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Since Zadeh’s Fuzzy Sets Theory was formulated, a lot of efforts have been
devoted to extend databases with mechanisms to represent and handle infor-
mation in a flexible way. The proposals appearing in the literature to deal with
this aim are mainly supported in the possibilistic models, similarity relationship
models, or the combination of both perspectives. This fact, together with the
variety of database models susceptible of extension (i.e., relational model,
object oriented models, logic model, object-relational model, etc.), has given
rise to many approaches of fuzzy database models.
The materialization of these models in Fuzzy DBMS has not been so fructuous,
and the development of applications supported by these systems is in an ex-
ploratory stage.
The implementation of Fuzzy DBMS will be determined by the development
of applications that take advantage of the capabilities of these ones to operate
with flexible information when solving real-life problems. In this sense, differ-
ent areas of application have appeared, and in this book, some examples are
collected, such as data mining, information retrieval, content-based image re-
trieval, and classical applications in the management field, improved with the
possibility of manipulating flexible information (see, for example, http://
idbis.ugr.es/immosoftweb for an online real-estate portal based on flexible
search. It is built on the FSQL server developed by José Galindo and other
members of the IDBIS group).
One issue that, from my point of view, has not been paid enough attention
from the scientific community has been the extension of the conceptual models
for the design of databases to the ambit of the representation of incomplete



information. In this sense, this book put together the most important propos-
als present in the literature. This study is completed with a deep analysis of the
features of modeling susceptible of fuzzy treatment to present, next, a fuzzy
extension of the EER model, which gives a notation for each of these features.
The fuzzy concepts identified in the ambit of modeling require, in a similar way
as in the classical case, a DBMS that permits the representation and handling
of this type of information. The authors have incorporated these new charac-
teristics to previous models and prototypes of fuzzy databases. The new model,
the new data structures, and the new capabilities of handling have given as a
result FIRST-2 and a new extension of FSQL (Fuzzy SQL), both of them
thoroughly described in this book. The creation of an algorithm that permits
the translation of the conceptual definition in terms of FuzzyEER into FSQL
sentences completes an important cycle in relation to the conceptual design
oriented to fuzzy databases.
Though the central argument of the book is the description of a notation for
the conceptual design in an imprecise environment, this volume collects and
proposes many worthy resources in the area of fuzzy databases, which makes
it an important reference for those people interested in this field in general.

Dr. Juan Miguel Medina
Senior Researcher
Member of the IDBIS Group
Granada, Spain, January 2005
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In 1965 at the University of California, Berkeley, also called the “Athens of
the Pacific,” Lotfi A. Zadeh1 introduced the theory of fuzzy sets and fuzzy
logic, two concepts that laid the foundation of possibility theory in 1977. These
terms were coined by him to deal with the phenomenon of vagueness, in the
cognition process of the human being. According to Zadeh, “the theory of
fuzzy sets is a step toward a rapprochement between the precision of classical
mathematics and the pervasive imprecision of the real world… a rapproche-
ment born of the incessant human quest for a better understanding of mental
processes and cognition2.”
Since then, an enormous quantity of congresses and publications around the
world has intended to explore and develop this basic idea of vagueness and
its industrial application. Zadeh also said: “at present, we are unable to design
machines that can compete with humans in the performance of such tasks as
recognition of speech, translation of languages, comprehension of meaning,
abstraction and generalization, decision-making under uncertainty and, above
all, summarization of information.”
When we look at the growth of the Japanese industry in the 1980s we can
understand the relevant impact of “fuzzy technologies” in the modeling and
design of new products3.
In these aspects, the gap between the industrial domain and the research do-
main can be seen in books, journals, articles, cases studies, proceedings, and
so forth. In fact, these are the greatest tools to put the theoretical knowledge
in action (i.e., in Idea Group Publishing you can find the latest advance in the
research of information science, technology, and management). But it is diffi-



cult to find a pedagogical book to help the learning process of the students in
computer science in the area of fuzzy databases.
I am glad to tell you that the book you have in yours hands has the courage to
attack the problem of fuzzy databases, with a clear and direct approach guid-
ing the reader step-by-step through the understanding process. Indeed this
book has the ability to help you in the modeling, design, and implementation
processes of fuzzy databases. This book gives you a first glance at a systematic
exposition of the three issues (modeling, design, and implementation). Perhaps
the only regret I have in this book is the use of Oracle platform, which, in my
view, has the influence of the industrial software of the 1990s. However, the
definitions, ideas, and new approaches are platform independent.
Before I say something about the features of the book, I would like to explain
some historical aspects that I find interesting to being taken into account by
readers. First, in Europe there are two cities well known by the implication of
the database in the Zadeh legacy: Toulouse and Granada.
In 1985 Didier Dubois4 and Henry Prade5 published Théorie des Possibilités
— Applications à la représentation des connaissances en informatique,
which was translated into English three years later as Possibility Theory: An
Approach to Computerized Processing of Uncertainty. In Chapter VI of
this book the authors introduce the use of the possibility distribution to repre-
sent incomplete and uncertain dates in a relational database. This chapter was
the result of a PhD thesis written in Toulouse by Claude Testemale6 and co-
directed by Prade. In this work you can see the original code in MACLISP
for fuzzy query processing.
Some years later, in Granada, the book of Dubois and Prade, in particular
Chapter VI, had a great impact on the PhD thesis of Juan Miguel Medina7. In
that work Medina summarized the main fuzzy database models in three fami-
lies (Chapter III): The fuzzy relational model (with a fuzzy degree in each row
or tuple), the model based in similarity relations by Buckles and Petry, and the
relational models with possibility distributions by Umano, Fukami, Prade,
Testemale, Zemankova, Kaendel and other authors. Medina’s PhD thesis also
embraced the generalizations of fuzzy models. Medina proposed a conceptual
framework for fuzzy representation called GEFRED (Generalized Model for
Fuzzy Relational Databases) and a language called FSQL (Fuzzy SQL). In
the same research group a young mathematician and informatic José Galindo8

started his PhD research under the supervision of Medina, in order to improve
the relational algebra of the GEFRED model, to define a fuzzy relational cal-
culus and to implement other fuzzy comparators. In fact, the possibility and
necessity measures, shown by Dubois and Prade, do not only allow the con-
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struction of two fuzzy comparators, but 14 of them. The implementation of a
new FSQL server running in Oracle and a new GUI interface of the FSQL
language was included too.
In these two theses, part of the job was concluded; that is, the physical and
logical approaches for development of fuzzy databases. Nevertheless, the
conceptual design of fuzzy entities and relations was still missing.
This last step was achieved in 2003 by Angelica Urrutia9, in her PhD research
under the supervision of José Galindo and Mario Piattini. In this work, you
find a conceptual fuzzy model, so-called FuzzyEER, and a case tool
(FuzzyCASE), to help the database engineers to build the conceptual model
for fuzzy databases.
Herein lie the roots of this book, the logical fuzzy models of Medina (1994)
and Galindo (1999) on one hand, and, on the other hand, the conceptual fuzzy
model of Urrutia (2003).
Personally, I find the name of the book Fuzzy Databases: Modeling, Design
and Implementation quite right because the work of Galindo, Urrutia, and
Piattini is a highly important contribution to understanding the fuzzy database
process, not only by professionals of software engineering, but also by com-
puter science students. I hope this book has a real influence in the orientation
of the databases courses.
Chapter I, dedicated exclusively to the fuzzy logic, should be appreciated.
This chapter could be very useful to new students in this area.
Chapter II brings up to date the classification of fuzzy database models, in-
cluding some ideas about fuzzy object-oriented database models centered in
the relational model, even though these ideas are not used in this book. In
spite of this, the contributions of this book will turn out to be very useful for
the definition of a complete fuzzy object-oriented database model.
Chapter III is focused on fuzzy database modeling, showing some of the more
important approaches by other authors. This chapter is important in order to
understanding the importance of the FuzzyEER model defined in Chapter IV,
an extension of an EER model to create a model with fuzzy semantics and
notations. Although the model has numerous characteristics, the main compo-
nents of this data modeling tool are: imprecise attributes; fuzzy attributes associ-
ated to one or more attributes or with an independent meaning; degrees of fuzzy
membership to the model itself, such as fuzzy aggregation, fuzzy entity, weak
fuzzy entity, fuzzy relationship; and defined specialization with fuzzy degrees.
Chapter V describes how to represent fuzzy knowledge in relational data-
bases. This methodology is debatable. Nevertheless, as the authors said, it is

xiii



complete enough for the immense majority of the applications. On the other
hand, the possible lacks in that methodology may be easily solved in each spe-
cific application. Chapter VI gives the steps of an algorithm for mapping FuzzyEER
models to that methodology. This algorithm relates Chapter IV and V.
Chapter VII describes the more important statements of the FSQL language.
This definition improves upon the previous version of this language in many
aspects. The educational experience of the authors is noted also in this chap-
ter, which includes a multitude of examples that permits understanding of the
utility of each definition.
With all the tools defined in previous chapters, Chapter VIII studies some
applications of fuzzy databases. These applications show that fuzzy databases
are useful in areas other than management applications (storing and querying
information). Of course, FSQL may be used for fuzzy querying, but it can also
be used for fuzzy clustering and fuzzy classification, for defining fuzzy depen-
dencies, and for the fuzzy characterization of images in a system of fuzzy im-
age retrieval. The last chapter, the appendices, and references close the book,
giving additional information. The open research lines are especially interest-
ing, because they prove that this matter is not closed.
Finally, I borrow the words said by Zadeh in May of 1972, in his Preface of
Kaufmann’s book, “Professor Kaufmann’s treatise is clearly a very important
accomplishment. It may a well exert a significant influence on scientific think-
ing in the years ahead and stimulate much further research on the theory of
fuzzy sets and their applications in various field of science and engineering.”
Well, I think these words match the aim of this book too.

