1,0[

λλ
λ

λ

−+

∈

∪
 

Absolutely important ]1,
10

8119
[

]1,0[

∪
∈

+

λ

λ
λ  

Table 16.5: An example of linguistic terms for k

ijAC  and related fuzzy numbers 

Linguistic terms Fuzzy numbers 

Lowest ∪
]1,0[

]
10

1
,0[

∈

−

λ

λ
λ

 

Very low ]
10

89
,

10
[

]1,0[

λλ
λ

λ

−

∈

∪
 

Low  ]
10

1625
,

10

18
[

]1,0[

λλ
λ

λ

−+

∈

∪
 

Medium ]
10

2449
,

10

916
[

]1,0[

λλ
λ

λ

−+

∈

∪
 

High  ]
10

3281
,

10

2524
[

]1,0[

λλ
λ

λ

−+

∈

∪
 

Very high  ]
10

19100
,

10

4932
[

]1,0[

λλ
λ

λ

−+

∈

∪
 

Highest ]1,
10

8119
[

]1,0[

∪
∈

+

λ

λ
λ  

 

Based on the hybrid FMCDM method, the details of the proposed 

approach for the goods return case study are described as follows. 
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Step 1: A returner gives weights to two business aspects: 
1F  (service 

cost) and 
2F (customer relationship), weights of 

11C (collection cost), 

12C (storage, testing cost), and 
13C (new product cost) for 

1F , and 

weights of 
21C (time) , 

22C (convenience) for 
2F , respectively: 

),( 21 WFWFWF = = {Unimportant, Strongly important}  

),,( 1312111 WCWCWCWC = = {Unimportant, Unimportant, Strongly 

important} 

),( 22212 WCWCWC = = {Strongly important, Unimportant} 

 

Step 2: The two aspects and their criteria are checked and finalised 

through applying related rules presented in the hybrid FMCDM method. 

Fig. 16.4 displays the finalised weights of these business aspects and 

criteria in the FMCDSS. 

 
Fig. 16.4: Weights of the business aspects and criteria 

Step 3: The returner provides relevant degrees (evaluation value) of 

kA  on 
ijC  (k=1, 2, 3) (see Fig. 16.5). 

== },,{ 1
13

1
12

1
11

1
1 ACACACAC {High, Very low, Very high} 

== },{ 1
22

1
21

1
2 ACACAC  {Very low, Very high} 

== },,{ 2
13

2
12

2
11

2
1 ACACACAC { Very high, Very low, High} 

== },{ 2
22

2
21

2
2 ACACAC { Very low, Very high} 

== },,{ 3
13

3
12

3
11

3
1 ACACACAC { Very high, Very high, High} 

== },{ 3
22

3
21

3
2 ACACAC { Very low, Very high} 
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For example, the manager thinks ‘replacement (
1A )’ has a very high 

‘new product cost (
13C )’, therefore gives a value ‘very high’ on it. 

 

Fig. 16.5: Relevance degree of each criterion on each alternative 

Step 4: The weights proposed in Step 1 are normalised.  

Since ,6.113.03.0
3

1 01 =++=∑ =j

R

jWC  3.13.01
2

1 02 =+=∑ =j

R

jWC we have 

16

89
,

16
[

]1,0[

*

12

*

11

λλ
λ

λ

−
==

∈

∪WCWC

, 

]
16

19100
,

16

4932
[

]1,0[

*

13

λλ
λ

λ

−+
=

∈

∪WC

, 

]
13

89
,

13
[

]1,0[

*

21

λλ
λ

λ

−
=

∈

∪WC

, 

].
13

19100
,

13

4932
[

]1,0[

*

22

λλ
λ

λ

−+
=

∈

∪WC

 

 
Step 5: Calculating the relevance degree 

k

iFA of alternatives 
kA  on 

iF , i = 1, 2, and k = 1, 2, 3, we have 

( ) ( )( )
]