Endnotes

1  See http://www.cs.berkeley.edu/~zadeh
2 This proposal was mentioned by Zadeh, in the he wrote for the preface of

the book written by A. Kaufmann in 1977, Introduction à la théorie des
sous-ensembles flous à l’usage des ingénieurs.

3 The reader can find some ideas related to fuzzy control of engineering
systems in the book by Kazuo Tanaka in 1996, An Introduction to Fuzzy
Logic for Practical Applications.
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dissertation. Paul Sabatier University, Toulouse, France.

6 Testemale, C. (1984). Un système de traitement d’informations
incomplètes ou incertaines dans une base de données relationnelles.
Doctoral dissertation. Paul Sabatier University, Toulouse, France.

7 Medina, J.M. (1994). Bases de Datos Relacionales Difusas: Modelo
teórico y aspecto de su implementación. Doctoral dissertation. Univer-
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Mancha, Spain.

10 On February 22, 2005, Dr. Jiménez was awarded with the Trophy Fernand
Gallais, who grants the Ecole Nationale Supérieure des Ingénieurs in
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Chapter I

Introduction to
Fuzzy Logic

This book mixes concepts of different areas of knowledge or technologies,
such as databases, system architecture design, SQL language, programming
concepts and logic, mathematics, and so forth. These concepts are introduced
where they correspond, although we have not intended this book to be an
introduction to databases or information systems. An important part of this
book utilizes the fuzzy logic. For that reason we will begin by introducing some
basic concepts of the theory of fuzzy sets as well as the notation used in this
book. In this summary we will focus on the semantic aspects and those of
representation associated with this important theoretical tool. In written sources
we can find a large number of papers dealing with this theory, which was first
introduced by L.A. Zadeh1 in 1965 (Zadeh, 1965). A compilation of some of
the most interesting articles published by Zadeh on the theme can be found in
Yager et al. (1987). Dubois and Prade (1980, 1988) and Zimmerman (1991)
bring together the most important aspects behind the theory of fuzzy sets and
the theory of possibility.
A more modern synthesis of fuzzy sets and their applications can be found in
Kruse, Gebhardt, and Klawonn (1994), Mohammad, Vadiee, and Ross (1993),
Piegat (2001), and particularly in Pedrycz and Gomide (1998). A complete
introduction in Spanish is given in Galindo (2001) and Escobar (2003).
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Fuzzy Sets

The original interpretation of fuzzy sets arises from a generalization of the classic
concept of a subset extended to embrace the description of “vague” and
“imprecise” notions. This generalization is made in the following way:

1. The membership of an element to a set becomes a “fuzzy” or “vague”
concept. In the case of some elements, the issue of whether they belong
to a set may not be clear.

2. The membership of an element may be measured by a degree, commonly
known as the “membership degree” of that element to the set, and it takes
a value in the interval [0,1] by agreement.

Using classic logic, it is possible to deal only with information that is totally true
or totally false; it is not possible to handle information inherent to a problem that
is imprecise or incomplete, but this type of information contains data, which
would allow a better solution to the problem. In classic logic the membership
of an element to a set is represented by 0 if it does not belong and 1 if it does,
having the set {0,1}. On the other hand, in fuzzy logic this set extends to the
interval [0,1]. Therefore, it could be said that fuzzy logic is an extension of the
classic systems (Zadeh, 1992). Fuzzy logic is the logic behind approximate
reasoning instead of exact reasoning. Its importance lies in the fact that many
types of human reasoning, particularly the reasoning based on common sense,
are by nature approximate.
Note the great potential that the use of membership degrees represents by
allowing something qualitative (fuzzy) to be expressed quantitatively by
means of the membership degree. A fuzzy set can be defined more formally
as follows:

Definition 1.1: A fuzzy set A over a universe of discourse X (a finite or
infinite interval within which the fuzzy set can take a value) is a set of pairs

A = {µA(x) / x : x ∈ X, µA(x) ∈ [0,1] ∈ ℜ} (1.1)
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where µA(x) is called the membership degree of the element x to the fuzzy
set A. This degree ranges between the extremes 0 and 1 of the dominion
of the real numbers:

• µA(x) = 0 indicates that x in no way belongs to the fuzzy set A.
• µA(x) = 1 indicates that x completely belongs to the fuzzy set A.

Sometimes, instead of giving an exhaustive list of all the pairs that make
up the set (discreet values), a definition is given for the function µA(x),
referring to it as characteristic function or membership function.

*

The universe X may be called underlying universe and, in a more generic way,
a fuzzy set A can be considered as a function µA that matches each element of
the universe of discourse X with its membership degree to the set A:

µA(x): X → [0,1] (1.2)

If the membership function produces only values of the set {0,1}, then the set
that it generates is not fuzzy, but “crisp” (specific, exact, or precise).
As mentioned previously, the universe of discourse X or the set of values being
considered can be of two types:

• Finite or discreet universe of discourse X = {x1, x2,..., xn}, where a fuzzy
set A can be represented by:

A = µ1 / x1 + µ2 / x2 + ... + µn / xn (1.3)

where µi with i = 1, 2,..., n represents the membership degree of the element
xi. Normally the elements with a zero degree are not listed. Here, the + does
not have the same significance as in an arithmetical sum but rather has the
meaning of aggregation, and the / does not signify division but rather the
association of both values.
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• Infinite universe of discourse, where a fuzzy set A over X can be
represented by:

A = ∫ µA(x) / x (1.4)

A linguistic label is the word, in natural language, that expresses or identifies
a fuzzy set that may or may not be formally defined. Thus, the membership
function µA(x) of a fuzzy set A expresses the degree in which x verifies the
category specified by A.
With this definition, we can assure that in our everyday life we use several
linguistic labels for expressing abstract concepts such as young, old, cold, hot,
cheap, expensive, and so forth.
The intuitive definition of these labels not only varies from one person to another
and depends on the moment, but also it varies with the context in which it is
applied. For example, a “high” person and a “high” building do not measure the
same.

Example 1.1: If we express the qualitative concept “young” by means of a fuzzy
set, where the x-axis represents the universe of discourse “age” (in natural
whole numbers) and the y-axis represents the membership degrees in the
interval [0,1], then, following Equation 1.3, the fuzzy set that represents that
concept could be expressed in the following way (considering a discreet
universe):

Young = 1/0 + ... + 1/25 + 0.9/26 + 0.8/27 + 0.7/28 + 0.6/29 + 0.5/30 + ... + 0.1/34

The “age” (in whole years) would be the universe of discourse of “young.” The
linguistic label “young” would identify this fuzzy set represented by a member-
ship function if we consider a nondiscrete universe of discourse, of others such
as “adult,” “old,” and so forth in this way according to Figure 1.1.

*

This logic is a multivalued logic, whose main characteristics are as follows
(Zadeh, 1992):
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• In fuzzy logic, exact reasoning is considered as a specific case of
approximate reasoning.

• Any logical system can be converted into terms of fuzzy logic.
• In fuzzy logic, knowledge is interpreted as a set of flexible or fuzzy

restrictions over a set of variables.
• Inference is considered as a process of propagation of those restrictions.

It is understood to be the process by which a result is reached, conse-
quences are obtained, or one thing is deduced from another.

• In fuzzy logic, all problems are problems of degree.

From this simple concept, a complete mathematical and computing theory has
been developed that facilitates the solution of certain problems (Pedrycz &
Gomide, 1998). Fuzzy logic has been applied to a multitude of objectives, such
as control systems, modeling, simulation, pattern recognition, information or
knowledge systems (including databases, knowledge management systems,
case-based reasoning systems, expert systems, etc.), computer vision, artificial
intelligence, artificial life, and so forth.

Types of Membership Functions

Depending on the type of membership function, different types of fuzzy sets will
be obtained. Zadeh proposed a series of membership functions that could be
classified into two groups: those made up of straight lines being “linear” ones,
and to the contrary the Gaussian forms, or “curved” ones.

Figure 1.1. Three linguistic labels of Example 1.1
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We will now go on to look at some types of membership functions. These types
of fuzzy sets are those known as convex fuzzy sets in fuzzy set theory, with the
exception of what is known as extended trapezium, which does not necessarily
have to be convex, although for semantic reasons this property is always
desirable.

1. Triangular (Figure 1.2): Defined by its lower limit a, its upper limit b, and
the modal value m, so that a < m < b. We call the value b-m margin when
it is equal to the value m – a.
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2. Singleton (Figure 1.3): It takes the value 0 in all the universe of discourse
except in the point m, where it takes the value 1. It is the representation
of a crisp value.
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Figure 1.2. Triangular fuzzy sets: a) general and b) symmetrical.
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Figure 1.2: Triangular Fuzzy Sets: 
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3. L Function (Figure 1.4): This function is defined by two parameters a
and b, in the following way:
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4. Gamma Function (Figure 1.5): It is defined by its lower limit a and the
value k > 0. Two definitions:
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• This function is characterized by rapid growth starting from a.
• The greater the value of k, the greater the rate of growth.
• The rate of growth is greater in the first definition than in the second.
• Horizontal asymptote in 1.
• The gamma function is also expressed in a linear way (Figure 1.5 b):
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Figure 1.4: L Fuzzy Set. 

Figure 1.3. Singleton fuzzy set (left) and Figure 1.4. L fuzzy set (right)
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5. Trapezoid Function (Figure 1.6): Defined by its lower limit a and its
upper limit d, and the lower and upper limits of its nucleus, b and c
respectively.
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6. S Function (Figure 1.7): Defined by its lower limit a, its upper limit b, and
the value m or point of inflection so that a <m <b. A typical value is m =
(a + b) / 2. Growth is slower when the distance a – b increases.
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Figure 1.5. Gamma fuzzy sets: a) general and b) linear
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7. Gaussian Function (Figure 1.8): This is the typical Gauss bell, defined
by its midvalue m and the value of k > 0. The greater k is, the narrower
the bell.