160

27109

160

328189
,

160160

2524
[

]1,0[

1
1

λλλλλλ
λ

λ

−
+

−−
+

+
=

∈

∪FA  

∑ =
×=×=

2

1

1

2

*

2

1

2

*

2

1

2 j jj ACWCACWCFA  

( ) ( )( )
]

130

19100892
,

130

49322
[

]1,0[

λλλλ
λ

λ

−−+
=

∈

∪
 

( ) ( )( )
,

160

25244932

160

4932

160

4932
[

]1,0[

2

1 ∪
∈

++
+

+
+

+
=

λ

λλλλλ
λFA
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( )( ) ( )( )
]

160

328119100

160

89

160

1910089 λλλλλ −−
+

−
+

−−

 
( ) ( )( )

]
130

19100892
,

130

49322
[

]1,0[

2

2

λλλλ
λ

λ

−−+
=

∈

∪FA   

( ) ( )( )
,

160

25244932

160

49322
[

]1,0[

3

1 ∪
∈

++
+

+
=

λ

λλλλ
λFA

 
( )( ) ( )( )

]
160

328119100

160

19100892 λλλλ −−
+

−−

 
( ) ( )( )

]
130

19100892
,

130

49322
[

]1,0[

3

2

λλλλ
λ

λ

−−+
=

∈

∪FA

 
 

Step 6: Normalising the relevance degree k

iFA  of the alternatives 
kA    

on 
iF ,  i = 1, 2, and k = 1, 2, 3. 

1

1FA
( ) ( )( )

]
3115.1160

27109

3115.1160

328189
,

3115.1160

4933

3115.1160

2524
[

]1,0[ ×

−
+

×

−−

×

+
+

×

+
=

∈

λλλλλλ
λ

λ
∪  

1

2FA
( ) ( )( )

]
3115.1130

19100892
,

3115.1130

49322
[

]1,0[ ×

−−

×

+
=

∈

λλλλ
λ

λ
∪

 
2

1FA
( ) ( )( )

,
2678.1160

25244932

2678.11602678.1160

4932
[

]1,0[

∪
∈ ×

++
+

×
+

×

+
=

λ

λλλλλ
λ  

( )( ) ( )( )
]

2678.1160

328119100

2678.1160

89

2678.1160

1910089

×

−−
+

×

−
+

×

−− λλλλλ

 
2

2FA
( ) ( )( )

]
2678.1130

19100892
,

2678.1130

49322
[

]1,0[ ×

−−

×

+
=

∈

λλλλ
λ

λ
∪   

3

1FA
( ) ( )( )

,
3990.1160

25244932

3990.1160

49322
[

]1,0[

∪
∈ ×

++
+

×

+
=

λ

λλλλ
λ

 
( )( ) ( )( )

]
3990.1160

328119100

3990.1160

19100892

×

−−
+

×

−− λλλλ

 
3

2FA
( ) ( )( )

]
3990.1130

19100892
,

3990.1130

49322
[

]1,0[ ×

−−

×

+
=

∈

λλλλ
λ

λ

∪      

 

Step 7: Calculating the relevance degree Sk of  the alternatives 
kA  on 

iF  by using ,
2

1∑ =
×=×=

i i

k

i

k

k WFFAWFFAS k = 1, 2, 3. 
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( ) ( )
,

3115.1130

49322

10

4932

3115.1160

4933
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Step 8: The results 3,2,1, =kS k
 are normalised to be positive fuzzy 

numbers, and their ranges belong to the closed interval [0, 1]. Both 

positive distance and negative distance are then calculated respectively 
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Step 9: After −
kk dd and*  of each alternative 

kA  (k = 1, 2, 3) are 

obtained, the closeness coefficient of each alternative is calculated as: 

( ) ( )( ) 23420.080143.0126982.0
2

1
)1(

2

1 *

111 =−+=−+= −
ddD  

( ) ( )( ) 23439.080233.0127111.0
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1
)1(

2

1 *

222 =−+=−+= −
ddD  

( ) ( )( ) 22306.081200.0125811.0
2

1
)1(

2

1 *

333 =−+=−+= −
ddD  

 

We have  

{ } 23439.0,,max 2321 == DDDD . 