G(x) = e–k(x–m)2 (1.13)

8. Pseudo-Exponential Function (Figure 1.9): Defined by its midvalue m
and the value k > 1. As the value of k increases, the rate of growth
increases, and the bell becomes narrower.
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9. Extended Trapezoid Function (Figure 1.10): Defined by the four
values of a trapezoid (a, b, c, d) and a list of points between a and b and/
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gure 1.6: Trapezoidal Fuzzy Set. 
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Figure 1.7: S Fuzzy Set. 

Figure 1.6. Trapezoidal fuzzy set (left) and Figure 1.7. S fuzzy set (right)
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Figure 1.8. Gaussian fuzzy set (left) and Figure 1.9. Pseudo-exponential
fuzzy set (right)
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or between c and d, with its membership value (height) associated to each
of these points. (ei, hei).

Comments:

• In general, the trapezoid function adapts quite well to the definition of any
concept, with the advantage that it is easy to define, easy to represent, and
simple to calculate.

• In specific cases, the extended trapezoid is very useful. This allows
greater expressiveness through increased complexity.

• In general, the use of a more complex function does not give increased
precision, as we must keep in mind that we are defining a fuzzy concept.

• Concepts that require a nonconvex function can be defined. In general,
a nonconvex function expresses the union of two or more concepts
whose representation is convex.

In fuzzy control, for example, the aim is to express the notions of increase,
decrease, and approximation, and in order to do so, the types of membership
functions previously mentioned are used. The membership functions Gamma
and S would be used to represent linguistic labels such as “tall” or “hot” in the
dominion of height and temperature. Linguistic labels such as “small” and “cold”
would be expressed by means of the L function. On the other hand, approxi-
mate notions are sometimes difficult to express with one word. In the dominion
of temperature, the label would have to be “comfortable,” which would be
expressed by means of the triangle, trapezoid, or the Gaussian function.

Figure 1.10. Extended trapezoidal fuzzy set
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Figure 1.10: Extended Trapezoidal Fuzzy Set. 
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Membership Function Determination

If the system uses badly defined membership functions it will not work well;
therefore, these functions must be carefully defined. The membership func-
tions can be calculated in several ways. Which method is chosen will depend
on the application in question, the manner in which the uncertainty is to be
represented, and how this is to be measured during the experiments. The
following points give a brief summary of some of these methods (Pedrycz &
Gomide, 1998).

1. Horizontal Method: It is based on the answers of a group of N “experts”
• The question takes the following form: “Can x be considered compat-

ible with the concept A?”
• Only “Yes” and “No” answers are acceptable, so

A(x) = (Affirmative Answers) / N

2. Vertical Method: The aim is to build several α-cuts (Definition 1.5), for
which several values are selected for α.
• Now the question that is formulated for these predetermined α values

is as follows: “Can the elements of X that belong to A to a degree that
is not inferior to α be identified?”

• From these α-cuts, the fuzzy set A can be identified, using the so-
called Identity Principle or Representation Theorem (Definition 1.6).

3. Pair Comparison Method (Saaty, 1980): Supposing that we already
have the fuzzy set A, over the universe of discourse X of n values (x1, x2,
..., xn) we could calculate the Reciprocal Matrix M = [ahi], a square matrix
n×n with the following format:
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• This matrix has the following properties:
� The principal diagonal is always 1.
� Property of Reciprocity: (ahi, aih)=1.
� Transitive Property: (ahi, aik) = ahk a.

• If what we wish to calculate is the fuzzy set A, the process is reversed:
� The matrix M is calculated.
� A is calculated from M.

• In order to calculate M, the level of priority or the highest membership
degree of a pair of values is numerically quantified: xi with respect to xj.
� The number of comparisons: n (n-1) / 2.
� Transitivity is difficult to achieve (the eigenvalue of the matrix is used

to measure the consistency of the data, so that if it is very low, the
experiments should be repeated).

4. Method Based on Problem Specification: This method requires a
numerical function that should be approximate. The error is defined as a
fuzzy set that measures the quality of the approximation.

5. Method Based on the Optimization of Parameters: The shape of a
fuzzy set A depends on some parameters, indicated by the vector p, which
is represented by A(x; p).
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� Some experimental results in the form of pairs are needed (element,
membership degree) (Ek, Gk) with k = 1, 2...., N.

� The problem consists of optimizing the vector p, for example,
minimizing the cuadratic error:

[ ]∑
=

−
N

k
KKp pEAG

1

2);(min

6. Method Based on Fuzzy Clustering: This method is based on clustering
the objects of the universe in overlapping groups whose levels of member-
ship to each group are considered as fuzzy degrees. There are several
Fuzzy Clustering algorithms, but the most widely used is the algorithm of
“fuzzy isodata” (Bezdek, 1981).

Concepts About Fuzzy Sets

A series of concepts regarding fuzzy sets is defined, which allow us to deal with
and compare fuzzy sets. In this section, the most important concepts about
fuzzy sets are defined.

Definition 1.2: Let A and B be two fuzzy sets over X. Then A is equal to
B if

A = B ⇔ ∀ x ∈ X, µA(x) = µB(x) (1.15)
*

Definition 1.3: Taking two fuzzy sets A and B over X, A is said to be
included in B if

A ⊆ B ⇔ ∀ x ∈ X, µA(x) ≤ µB(x) (1.16)
*
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Definition 1.4: The support of a fuzzy set A defined over X is a subset of
that universe that complies with:

Supp(A) = {x ∈ X, µA(x) > 0} (1.17)
*

Definition 1.5: The ααααα-cut of a fuzzy set A, denoted by Aα (Figure 1.11) is
a classic subset of elements in X, whose membership function takes a
greater or equal value to any specific α value of that universe of discourse
that complies with:

Aα = {x:x ∈ X, µA(x) ≥ α, α ∈ [0,1]} (1.18)
*

Definition 1.6: The Representation Theorem states that any fuzzy set A
can be obtained from the union of its α-cuts.

[ ]
�

1,0�

��

∈

= AA (1.19)

*

Definition 1.7: By using the Representation Theorem, the concept of
convex fuzzy set (Figure 1.12) can be established as that in which all the
α-cuts are convex:

Figure 1.11. α-cut in a trapezium
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∀x, y ∈ X, ∀ λ ∈ [0,1]: µA(λ ⋅ x + (1 – λ) ⋅ y) ≥ min(µA(x), µA(y))
(1.20)

*

This definition means that any point situated between two other points will have
a higher membership degree than the minimum of these two points.

Definition 1.8: A concave fuzzy set (Figure 1.12) complies with:

∀x, y ∈ X, ∀ λ ∈ [0,1]: µA(λ ⋅ x + (1 – λ) ⋅ y) ≤ min(µA(x), µA(y))
(1.21)

*

Definition 1.9: The kernel of a fuzzy set A, defined over X, is a subset of
that universe that complies with:

Kern(A) = {x ∈ X, µA(x) = 1} (1.22)
*

Definition 1.10: The height of a fuzzy set A, defined over X, is defined as:

)(sup)(Hgt
X

xA A

x

µ
∈

= (1.23)

*

Figure 1.12. Examples of convex (left) and nonconvex (right) fuzzy sets
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Definition 1.11: A fuzzy set A is normalized if and only if

∃x ∈ X, µA(x) = Hgt(A) = 1 (1.24)
*

Definition 1.12: The cardinality of a fuzzy set A, with finite universe X, is
defined as:

∑
∈

=
X

)()(Card
x

A xA µ (1.25)

If the universe is infinite, the addition must be changed for an integral defined
within the universe.

*

Fuzzy Set Operations

The fact that the theory of fuzzy sets generalizes the theory of classic sets
means that the fuzzy sets allow operations of union, intersection, and
complement. These and other operations can be found in Petry (1996) and
Pedrycz and Gomide (1998), such as concentration (the square of the
membership function), dilatation (finding the square root of the membership
function), contrast intensification (see Equation 7.1), and fuzzification
(see Equation 7.2), which can be used when linguistic hedges such as “very”
or “not very” are used.

Union and Intersection: t-conorms and t-norms

Definition 1.13: If A and B are two fuzzy sets over a universe of discourse
X, the membership function of the union of the two sets A ∪ B is
expressed by
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µA∪B(x) = f(µA(x), µB(x)), x ∈ X (1.26)

where f is a t-conorm (Schweizer & Sklar, 1983).
*

Definition 1.14: If A and B are two fuzzy sets over a universe of discourse
X, the membership function of the intersection of the two sets A ∩ B, is
expressed by

µA∩B(x) = g(µA(x), µB(x)), x ∈ X (1.27)

where g is a t-norm (Schweizer & Sklar, 1983).
*

Both s-norms and t-norms establish generic models respectively for the
operations of union and intersection, which must comply with certain basic
properties (commutative, associative, monotonicity, and border conditions).
They are concepts derived from Menger (1942) and Schweizer and Sklar
(1983), and have been looked at in-depth more recently (Butnario & Klement,
1993).

Definition 1.15: Triangular Norm, t-norm: binary operation, t: [0,1]2 →
[0,1] that complies with the following properties:

1. Commutativity: x t y = y t x.
2. Associativity: x t (y t z) = (x t y) t z.
3. Monotonicity: If x ≤ y, and w ≤ z then x t w ≤ y t z.
4. Boundary conditions: x t 0 = 0, and x t 1 = x.

*

Definition 1.16: Triangular Conorm, t-conorm or s-norm: Binary opera-
tion, s: [0,1]2 → [0,1] that complies with the following properties:



18   Galindo, Urrutia & Piattini

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

1. Commutativity: x s y = y s x.
2. Associativity: x s (y s z) = (x s y) s z.
3. Monotonicity: If x ≤ y, and w ≤ z then x s w ≤ y s z.
4. Boundary conditions: x s 0 = x, and x s 1 = 1.

*

The most widely used of this type of functions are the t-norm of the
Minimum and the t-conorm or s-norm of the Maximum as they have
retained a large number of the properties of the Boolean operators, such as
the property of idempotency (x t x = x; x s x = x). In Figure 1.13 we can see
the intersection and union, using respectively the minimum and maximum, of
two trapezoid fuzzy sets.
There is an extensive set of operators, called t-norms (triangular norms) and
t-conorms (triangular co-norms), that can be used as connectors for
modeling the intersection and union respectively, as detailed in Dubois and
Prade (1980), Yager (1980), Predycz and Gomide (1998), and Piegat (2001).
The most important are shown in Tables 1.1 and 1.2.
A relationship exists between t-norms (t) and t-conorms (s). It is an extension
of De Morgan’s Law:

x s y = 1 – (1 – x) t (1 – y)
x t y = 1 – (1 – x) s (1 – y) (1.28)

When a t-norm or a t-conorm complies with this property, it is said to be
conjugated or dual.
T-norms and t-conorms cannot be ordered from larger to smaller. However,
it is easy to identify the largest and the smallest t-norm and t-conorm:

• Largest t-norm: Minimum Function.
• Smallest t-norm: Drastic Product.
• Largest t-conorm: Drastic Sum.
• Smallest t-conorm: Maximum Function.
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Figure 1.13. Intersection (minimum) and union (maximum)

Note that if two fuzzy sets are convex, their intersection (but not necessarily
their union) will also be.

Complements or Negations

The notion of the complement can be constructed by using the concept of strong
negation (Trillas, 1979).

Definition 1.17: A function C: [0,1] → [0,1] is a strong negation if it fulfils
the following conditions:

1. Boundary conditions: C(0) = 1 and C(1) = 0.
2. Involution: C(C(x)) = x.
3. Monotonicity: C is nonincreasing.
4. Continuity: C is continuous.

*

Although several types of operators satisfy such properties or relaxed versions
of them, we will mainly use Zadeh’s version of the complement (1965). Thus,
for a fuzzy set A in the universe of discourse X, the membership function of the
complement, denoted by ¬Α, or by A  is shown as

µ¬Α(x) = 1 – µA(x), x ∈ X (1.29)
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Table 1.1. t-norms functions: f(x,y) = x t y
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Table 1.2. s-norms functions: f(x,y) = x s y

t-conorms or s-norms Expression 
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Comparison Operations on Fuzzy Sets

The fuzzy sets, defined by using a membership function, can be compared in
different ways. We will now list several methods used to compare fuzzy sets
(Pedrycz & Gomide, 1998).

Distance Measures

A distance measure considers a distance function between the membership
functions of two fuzzy sets in the same universe. In such a way it tries to indicate
the proximity between the two fuzzy sets. In general, the distance between A
and B, defined in the same universe of discourse, can be defined by using the
Minkowski Distance:

p

X

p dxxBxABAd
1

 )()(),( 







−= ∫ (1.30)

where p ≥ 1 and we assume that the integral exists. Several specific cases are
typically used:

1. Hamming Distance (p = 1):

∫ −=
X

dxxBxABAd  )()(),( (1.31)

2. Euclidean Distance (p = 2):

2
1

2 )()(),( 







−= ∫

X

dxxBxABAd (1.32)
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For a discrete universe of discourses, integration is replaced with sum. The
more similar are the fuzzy sets; the distance between them is smaller.
Therefore, it is convenient to normalize the function of distance, denoted by
dn(A, B), and use this form to express the similarity as a direct complemen-
tation: 1 –  dn(A, B).

Equality Indexes

This is based on the logical expression of equality; that is, two sets A and B are
equals if A ⊂ B and B ⊂ A. In fuzzy sets, a certain degree of equality can be
found. With that the following expression is defined:

( ) [ ] [ ] [ ] [ ]
2

)()()()()()()()()( xAxBxBxAxAxBxBxAxBA ϕϕϕϕ ∧+∧=≡

(1.33)

where the conjunction (∧) is modeled on the minimum operation, and the
inclusion is represented by the operator ϕ (phi), induced by a continuous t-
norm t:

[ ]
[ ]B(x)  )( sup)()(

1,0
≤=

∈
ctxAxBxA

c
ϕ (1.34)

Taking the Selected Product with p = 0 as an example:
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Three basic methods can be used to obtain a single value (∀ x ∈ X):

• Optimistic Equality Index:

(A ≡ B)opt = supx∈X(A ≡ B) (x) (1.36)

• Pessimistic Equality Index:

(A ≡ B)pes = supx∈X(A ≡ B) (x) (1.37)

• Medium Equality Index:

∫ ≡


=≡
xavg dxxBAxCardBA )( )()(

1)( (1.38)

Thus, the following relationship is satisfied:

(A ≡ B)pes ≤ (A ≡ B)avg ≤ (A ≡ B)opt (1.39)

Possibility and Necessity Measures

These use the fuzzy sets as possibility distributions where A(x) measures the
possibility of the required figure being X (Zadeh, 1978), that is, the possibility
of value A being equal to value B. It measures the extent to which A and B
superpose each other, denoted as Poss(A, B) and defined as:

( )[ ] )(),( min  sup) ,(  Poss
X

xBxABA
x∈

= (1.40)

The necessity measure describes the degree to which B is included in A and is
denoted by Nec(A, B):
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( )[ ] )( 1),( max  inf) ,(Nec
X

xBxABA
x

−=
∈

(1.41)

In Figures 1.14 and 1.15 we can see graphically how these measurements for
two concrete fuzzy sets are calculated.
As we have already mentioned, the measurement of possibility measures the
extent to which measurement A is superposed on B. In the light of the previously
introduced definitions, it can be stated that Poss (A, B) = Poss (B, A). On the
other hand, the measurement of necessity is asymmetrical, Nec (A, B) ≠ Nec
(B, A). However, the following relation is fulfilled:

1   ) ,(  Poss    ) ,(  Nec =+ BABA (1.42)

Example 1.2: Let there be a motorway where the speed limit is 100 km/h. In
this specific context, the concept of high speed could be represented by a fuzzy
set B, defined in the speed space, as is shown in Figure 1.16. The membership
function for a vehicle moving at a speed of around 80 km/h is a triangular shape,
denoted by the fuzzy set A. In this scenario several points must be considered.
To what extent is the vehicle traveling at a high speed? What degree of high
speed is around 80km/h? Based on the interpretation of the concept of the
possibility measurement, we could quantify the extent to which A is dependent
on B, that is, the extent to which the speed at which the vehicle travels (around
80 km/h) is high:

Poss (around 80km/h, high speed) = Poss(A, B) = Poss (B, A) = 0.6
*

Other equivalences are:

Poss (A ∪ B, C) = max {Poss (A, C), Poss (B, C)} (1.43)

Poss (A ∩ B, C) = min {Nec (A, C), Nec (B, C)} (1.44)
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The generalization of the possibility and necessity measurements use triangular
t-norms or t-conorms instead of min and max functions, respectively.
If the concept is extended, the possibility of a fuzzy set A (or of a possibility
distribution) in the universe X can be defined as:

( )[ ] )( sup 1),( min  supX) ,( Poss  )( 
XX

xAxAAA
xx ∈∈

===Π (1.45)

This possibility measures whether a determined event (the fuzzy set A) is
possible in universe X. It would not measure uncertainty, because if Π (A) = 1,
we know that event A is possible, but:

Figure 1.14. General illustration of the Poss(A,B) concept using the
minimum t-norm

Figure 1.15. General illustration of the Nec(A,B) concept using the
maximum t-conorm
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• if 1 )( =Π A , then the certainty is indeterminate.

• if 0 )( =Π A , then the occurrence of A is certain.

Therefore, the following two equalities are always satisfied:

• Π (X) = 1 (possibility of an element of the universe).
• Π(φ) = 0 (possibility of an element not in the universe).

Similarly, the necessity of a fuzzy set N(A) in X can be defined, and then we can
set some equivalences of possibility and necessity:

N(A) = infx∈X {A(x)} = 1 – supx∈X {1 – A(x)} = 1 – Π(¬A): N(A) = 1 – Π(¬A)
(1.46)

Π(A) = supx∈X {A(x)} = 1 – infx∈X {1 – A(x)} = 1 – N(¬A): Π (A) = 1 – N(¬A)
(1.47)

These equivalences explain why the necessity complements the information
about the certainty of event A:

• The greater N(A), the smaller the possibility of opposite event (¬A).
• The greater Π (A), the smaller the necessity of the opposite event (¬A).

Figure 1.16. Illustration of Example 1.2 about possibility and necessity

1 

Nec(A, B) = 0 
Speed (Km/h) 

A 

60 

Poss(A, B) = 0.6 

B 

80 100 

Poss(¬A,B) 
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• N(A) = 1 ⇔ ¬A is totally impossible (if an event is totally necessary, then
the opposite event is totally impossible).

• Π(A) = 1 ⇔ ¬A is not necessary at all N(¬A) = 0 (if an event is totally
possible, then the opposite event cannot be necessary in any way).

• N(A) = 1 ⇒ Π(A) = 1 (if A is a totally necessary event, then it must be
totally possible). Note that the opposite is not satisfied.

• A ⊆ B ⇒ N(A) ≤ N(B) and Π(A) ≤ Π (B).

Compatibility Measures

This comparison operation measures the extent to which a certain fuzzy set is
compatible with another (defined in the same space). The result is not a single
number but instead a fuzzy set defined in the interval unit, [0, 1], Comp(B, A)
(u) = supu=A(x) {B(x)}, u ∈ [0, 1] known as the Fuzzy Set of Compatibility.
Therefore, the compatibility of B with A can be defined as:

Comp(B, A) (u) = supu=A(x) {B(x)}, u ∈ [0,1] (1.48)

Set B can be seen as a “fuzzy value” and set A as a “fuzzy concept.” Therefore,
Comp(B, A) measures the compatibility with which B is A.