As 
2D  has the highest closeness coefficient value (also see Fig. 16.6), 

the alternative 
2A , that is, ‘to take it to local storage for testing,’ is the 

best way for the returner. That is, this option maximally satisfies the 

business aspects for the particular goods return in the collection stage of 

reverse logistics chain. 
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Fig. 16.6: Most satisfactory solution for the returner   

16.5   Summary 

There is a growing interest in exploiting logistics decision models and 

developing DSS to enhance logistics management. The interrelated 

relationship and multi-actors feature in logistics chain management 

require capabilities of multi-stage multi-criteria decision support. In this 

chapter, we analysed the characteristics of a reverse logistics chain and 

built a set of corresponding relationships among goods returners, 

business aspects, alternatives, and selection criteria. By using the hybrid 

FMCDM method and the FMCDSS presented from Chapter 9 within the 

forward logistic channel, a solution that meets maximally the business 

aspects under the preference of the logistics manager was proposed to 

handle a goods return in reverse logistics. The proposed method has 

potential to deal with decision problems.  
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Appendix A 

User Manual on FMODSS 

1. Overview 

This user manual briefly describes how to use the Fuzzy Multi-Objective 

Decision Support System (FMODSS), which is included in the book’s 

companion CD. The system aims to help decision makers gather the knowledge 

about and obtain possible solutions for the fuzzy multi-objective linear 

programming (FMOLP) problem.   

 

The FMODSS includes three main components (see Fig. 1.1): 

(1)  Setting up an FMOLP problem (in the ‘File’ menu) 

(2)  Displaying the related information: FMOLP model (in the ‘Model’ menu) 

and the running result (in the ‘Result’ menu) 

(3)  Solving the FMOLP problem (in the ‘Run’ menu) 

 
Fig. 1.1: Main interface of the FMODSS 

In the ‘File’ menu, there are five sub-menu items:  

• New FMOLP model 

• Open FMOLP model 

• Save FMOLP model 

• Reset system 

• Exit 
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In the ‘Method’ menu, there are three sub-menu items: 

• Fuzzy Multiple Objective Linear Programming (FMOLP) 

• Fuzzy Multiple Objective Linear Goal Programming (MFOLGP) 

• Interactive Multiple Objective Linear Programming (IFMOLP) 

 

In the ‘Model’ menu, there is one sub-menu item: 

• FMOLP model 

 

In the ‘Result’ menu, there is one sub-menu item: 

• FMOLP result 

 

2. Setting Up an FMOLP Problem 

Suppose, we have a production-planning problem as follows: 

A company produces two products 
1P  and 

2P  utilising four different 

materials 
1M , 

2M , 
3M , and 

4M . To produce about 1 ton of 
1P  requires about 

1 ton of 
1M , about 5 tons of 

2M , about 4 tons of 
3M , and about 3 tons of 

4M ; 

while to produce about 1 ton of 
2P  requires about 4 tons of 

1M , about 3 tons of 

2M , about 3 tons of 
3M , and about 1 ton of 

4M , respectively. The total 

amounts of available materials are limited to about 21 tons, about 27 tons, about 

45 tons, and about 30 tons for 
1M , 

2M , 
3M , and 

4M , respectively. By 

previous experiences,  
1P  yields a profit of about 4 million dollars per ton, while  

2P  yields about 2 million dollars. 
1P  and 

2P  contribute about 2 and about 8 units 

to trading balance, respectively. The two objectives are to maximise the total 

profit and the trading balance at the same time. 

This problem can be modelled as the following FMOLP problem. 
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The user can set up a new model for this problem, by clicking the New 

FMOLP Model item in the File menu, then a window will be shown as Fig. 2.1.  