Example 1.3: Let B be the value “approximately 70 years” and A be the
concept “very old.” The fuzzy set Comp(B, A) is represented in Figure 1.17 and
the fuzzy set Comp(A, B) in Figure 1.18.

*

The compatibility measurement has the following properties:

• It measures the degree to which B can fulfill concept A. That degree will
be greater the more similar the fuzzy set Comp (B, A) is to the singleton
“1” value (maximum compatibility).

• Supposing A is a normalized fuzzy set: Comp(A, A)(u) = u (linear
membership function).
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• If A is not normalized, the function will be the same between 0 and the
height of set A: If u > Height(A), Comp(A, A) (u)= indeterminate (0).

• If B is a number x (“singleton” fuzzy set), the result will also be another
“singleton” in the A(x) value:



 =

=
    otherwise,0

)(  if,1
))( , ( 

xAu
uABComp (1.49)

If B is not normalized, the result will not be either, its height being the same as
that of set B.

Figure 1.17. Example 1.3: Illustration of Comp(B, A)

Figure 1.18. Example 1.3: Illustration of Comp(A, B)
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• If Support (A) ∩ Support(B) = φ, then



 =

==
                                        otherwise,0

ity)compatibil (minimum  0  if,1
))(,( ))(,( 

u
uBACompuABComp

(1.50)

If B is not normalized, the result will not be either, and its height will be the same
as that height of B, for u = 0.
In order to have a clearer vision of what this measurement means, we can look
at the examples shown in Figures 1.19, 1.20, and 1.21, where several typical
cases can be seen. We can conclude that fuzzy set B is more compatible with
another A the closer that Comp(B,A) is to 1 and the further it is from 0 (the
less area it has). So, in Figure 1.20, we see that B2 is more compatible with
A than B1.
Other properties of the compatibility measurement are:

• The compatibility is asymmetrical: Comp(B, A) ≠ Comp(A, B).
• B ⊂ B’ ⇒ Comp(B, A) (u) ≤ Comp(B’, A) (u) = u.
• B(x) = {1, ∀ x ∈ X} ⇒ Comp(B, A)(u) = {1, ∀ u ∈ [0,1]}.
• B(x) = {0, ∀ x ∈ X} ⇒ Comp(B, A)(u) = {0, ∀ u ∈ [0,1]}.
• B ⊂ A and they are normalized ⇒ Comp(B, A) (0) = 0 and Comp(B,

A) (1) = 1. Of course there may be more points with 0 and 1
compatibility.

• A ⊂ B and they are normalized ⇒ Comp(B, A) (1) = 1 and Comp(B, A)
(u) = 0 ⇔ u = 0.

• The possibility and necessity measurements between A and B are included in
the support of Comp(B, A). For example, if B is an interval (Figure 1.22), then:

Poss(B, A) = Sup{Support(Comp(B, A))}
Nec(B, A) = Inf {Support(Comp(B, A))}
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Figure 1.19. Three sets (B1, B2 and B3) with the same shape
placed in different positions and compared to A

Figure 1.20. Two sets (B1 and B2) with the same height as A at one point,
but with its nucleus included in A’s nucleus (B2) or not included in A (B1).

Figure 1.21. Two triangular sets (A and B) compared to each other
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Fuzzy Relations

A classic relation between two universes X and Y is a subset of the Cartesian
X´Y product. Like the classic sets, classic relation can be described by using
a characteristic function. In the same way, a fuzzy relation R is a fuzzy set of
tuples, where this characteristic function is extended to the interval. In the event
of a binary relation, the tuple has two values.

Definition 1.18: Let U and V be two infinite (continuous) universes and mR:
U × V → [0, 1]. Then, a fuzzy relation R is defined as

R = ∫U × V µR (u, v) / (u, v) (1.51)
*

The function µR may be used as a similarity or proximity function. It is important
to stress that not all functions are relations and not all relations are functions.
Fuzzy relations generalize the generic concept of relation by allowing the notion
of partial belonging (association) between points in the universe of discourse.

Example 1.4: Take as an example the fuzzy relation in ℜ2 (binary relation),
“approximately equal,” with the following membership function in X ⊂ ℜ, with X2

Figure 1.22. Possibility and necessity measurements included in the
compatibility support
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= {1, 2, 3}2: 1/(1, 1) + 1/(2, 2) + 1(3, 3) + 0.8/(1, 2) + 0.8/(2, 3) + 0.8/(2, 1)
+ 0.8/(3, 2) + 0.3/(1, 3) + 0.3/(3, 1). This fuzzy relation may be defined as:

















=
=

=
=

2y-x  if,3.0
1y-x  if,8.0

y       xif,1
)y,x(    :y   toequalely approximatx  R

where x, y ∈ ℜ.
When the universe of discourse is finite, a matrix notation can be quite useful
to represent the relation. So this example would be shown as:

 X 

1 0.8 0.3 

0.8 1 0.8 X 

0.3 0.8 1 

Operations and Compositions of Fuzzy Relations

Definitions of basic operations with fuzzy relations are closely linked to
operations of fuzzy sets (see the “Fuzzy Set Operations” section). Let R and W
be two fuzzy relations defined in X × Y:

• Union: (R ∪ W)(x, y) = R(x, y) s W(x, y), using a s-norm s.
• Intersection: (R ∪ W)(x, y) = R(x, y) t W(x, y), using a t-norm t.
• Complement: (¬R)(x, y) = 1 – R(x, y).
• Inclusion: R ⊆ W ⇔ R(x, y) ≤ W(x, y).
• Equality: R = W ⇔ R(x, y) = W(x, y).
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Fuzzy relations can be composed with the addition of different operators to
sets. If G and W are fuzzy relations defined in X × Z and Z × Y, respectively,
then we can define the fuzzy relation R defined in X × Y as follows:

•  Sup-t Composition:

[ ]y) t W(z,),(Sup  ),(
Zz

zxGyxR
∈

= (1.52)

• Inf-s Composition:

[ ]y) W(z,s ),(Inf  ),(
Zz

zxGyxR
∈

= (1.53)

Fuzzy Numbers

The concept of fuzzy numbers was first introduced in Zadeh (1975a, 1975b,
1975c) with the purpose of analyzing and manipulating approximate numeric
values, for example “near 0,” almost 5,” and so forth. The concept has since
been refined (Dubois & Prade, 1980, 1985b), and several definitions exist.

Definition 1.19: Let A be a fuzzy set in X and µA(x) be its membership function
with x ∈ X. A is a fuzzy number if its membership function satisfies that:

1. ∀ x, y ∈ X, ∀ µA(t) ≥ min (µA(x),µA(y)), i.e. µA(x) is convex.
2. µA(x) is upper semicontinuity.
3. Support of A is bounded.

*

These requirements can be relaxed. Some authors include the necessity for the
fuzzy set being normalized in the definition.
The general form of the membership function of a fuzzy number A can be seen
in Figure 1.23, which can be defined as:



Introduction to Fuzzy Logic   35

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

[ ]
]










∈
∈
∈

=

otherwise0
,( if)(
, if

),[ if)(

)(
δγ
γβ
βα

µ
xxs
xh
xxr

x
A

A

A (1.54)

where rA, sA: X → [0,1], rA is not decreasing, sA is not increasing, and

rA(β) = h = sA(γ) (1.55)

with h ∈ (0, 1] and α, β, γ, δ ∈ X. The number h is called the height of the fuzzy
number, the interval [β, γ] is the kernel or modal interval, and the numbers β
– α and δ – γ are the left and right spaces, respectively.
Throughout this study we will often use a particular case of fuzzy numbers that
is obtained when we consider the functions rA and sA as linear functions. In this
case the membership function adopts the following form:
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(1.56)

Figure 1.23. General fuzzy number
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We will call this type of fuzzy number triangular or trapezoidal, and it takes
the form shown in Figure 1.24. We will usually work with normalized fuzzy
numbers due to which h = 1, and in this case we will be able to characterize
normalized trapezoidal fuzzy number A, using the four really necessary num-
bers: A ≡ (α, β, γ, δ).

The Extension Principle

One of the most important notions in the fuzzy sets theory is the extension principle,
proposed in Zadeh (1975a, 1975b, 1975c). It provides a general method that
allows nonfuzzy mathematical concepts to be extended to the treatment of fuzzy
quantities. It is used to transform fuzzy quantities, which have the same or different
universes, according to a transformation function between those universes.
Let A be a fuzzy set, defined in universe of discourse X, and f a nonfuzzy
transformation function between universes X and Y, so that f: X → Y. The
purpose is to extend f so that it can also operate on the fuzzy sets in X. The result
must be fuzzy set B in Y: B = f(A). In Figure 1.25 this transformation is
represented. It is achieved with the use of the Sup-Min composition, which will
now be described in a general way in the case of the Cartesian product in a
universe of discourses.

Definition 1.20: Let X be a cartesian product of n universes such as X =
X1 × X2 × ... × Xn, and A1, A2, …, An are n fuzzy sets in those n universes,
respectively. Moreover, we have a function f from X to the universe X’,
so a fuzzy set B from X’ is defined by the extension principle as:

Figure 1.24. Normalized trapezoidal fuzzy number
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B = f(A1, A2,..., An) (1.57)

defined as

µB(y) = msup
)(,X xfyx =∈ min(µA1

(x1)),...(µAn
(xn)) (1.58)

*

Example 1.5: Let both X and Y be the universe of natural numbers.

• Sum 4 function: y = f(x) = x + 4;
� A = 0.1/2 + 0.4/3 + 1/4 + 0.6/5;
� B = f(A) = 0.1/6 + 0.4/7 + 1/8 + 0.6/9.

• Sum: y = f(x1,x2) = x1 + x2:
� A1 =0.1/2 + 0.4/3 + 1/4 + 0.6/5;
� A2 =0.4/5 + 1/6;
� B = f(A1, A2) = 0.1/7 + 0.4/8 + 0.4/9 + 1/10 + 0.6/11.

*

Figure 1.25. Graphic representation of the extension principle, where f
carries out its transformation from X to Y
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We can conclude that the extension principle allows us to extend any function
(for example, arithmetic) to the field of fuzzy sets, making possible what we will
see in the next section as fuzzy arithmetic.

Fuzzy Arithmetic

Thanks to the Extension Principle (Definition 1.20), it is possible to extend the
classic arithmetical operations to the treatment of fuzzy numbers (see Example
1.5). In this way the four main operations are:

1. Extended Sum: Given two fuzzy quantities A1 and A2 in X, the member-
ship function of the sum A1 + A2 is found using the expression

µA1 + A2
(y) = sup{min(µA1

(y – x), µA2
(x)) / x ∈ X} (1.59)

In this way the sum is expressed in terms of the supreme operation. The
extended sum is a commutative and associative operation, and the
concept of the symmetrical number does not exist.

2. Extended Difference: Given two fuzzy quantities A1 and A2, in X, the
membership function of the difference A1 – A2 is found using the expression

µA1 + A2
(y) = sup{min(µA1

(y + x), µA2
(x)) / x ∈ X} (1.60)

3. Extended Product: The product of two fuzzy quantities A1 * A2 is
obtained as follows:



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0z  if(0)) (0),(max
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)(
21

21

21*
AA

AA
AA

Xyyz
z

µµ
µµ

µ

(1.61)

4. Extended Division: The division of two fuzzy quantities A1 ̧  A2 is defined
as follows:
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µA1 ÷ A2
(z) = sup{min(µA1

(y ⋅ z), µA2
(y)) / y ∈ X} (1.62)

From these definitions we can easily conclude that A1 and A2 have a discrete
universe (with finite terms), and they have n and m terms, respectively; the number
of terms of A1 + A2 and of A1 – A2 is (n – 1) + (m – 1) + 1, that is, n + m – 1.
Based on a particular expression from the uncertainty principle, adapted to the
use of a-cuts and in a type of numbers similar to the previously described, called
LR fuzzy numbers, in Dubois and Prade (1980), rapid calculus formulae for the
previous arithmetical operations are described.
It is important to point out that if we have two fuzzy numbers, then the sum or
remainder of both fuzzy numbers will be fuzzier (it will have greater cardinality)
than the fuzziest of the two (that which has greatest cardinality). This is logical,
because if we add two approximate values, then the result can be as varied as
the initial values are. The same thing happens with division and multiplication,
but on a larger scale.

Possibility Theory

The Possibility Theory is based on the idea of linguistic variables and how they
are related to fuzzy sets (Zadeh, 1978; Dubois & Prade, 1988). In this way,
we can evaluate the possibility of a determinate variable X being (or belonging
to) a determinate set A, like the membership degree of the X elements in A.

Definition 1.21: Let there be a fuzzy set A defined in X with membership
function µA(x) and a variable x in X (the value of which we do not know).
So, the proposition “x is A” defines a Possibility Distribution in such a
way that it is said that the possibility that x = u is µA(u), ∀ u ∈ X.

*

The concepts of fuzzy sets and membership functions are now interpreted as
linguistic labels and possibility distributions. Instead of membership degrees,
we have possibility degrees, but all the tools and properties defined for fuzzy
sets are also applicable to possibility distributions.
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Fuzzy Quantifiers

Fuzzy or linguistic quantifiers (Yager, 1983; Zadeh, 1983; Liu and Kerre,
1998a, 1998b; Galindo, 1999; Galindo, Medina, Cubero, & García, 2001)
allow us to express fuzzy quantities or proportions in order to provide an
approximate idea of either the number of a subset’s elements fulfilling a certain
condition or the proportion of this number in relation to the total number of
possible elements.
Fuzzy quantifiers can be absolute or relative:

• Absolute quantifiers express quantities over the total number of ele-
ments of a particular set, stating whether this number is, for example,
“much more than 10,” “close to 100,” “a great number of,” and so forth.
Generalizing this concept, we can consider fuzzy numbers as absolute
fuzzy quantifiers in order to use expressions such as “approximately
between 5 and 10,” “approximately -8,” and so forth. Note that the
expressed value may be positive or negative. In this case, we can see that
the truth of the quantifier depends on a single quantity. For this reason, the
definition of absolute fuzzy quantifiers is, as we shall see, very similar to
that of fuzzy numbers.

• Relative quantifiers express measurements over the total number of
elements, which fulfill a certain condition depending on the total number of
possible elements (the proportion of elements). Consequently, the truth of
the quantifier depends on two quantities. This type of quantifier is used in
expressions such as “the majority” or “most,” “the minority,” “little of,”
“about half of,” and so forth. In this case, in order to evaluate the truth of the
quantifier, we need to find the total number of elements fulfilling the condition
and to consider this value with respect to the total number of elements that
could fulfill it (including those that do fulfill it and those that do not).

Some quantifiers, such as “many” and “few,” can be used in either sense,
depending on the context (Liu & Kerre, 1998a).
In Zadeh (1983) absolute fuzzy quantifiers are defined as fuzzy sets in the positive
real numbers and relative quantifiers as fuzzy sets in the interval [0,1]. We have
extended the definition of absolute fuzzy quantifiers to all real numbers.
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Definition 1.22: A fuzzy quantifier named Q is represented as a function
Q whose domain depends on whether it is absolute or relative:

Qabs: ℜ → [0, 1]
Qrel: [0, 1] → [0, 1] (1.63)

where the domain of Qrel is [0,1] because the division a / b ∈ [0, 1], where
a is the number of elements fulfilling a certain condition and b is the total
number of existing elements.

*

In order to know the fulfillment degree of the quantifier over the elements that
fulfill a certain condition, we apply the function Q of the quantifier to the value
of quantification φ (phi):





=Φ
relative is  if/
absolute is  if

Qba
Qa

(1.64)

Thus, the fulfillment degree is Q(φ). If the function of the quantifier (absolute
or relative) Q(φ) has the value 1, this quantifier is completely satisfied. The
value 0, on the other hand, indicates that the quantifier is not fulfilled at all.
Any intermediate value indicates an intermediate fulfillment degree for the
quantifier.

Example 1.6: “Approximately 8” is an absolute fuzzy quantifier, defined as a
triangular and symmetrical function (Figure 1.2b) with m = 8 and margin = 2,
for example. “Almost all” is a relative fuzzy quantifier, defined as shown in
Figure 1.26.

*

Two classic quantifiers are very important: The universal quantifier (for all, ∀)
and the existential quantifier (exist, ∃). The first is relative, and the second is
absolute. They are discretely defined as
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

 =

=∀ otherwise0
1 if1

)(
x

xQ (1.65)



 =

=∃ otherwise1
0 if0

)(
x

xQ (1.66)

The existential quantifier may be also defined with a nondiscrete trapezoidal
form: [0, 1, ∞, ∞].
Some quantifiers (absolute or relative) may have arguments, and in these cases,
the function is defined by using the arguments. Most of quantifier with
arguments are absolute, because relative are rare.

Example 1.7: Some fuzzy quantifiers with one and two arguments:

• Absolute quantifiers:
� “Much greater than x”: Represented with the function in Figure 1.27a.
� “About half of x”: Represented with the function in Figure 1.27b.
� “Approximately between x and y” (x < y): Represented with a

trapezoidal function (Figure 1.24) with [α, β, γ, δ] = [x – 5, x, y, y
+ 5]. Another form is [0.75x, x, y, 1.25y].

Figure 1.26. Relative fuzzy quantifier “almost all”: Q(φ) = 0 ⇔ φ ≤ 0.4,
Q(φ) = 1 ⇔ φ ≥ 0.9 and Q(φ) = 2(φ – 0.4) ⇔ φ ∈ (0.4, 0.9)

 0 

1 

0.4 0.9 1 
φ



Introduction to Fuzzy Logic   43

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

� “Approximately between half of x and half of y” (x < y): Represented
with a trapezoidal function (Figure 1.24) with [α, β, γ, δ] = [0.25x,
0.5x, 0.5y, 0.75y].

• Relative quantifiers:
� “Approximately an x-th part” (x ∈ [0, 1]): [α, β, γ, δ] = [x – 0.2, x,

x, x + 0.2].
� “Less than an x-th part” (x ∈ [0,1]): [α, β, γ, δ] = [0, 0, x, 1.25x].
� “Approximately between an x-th and a y-th part” (x < y and x, y ∈

[0, 1]). This is a rare relative quantifier with arguments: [α, β, γ, δ]
= [0.75x, x, y, 1.25y] or [x – 0.1, x, y, y + 0.1]. For example,
“approximately between a quarter and the half” is represented with
x = 0.25 and y = 0.5.

� “Approximately between half of an x-th and half of a y-th part” (x <
y and x, y ∈ [0, 1]). [α, β, γ, δ] = [0.4x, 0.5x, 0.5y, 0.6y].

Observe that in relative quantifiers it does not matter if d > 1, because the
important part is the quantifier definition in [0, 1].

*

A general classification of trapezoidal quantifiers [α, β, γ, δ], attending to its
arguments and the building type, is the following one:

1. Without arguments: See Equation 1.63.

2. With one argument x:
� Type Product: [α * x, β * x, γ * x, δ * x].
� Type Sum: [α + x, β + x, γ + x, δ + x].

3. With two arguments x and y:
� Type Product: [α * x, β * x, γ * y, δ * y].
� Type Sum: [α + x, β + x, γ + y, δ + y].



44   Galindo, Urrutia & Piattini

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In relative quantifiers it is not necessary to warranty that all values are in [0, 1],
but if the condition is important, we can use the function min. For example, a
type product relative quantifier with one argument is built with [min{1, α * x},
min{1, β * x}, min{1, γ * x}, min{1, δ * x}].
A survey of methods for evaluating quantified sentences and some new
methods is shown in Delgado, Sánchez, and Vila (1999, 2000) and Sánchez
(1999).