The following common data need to be input for the model in sequence. 
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(1) The numbers of decision variables, fuzzy objective functions, and fuzzy 

constraints, respectively (Fig. 2.1). 

 
Fig. 2.1: Define an FMOLP model  

(2) The names of decision variables (Fig. 2.2), fuzzy objective functions (Fig. 

2.3), and fuzzy constraints (Fig. 2.4), respectively.  

 
Fig. 2.2: Input the names of decision variables 

 
Fig. 2.3: Input the names of fuzzy objective functions 
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Fig. 2.4: Input the names of fuzzy constraints 

(3) The parameters of and the max/min for each fuzzy objective function (Fig. 

2.5). 

(4) The parameters and the relation sign of each fuzzy constraint (Fig. 2.5). 

 
Fig. 2.5: Input fuzzy objective functions and fuzzy constraints 

To input these parameters represented by fuzzy numbers includes two steps:  

Step 1: Input the fuzzy parameter’s value 

Double click on the corresponding grid, and then a textbox will appear for the 

input. For example, in Fig. 2.5, the value of the fuzzy parameter 2
~~

12 =C  is input 

as 2 in the corresponding textbox. If you do not want to use a particular form of 

membership function, do not go to Step 2. 

Step 2: Input the membership function of the fuzzy parameter 

Click on the ‘Membership’ button, a Dialog Box is shown as Fig. 2.6 for 

entering the membership function of the fuzzy parameter 
12

~
C . As in Fig. 2.6, the 

forms of both left and right functions of 
12

~
C  are chosen as quadratic, and four 

end-points of left and right functions are entered as 1, 2, 2, and 4, respectively.   
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Fig. 2.6: Input the membership function of a fuzzy number 

Click on the FMOLP Model item in the Model menu, the information about 

the FMOLP problem, will be shown as Fig. 2.7. The fuzzy parameters’ values 

and their membership functions can also be modified in this window. 

 
Fig. 2.7: Information about an FMOLP problem 

3. Solving the FMOLP Problem 

There are three FMOLP methods, FMOLP, FMOLGP, and IFMOLP, 

implemented in the system. You can use any of them to solve an FMOLP 

problem. 



Multi-Objective Group Decision Making 346 

3.1 By the FMOLP method 

Click on the FMOLP item in the Method menu or the FMOLP button in the 

Toolbar, a window is shown as Fig. 3.1, in which different weights for fuzzy 

objective functions can be entered, and the degree α of all membership functions 

of the fuzzy numbers can be set by the slider as well. 

Click on the Run button, a solution of the problem is shown in Fig. 3.1: the 

output of decision variables is: 2.4006 tons for ‘Production 1’ and 2.4391 tons 

for ‘Production 2.’ To display membership functions of the fuzzy objective 

functions ‘Profit’ and ‘Trading balance,’ click on the corresponding grids and 

the Membership button one by one, new windows will be shown as Fig. 3.2 

sequentially. The two figures in Fig. 3.2 show that the value of ‘Profit’ is around 

14.4808 and the ‘Trading balance’ is around 24.3142. 

  
Fig. 3.1: Solving an FMOLP problem by the FMOLP method 

   
Fig. 3.2: Membership functions of the fuzzy objective results 
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When the degree α of membership functions is changed to 0.2 shown in Fig. 

3.3, click on the Run button again, and then we have 2.4835 tons for ‘Production 

1’ and 2.5916 tons for ‘Production 2’. The membership functions of ‘Profit’ and 

‘Trading balance’ are, in Fig. 3.4, around 15.1171 and around 25.6996, 

respectively. 

  
Fig. 3.3: Changing the degree α to 0.2 (w1=w2=0.5) 

When the weights for ‘Profit’ and ‘Trading balance’ are changed to 0.8 and 

0.2, respectively, the output is: 2.5019 tons for ‘Production 1’ and 2.6263 tons 

for ‘Production 2’ (Fig. 3.5). The ‘Profit’ and ‘Trading balance’, in Fig. 3.6, are 

around 16.5361 and around 14.1339, respectively. 