Endnote

1 L.A. Zadeh has been named “doctor honoris causa” in universities
worldwide, one of them being the University of Granada in 1996, in
recognition of his important contribution in this scientific field.

Figure 1.27. Absolute fuzzy quantifiers with one argument (type sum and
product): a) “Much greater than x”: [1 + x, 9 + x, ∞, ∞], and b) “About
half of x”: [0.25x, 0.5x, 0.5x, 0.75x]

x+1 

 0 

1 

x+9 x 

a) 

 0 

1 

0.25x x/2 = 0.5x 0.75x 

b) 
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Chapter II

Fuzzy Database
Approaches

Both the problem of representation and the treatment of imprecise information
have been widely discussed. Many references can be found in the correspond-
ing bibliography. Nevertheless, all the known models aimed at solving this
problem have their own advantages, disadvantages, and constraints.
The term imprecision encompasses various meanings, which might be
interesting to highlight. It alludes to the facts that the information available can
be incomplete, that we don’t know whether the information is true (uncer-
tainty), that we are totally unaware of the information (unknown), or that such
information is not applicable to a given entity (undefined). Sometimes these
meanings are not disjunctive and can be combined in certain types of
information.
This chapter deals with the main published models aimed at solving the problem
of representation and treatment of imprecise information in relational data-
bases. This problem is not trivial, because it requires relations structure
modification, and thus, the operations on these relations also need to be
modified. To allow the storage of imprecise information and the making of an
inaccurate query of such information, a wide variety of case studies that do not
occur in the classic model, without imprecision, is required.
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The models exposed include various approaches that do not utilize the fuzzy
logic, such as the “classical” Codd approach (1979, 1986, 1987, 1990), the
Prade-Testemale model (1984, 1987a, 1987b; Prade, 1984), the Umano-
Fukami model (Umano, 1982, 1983; Umano & Fukami, 1994), the Buckles-
Petry model (1982a, 1982b, 1984), the Zemankova-Kandel model
(Zemankova-Leech & Kandel, 1984, 1985), and the GEFRED model of
Medina-Pons-Vila (1994; Medina, 1994; Galindo, Medina, Cubero, & Pons,
1999, 2001b).
Other models deal with database uncertainty as well but have not been widely
accepted, such as the ones based on rough sets, which were introduced by
Pawlak (1982, 1991).
The GEFRED model, which the development of this work is based on, will be
the main focus of our discussion. This model constitutes an eclectic synthesis
of the various models published so far with the aim of dealing with the problem
of representation and treatment of fuzzy information by using relational data-
bases. One of the major advantages of this model is that it consists of a general
abstraction that allows for the use of various approaches, regardless of how
different they might look.
A more detailed discussion of each one of these models can be seen in the
corresponding references, some of them in Medina (1994) and Petry (1996).
In Medina, a comparative study of GEFRED and other models can also be
examined.

Imprecision Without Fuzzy Logic

In this section, we will summarize some ideas allowing for imprecise information
treatment without utilizing either the fuzzy set theory or the possibility distribu-
tions. In the bibliography, these models are dealt with globally in the section on
imprecision in conventional databases, although some of the ideas discussed
here have not been implemented in any of the models.

The Codd Approach

The first attempt to represent imprecise information on databases was the
introduction of NULL values by Codd in 1979, which was further expanded
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(1986, 1987, 1990). This model did not use the fuzzy set theory. A NULL value
in an attribute indicates that such a value was any value included in the domain
of such an attribute.
Any comparison with a NULL value originates an outcome that is neither true
(T) nor false (F) called maybe (m) (or unknown, in the SQL of Oracle). The
truth tables of the classical comparators NOT, AND, and OR can be seen in
Table 2.1.
Later on, another nuance was added, differentiating the NULL value in two
marks, the A-mark representing an absent or unknown value, although it was
applicable, and the I-mark representing the absence of the value because it is
not applicable (undefined). An I-mark may be situated, for instance, in the car
plate attribute of someone who does not have a car. This is a tetra-valued logic,
where the A value, having a similar meaning to that of the m in the tri-valued
logic, is generated by comparing any value containing an A-mark, and a new
I value is added as a result of the comparison of any value containing an I-mark.
The tetra-valued logic is shown in Table 2.2.

Default Values

In 1982, Date presented an approach for the treatment of null values, included
in his 1986 book. He starts from the notion that the null values treatment
problem is not properly defined; therefore, this feature should not be included

Table 2.1. Truth tables for the tri-valued logic: True, false, and maybe

Table 2.2. Truth tables for the tetra-valued logic

NOT   AND T m F  OR T m F 
T F  T T m F  T T T T 
m m  m m m F  m T m m 
F T  F F F F  F T m F 

NOT   AND T A I F  OR T A I F 
T F  T T A I F  T T T T T 
A A  A A A I F  A T A A A 
I I  I I I I F  I T A I F 
F T  F F F F F  F T A F F 
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in the Relational Model. Based on this premise, Date presents an alternative
grounded on the “default values” concept.
In this model, a value of such a domain is labeled “default value” in the
declaration of each domain. The same thing is done in SQL with the DEFAULT
clause. Thus, when a new tuple becomes part of the relations, the user has to
provide a value for each attribute that doesn’t have a default value, and the
system will assign the default value to those attributes that have no value.

Interval Values

Grant (1980) expands the relational model in order to allow that a possible
value range/interval be stored in one attribute, in addition to a precise value as
well as the NULL value in case no information is available. The problem about
repeated tuples is solved by allowing the tuples repetition, because even though
they may seem identical, they could be different.
The relational operators are redefined in two versions, true and maybe. For
example, the operator < is defined as

[a, b] <T [n, m] if b < n (2.1)
[a, b] <M [n, m] if a < m

For queries in this model, Lipski’s proposal (1979) can be used (Prade, 1984),
in which each tuple is placed in one of these three categories: surely belongs to
the result (surely-set), likely to belong to the result (possibly-set), and surely
does not belong to the result (eliminated-set).

Statistical and Probabilistic Databases

The main proposal related to this issue was published by Wong in 1982, in
which a lot of cases of statistical inference uncertainty were discussed. This
formula assumes that incomplete information can be statistically compared.
This method treats queries as statistical experiments in which information is
incomplete and focuses on calculating the response to the query as a set of those
tuples that minimize both types of statistical errors. In Shoshani and Wong
(1985), research on statistical databases and their usefulness are summarized.
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Barbara, Garcia-Molina, and Porter (1992) published the best developed
probabilistic databases, in which probabilities are associated with attribute
values. In this model, each probabilistic attribute is dealt with as a discrete
probability distribution. In one tuple, probabilities must be standardized: The
sum total of the probabilities of all probable values must be equal to 1.
Nevertheless, determining the probabilities for all the possible domain values
can be difficult. So they developed the notion of missing probabilities in order
to introduce the rest of the probabilities in a more general value, including all the
domain values without specifying how the probability is distributed in those
values. That is, each value of the domain of which we know its probability is
stored in the database, and for all the values of the domain, the remaining value
of such a probability is stored (1 minus the sum total of the known probabilities).
When recuperating (queries), a mechanism could be established in order to
recuperate only the values having a probability greater than certain threshold.
Also, in relational operations (like the Natural Join), probabilities may need to
be calculated. To calculate these probabilities, two methods are utilized. In the
first one the user introduces probabilities based on user-defined criteria or
user-performed calculations. In the second one, the system calculates prob-
abilities based on a set of examples, including survey-collected data or direct
analysis of a population sample.
In the Cavallo and Pittarelli (1987) model, the probability is associated to each
tuple, signaling the probability that such a tuple may belong to the relation. On
the other hand, Fuhr’s work (1990) focuses more on how to specify imprecise
queries.

Basic Model of Fuzzy Databases

The basic model of fuzzy relational databases is considered the simplest one,
and it consists of adding a grade, normally in the [0, 1] interval, to each instance
(or tuple). This makes keeping database data homogeneity possible. Neverthe-
less, the semantic assigned to this grade will determine its usefulness, and this
meaning will be utilized in the query processes.
This grade may have the meaning of membership degree of each tuple to the
relation (Giardina, 1979; Mouaddib, 1994). But it may mean something
different, such as the dependence strength level between two attributes, thus
representing the relation between them (Baldwin, 1983), the fulfillment
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degree of a condition, or the importance degree (Bosc, Dubois, Pivert, &
Prade, 1997) of each tuple in the relation, among others.
The main problem with these fuzzy models is that they do not allow for the
representation of imprecise information about a certain attribute of a specific
entity (such as the “tall” or “short” values for a height attribute). Besides, the
fuzzy character is assigned globally to each instance (tuple), making it impos-
sible to determine the specific fuzzy contribution from each constituting
attribute.