 

     
Fig. 3.4: Membership functions of the fuzzy objective results (α=0.2, w1=w2=0.5) 
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Fig. 3.5: Changing the weight of fuzzy objective functions 

     
Fig. 3.6: Membership functions of the fuzzy objective results (α=0.2, w1=0.8, w2=0.2) 

3.2 By the FMOLGP method 

Click on the FMOLGP item in the Method menu or the FMOLGP button in the 

Toolbar, a window is shown in Fig. 3.7.  

The initial fuzzy goals for the fuzzy objective ‘Profit’ and ‘Trading balance’ 

should be entered. As the goals are represented by fuzzy numbers, the input of 

them needs the following two steps:  

Step 1: Input the fuzzy goal’s value 

Double click on the corresponding grid, and then a textbox will appear for 

the input. For example, in Fig. 3.7, the values of two fuzzy goals are 
~

10  and 
~

15 , 

you can therefore input 10 and 15 in the corresponding textbox. If you do not 

want to use a particular form of membership function, do not go to Step 2. 
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Step 2: Input the membership function of the fuzzy goal 

Click on the Membership button, a Dialog Box will be shown for entering 

the membership function of the fuzzy goal. For example, the two fuzzy goals’ 

membership functions are input as Fig. 3.8, one is around 10, and the other is 

around 15.   

  
Fig. 3.7: Setting fuzzy goals 

   
Fig. 3.8: The membership function of the fuzzy goals 

Click on the Run button, a solution is shown in Fig. 3.9: 2.15 tons for 

‘Production 1’ and 1.55 tons for ‘Production 2’. To display membership 

functions of ‘Profit’ and ‘Trading balance,’ click on the corresponding grids and 
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the Membership button, new windows will be displayed as Fig. 3.10, around 

11.7 for ‘Profit’ and around 16.7 for ‘Trading balance.’ 

  
Fig. 3.9: Solving an FMOLP problem by the FMOLGP method 

    
Fig. 3.10: Membership functions of the results for ‘Profit’ and ‘Trading balance’ 

3.3 By the Interactive FMOLP method 

Click on the IFMOLP item in the Method menu or the IFMOLP button in the 

Toolbar, a window is shown as Fig. 3.11. Suppose, the initial degree α is set to 

0.3. Click on the Initiate button, an initial solution is: 2.5309 tons for 

‘Production 1’ and 2.6814 tons for ‘Production 2’. The membership functions 

of ‘Profit’ and ‘Trading balance’ are shown in Fig. 3.12. 
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Fig. 3.11: Solving an FMOLP problem by the IFMOLP method 

     
Fig. 3.12: Membership functions of the fuzzy objective function in Trial 1 

Suppose, the user is not satisfied with the initial solution, he/she can assign 

new fuzzy goals for ‘Profit’ and ‘Trading balance,’ such as by decreasing the 

‘Profit’ result by 10% and increasing the ‘Trading balance’ by 10% as new 

fuzzy goals based on the initial solution. By clicking the corresponding grids in 

the row ‘By %’ in Fig. 3.13, the increasing and decreasing numbers (-10, and 10) 

are filled in the textboxes. Click on Continue button, the new solution to the 
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problem is generated. The output is: 1.9474 tons for ‘Production 1’ and 3.2522 

tons for ‘Production 2’. 

 

 

  
Fig. 3.13: Changing the fuzzy goals by percentage 

 

 

The user can also set new fuzzy goals by values, which is the same as what 

we describe in the beginning of this section. If we input two fuzzy goals as 15 

and 20, we will obtain a solution shown in Fig. 3.14.  
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Fig. 3.14: Input new fuzzy goals 
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Appendix B 

User Manual on FGDSS 

This user manual briefly describes how to use the main features of the Fuzzy 

Group Decision Support System (FGDSS), which is included in the book’s 

companion CD. The system aims to help decision makers manage their group 

decision making process through criteria generation, alternative evaluation, 

opinion interaction, and decision aggregation by using linguistic terms.  

 

The FGDSS includes three main components (see Fig. 1) 

(1) Generating a group and its problem (in the ‘File’ menu) 

(2) Displaying the group and the problem (in the ‘View’ menu) 

(3) Solving the group decision problem (in the ‘Run’ menu) 

 
Fig. 1: The main interface of the FGDSS 

In the ‘File’ menu, there are five menu items:  

• New group 

• Open group 

• Save group 

• Reset system 

• Exit 

 

In the ‘Run’ menu, there are four menu items: 
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• Step 1: Input individual criteria 

• Step 2: Choose assessment-criteria and weights 

• Step 3: Input individual preference 

• Step 4: Get solution 

 

In the ‘View’ menu, there are two menu items: 

• Group information (Info 1) 

• Alternatives information (Info 2) 

 

As this is an off-line version, when the system is used by a group of 

members, these members have to use the same computer and input their 

commands one by one.  

The working process with the FGDSS is as follows. 

(1) Setting up a decision-making group 

Through menu item ‘File’ -> ‘New group’ or clicking Button ‘New’ in the 

Toolbar, a window is shown Fig. 2 to input: 

• The title of the group 

• The issue description 

• The number of group members 

• The number of the alternatives 

 
Fig. 2: Set up a group 

Click Button ‘Next step’ (in Fig. 2) to the next window (Fig. 3) to input the 

names of the group members. 
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Fig. 3: Input the names of group members 

Also, Click Button ‘Next step’ (in Fig. 3) to the next window (Fig. 4) to input 

the details of the alternatives. 

 
Fig. 4: Input alternatives 

(2) Input criteria by all group members 

Click Button ‘Next step’ (in Fig. 4), a window is shown as Fig. 5 for starting 

the input of criteria. Note: At this stage, Button ‘Next step’ is false to enable. 

 

Fig. 5: Input criteria by all group members 

In Fig. 5, after having input ‘4’ for the number of the criteria, Peter clicks 

Button ‘Input criteria’ to the next window (Fig. 6) to input his four criteria. 

David then inputs his criteria, and so does Kim. 
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Fig. 6: Input individual criteria 

 

 

After all group members have input their criteria respectively, Button ‘Next 

step’ is changed to enable (Fig. 7). 

 

 

 
Fig. 7: The status after all group members have input their individual criteria 

 

 

(3) Choose the top-t criteria and assign weights 

Click Button ‘Next step’ (in Fig. 7), a window is shown as Fig. 8. In the 

window, each member is assigned with a weight that is described by a linguistic 

term from: ‘Normal,’ ‘Important,’ ‘More important,’ or ‘Most important.’ 

In Fig. 8, there are 10 individual criteria proposed in total. You can choose 

some or all of them, and here four of them are chosen as assessment-criteria for 

the further process. 
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Fig. 8: Choosing the top-t criteria and assigning weights 

(4) Fill the criteria comparison matrix and the belief level matrix 

Click Button ‘Next step’ (in Fig. 8), a window is shown as Fig. 9. 

Now, each group member needs to fill two matrixes: (1) a pairwise 

comparison matrix of the relative importance of these criteria, and (2) a belief 

level matrix to express the possibility of selecting a solution under some criteria. 

For the first matrix, obviously, only upper triangle part of the matrix needs to 

be filled as the matrix is a reciprocal one. The pairwise comparison of any two 

assessment-criteria is expressed by linguistic terms that represent various 

degrees of preferences required by decision makers. These possible linguistic 

terms can be chosen from: ‘Absolutely less important,’ ‘Much less important,’ 

‘Less important,’ ‘Equally important,’ ‘More important,’ ‘Much more 

important,’ ‘Absolutely more important,’ or ‘Cannot be determined yet.’ 

For the second matrix, against every selection criterion, a belief level is used 

to express the possibility of selecting a solution under a criterion. The belief 

level is also expressed by linguistic terms, which can be chosen from: ‘Lowest,’ 

‘Very low,’ ‘Low,’ ‘Medium,’ ‘High,’ ‘Very high,’ ‘Highest,’ or ‘Cannot be 

determined yet.’ 

After having finished filling the two matrixes, each member must click 

Button ‘Confirm’. After all group members have confirmed their choices, 

Button ‘Next step’ is changed to enable for proceeding.  



Multi-Objective Group Decision Making 360 

 

Fig. 9: Filling the criteria comparison matrix and the belief level matrix 

(5) Generate the final result of the group-decision making problem 

Click Button ‘Next step’ (in Fig. 9), a window is shown as Fig. 10. 

In the top frame, the closeness coefficients of all alternative are displayed, 
which are used for ranking the alternatives. In Fig. 10, the second alternative ‘E-
govt’ is with the maximum closeness coefficient (0.5172), and is chosen as the 
recommended solution to the group decision-making problem. 

 

Fig. 10: Showing the result
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Abbreviation 

AHP: Analytic Hierarchy Process 

AI: Artificial Intelligence  

ASM: Average Solution Method 

ASP: Application Service Providers  

CMOLP: Constrained Multi-Objective Linear Programming 
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DINAS: Dynamic Interactive Network Analysis Systems 
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FGDSS: Fuzzy Group Decision Support Systems 

FGP: Fuzzy Goal Programming  

FMCDM: Fuzzy Multi-Criteria Decision Making 

FMCDSS: Fuzzy Multi-Criteria Decision Support Systems 

FMCGDM: Fuzzy Multi-Criteria Group Decision Making 

FMCGDSS: Fuzzy Multi-Criteria Group Decision Support Systems 

FMODM: Fuzzy Multi-Objective Decision Making 

FMODSS: Fuzzy Multi-Objective Decision Support Systems  

FMOGDM: Fuzzy Multi-Objective Group Decision Making 

FMOGDSS: Fuzzy Multi-Objective Group Decision Support Systems 

FMOLGP: Fuzzy Multi-Objective Linear Goal Programming 

FMOLP: Fuzzy Multi-Objective Linear Programming 

GA: Genetic Algorithms  

GDM: Group Decision Making  

GDSS: Group Decision Support Systems 

GP: Goal Programming 
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GSS: Group Support Systems 

GUI: Graphical User Interface 

IFMOLP: Interactive Fuzzy Multi-Objective Linear Programming 

IMOGDSS: Intelligent Multi-Objective Group Decision Support Systems 

IMOLP: Interactive Multi-Objective Linear Program 

ISGP: Interactive Sequential Goal Programming  

ISM: Ideal Solution Method 

KBS/ES: Knowledge-Based Systems/ Expert Systems 

LGP: Linear Goal Programming 

LP: Linear Programming 

MADM: Multi-Attribute Decision Making 

MADSS: Multi-Attributes Decision Support Systems 

MAGDM: Multi-Attribute Group Decision Making 

MCDM: Multi-Criteria Decision Making 

MCDSS: Multi-Criteria Decision Support Systems 

MODM: Multi-Objective Decision Making  

MODSS: Multi-Objective Decision Support Systems 

MOGDM: Multi-Objective Group Decision Making 

MOGDSS: Multi-Objective Group Decision Support Systems 

MOLP: Multi-Objective Linear Programming  

OLAP: Online Analytical Processing 

SA: Situation Awareness 

SAM: Solution Analysis Method 

TOPSIS: Technique for Order Preference by Similarity to Ideal Solution  

VIG: Visual Interactive Goal Programming 

WFGDSS: Web-Based Fuzzy Group Decision Support Systems 

WIPM: Weighting Ideal Point Method 

WMLP: Weighted Maximum Linear Programming 

WMM: Weighting Member Method 

WOM: Weighting Objective Method 
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