Similarity Relations:
The Buckles-Petry Model

The Buckles-Petry Model is the first model that utilizes similarity relations
(Zadeh, 1971) in the relational model. It was proposed by Buckles and Petry
(1982a, 1982b, 1984). In this model, a fuzzy relation is defined as a subset
of the following Cartesian product: P(D1) × ... × P(Dm), where P(Di) represents
the parts set of a Di domain, including all the subsets that could be considered
within the Di domain (having any number of elements). The data types permitted
by this model are the following:

• Finite set of scalars (labels)
• Finite set of numbers
• Fuzzy number set

The meaning of these sets is disjunctive, that is, the real value is one belonging
to the set.
The equivalence types on a domain are constructed from a similarity relation,
in which the user provides values taken by such a relation. Typically, these
similarity values are standardized in the [0,1] interval, where 0 corresponds to
“totally different” and 1 to “totally similar.”
A similarity threshold can be established, with a value between 0 and 1, in
order to get the values whose similarity is greater than the threshold or to
consider those values undistinguishable.
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Possibilistic Models

Under this denomination, models using the possibility theory (see “Possibility
Theory” section in Chapter I) to represent imprecision are included.
The most important models in this group are:

1. Prade-Testemale Model
2. Umano-Fukami Model
3. Zemankova-Kaendel Model

Prade-Testemale Model

Prade and Testemale published an FRDB model that allows the integration of
what they call incomplete or uncertain data in the possibility theory sphere
(Prade & Testemale, 1984, 1987a, 1987b; Prade, 1984).
An attribute A, having a D domain, is considered. All the available knowledge
about the value taken by A for an x object can be represented by a possibility
distribution πA(x) about D ∪ {e}, where e is a special element denoting the case
in which A is not applied to x. In other words, πA(x) is an application that goes
from D ∪ {e} to the [0, 1] interval. From this formulation, all value types
adopted by this model can be represented.
In every possibilistic model, one must take into account that for a value d ∈ D,
if πA(x) (d) = 1, then the d value is totally possible for A(x), and the d value is
not necessarily true for A(x), unless this is the only possible value, that is, πA(x)
(d’) = 0, for every d’ ≠ d. Both the information and representation of this model
are shown in Table 2.3.
The way that two possibility distributions can be compared was discussed
in the “Comparison Operations on Fuzzy Sets” section in Chapter I. In
general, the most commonly used measurements are possibility and neces-
sity (see the subsection  “Possibility and Necessity Measures” in Chapter
I). For a more accurate definition of these fuzzy database comparators,
refer to Chapter VII.
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Umano-Fukami Model

This proposal also utilizes the possibility distributions in order to model
information knowledge. In this model, the nonapplicable information may be
modeled by a possibility distribution about a given domain, where each domain
value has a possibility equal to 0. That is, if D is the discourse universe of A(x),
and πA(x)(d) represents the possibility that A(x) takes the value d ∈ U, then for
the unknown and applicable values, the following representation is used:

Unknown = πA(x)(d) = 1 ∀ d ∈ D (2.2)

The nonapplicable values have a special case of possibility distribution named
undefined, which is represented as:

Undefined = pA(x)(d) = 0 ∀ d ∈ D (2.3)

To represent a situation in which a lack of information is applicable or
nonapplicable, a special value called Null is used as follows:

Table 2.3. Representation of information in two possibilistic models

Information  Prade-Testemale Model Umano-Fukami Model 

The precise data is known and 
this is crisp: c 

πA(x)(e) = 0 
πA(x)(c) = 1 
πA(x)(d) = 0,   ∀ d ∈ D, d ≠ c 

πA(x)(d) = {1 / c } 

Unknown but applicable πA(x)(e) = 0 
πA(x)(d) = 1,   ∀ d ∈ D 

Unknown (Equation 2.2) 

Not applicable or nonsense πA(x)(e) = 1 
πA(x)(d) = 0,   ∀ d ∈ D Undefined (Equation 2.3) 

Total ignorance πA(x)(d) = 1,   ∀ d ∈ D U {e} Null (Equation 2.4) 

Range [m, n] 
πA(x)(e) = 0 
πA(x)(d) = 1   if d ∈ [m, n] ⊆ D 
πA(x)(d) = 0   in other case 

πA(x)(d) = 1   if d ∈ [m, n] ⊆ D 
πA(x)(d) = 0   in other case 

The information available is a 
possibility distribution µa 

πA(x)(e) = 0 
πA(x)(d) = µa(d)  ∀ d ∈ D πA(x)(d) = µa(d)  ∀ d ∈ D 

The possibility that it may not be 
applicable is λ and, in case it is  
applicable the data is µa 

πA(x)(e) = λ 
πA(x)(d) = µa(d)    ∀ d ∈ D Without representation 
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Null = {1 / Unknown, 1 / Undefined} (2.4)

For the remaining cases of imprecise information, a similar model to the
preceding one is adopted.
Besides, every instance of a relation in this model has a possibility distribution
associated with it in the [0, 1] interval, thus indicating the membership degree
of that particular instance to such a relation. In other words, a fuzzy relation R,
with m attributes, is defined as the following membership function:

µR: P(U1) × P(U2) × ... × P(Um) → P([0, 1]) (2.5)

where the × symbol denotes the Cartesian product, P(Uj) with j = 1, 2, ..., m
is the collection of all the possibility distributions in the discourse universe Uj of
the j-th R attribute.
The function mR associates a P([0, 1]) value to every instance of the relation R,
which corresponds to all the possibility distributions in the [0, 1] interval; this
shall be considered as an R membership degree of such an instance.
Finally, in the query process, expressed either in fuzzy or precise terms, the
model solves the query problem by dividing the set of instances involved in the
relation into three subsets, where the first subset contains the instances
completely satisfying the query, the second subset groups those instances that
might satisfy the query, and the third subset consists of those instances that do
not satisfy the query. The information as well as the representation of this model
are shown in Table 2.3.

Zemankova-Kandel Model

This Zemankova-Kandel Model was published in 1984 and 1985. It consists
of three parts:

• A value database, in which data are organized in a similar way as in the
possibilistic models

• An explanatory database, in which both the fuzzy subsets and fuzzy
relation used are stored

• A set of translating rules for the handling of adjectives and modifiers



54   Galindo, Urrutia & Piattini

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The query is posed in a similar way as to that in the Prade-Testemale Model,
except the possibility measure used to find the compatibility of the fuzzy subset
F of the condition, with an attribute A value for each tuple in the relation, is given
by the following equation:

PA(F) = supu∈D {µF(u) ⋅ π(u)} (2.6)

The certainty measure is given by this equation:

CA(F) = max u∈D {0, inf {µF(u) ⋅ πA(u)}} (2.7)

Certainty is used instead of the necessity in the Prade-Testemale Model.
However, the interpretation of the certainty degree is unclear, and no relation-
ship exists between possibility and certainty as it does between possibility and
necessity: N(X) = 1 – P(¬ X) (see Equations 1.46 and 1.47 in Chapter I).
The result of a query is presented as fuzzy relations containing two fields, in
which both possibility and certainty values for each instance are included for a
given query. Minimum thresholds can be established for these relations.
Upon imposing conditions when selecting, the starting point is a defined similarity
relations on D × D, from which any other comparative relation is built. Neverthe-
less, this has some important limitations, which make it an incomplete model.

The GEFRED Model
by Medina-Pons-Vila

The GEFRED Model dates back to 1994, and it experienced subsequent
expansions (Medina, Pons, & Villa, 1994; Medina, 1994; Galindo, Medina, &
Aranda, 1999; Galindo, Medina, Cubero, & García, 2001). This model is an
eclectic synthesis of some of the previously discussed models. Being a
possibilistic model, it particularly refers to generalized fuzzy domains, thus
admitting the possibility distribution in the domains, but it also includes the case
where the underlying domain is not numeric but scalars of any type. It includes
unknown, undefined, and null values as well, having the same sense as that in
Umano and Fukami.
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The GEFRED model is based on the generalized fuzzy domain (D) and
generalized fuzzy relation (R), which include classic domains and classic
relations, respectively.

Definition 2.1: If U is the discourse domain or universe, P(U) is the set of all
possibility distributions defined for U, including those that define the Unknown
and Undefined types (types 8 and 9 in Table 2.4), and NULL is another type
defined in Table 2.4 (type 10). Therefore, we define the generalized fuzzy
domain as D ⊆ P(U) ∪ NULL. The unknown, undefined, and NULL types are
defined according to Umano and Fukami (1994; see the “Umano-Fukami
Model” section, earlier in this chapter). All data types that can be represented
are shown in Table 2.4.

*

Definition 2.2: The generalized fuzzy relations of the GEFRED Model are
relations whose attributes have a generalized fuzzy domain. The following
points are also true:

• Each attribute Aj may be associated to a “compatibility attribute” Cj,
where we can store a compatibility degree. The compatibility degree for
an attribute value is obtained by manipulation processes (such as queries)

Table 2.4. Data types in the GEFRED Model

1. A single scalar (e.g., Size = Big, represented by the possibility distribution 1/Big). 
2. A single number (e.g., Age = 28, represented by the possibility distribution 1/28). 
3. A set of mutually exclusive possible scalars 

(e.g., Behavior = {Bad, Good}, represented by {1/Bad, 1/Good}). 
4. A set of mutually exclusive possible numbers 

(e.g., Age = {20, 21}, represented by {1/20, 1/21}). 
5. A possibility distribution in a scalar domain (e.g., Behavior = {0.6/Bad, 1.0/Regular}). 
6. A possibility distribution in a numeric domain  

(e.g., Age = {0.4/23, 1.0/24, 0.8/25}, fuzzy numbers or linguistic labels). 
7. A real number belonging to [0,1], referring to the degree of matching 

(e.g., Quality = 0.9). 
8. An Unknown value with possibility distribution: Unknown = {1/d : d ∈ D}. 
9. An Undefined value with possibility distribution: Undefined = {0/d : d ∈ D}. 

10. A NULL value given by: NULL = {1/Unknown,1/Undefined}. 
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performed on that relation and indicates the degree to which that value has
satisfied or met the operation performed on it.

• Generalized fuzzy relations are given by two sets: Head H and Body B.
The head includes the name of each one of the n attributes, their domains,
and their compatibility attributes (which are optional). The body includes
the values of the m tuples:

H = {(A1:D1[,C1], ..., An:Dn[,Cn])} 
R= 

B = {(A1:di1[,ci1], ..., An:din[,cin])} con i= 1,..., m 
(2.8)

*

The GEFRED Model defines fuzzy comparators, which are general compara-
tors based on any existing classical comparator (>, <, =, etc.), but it does not
consolidate the definition of each one. The only requirement established is that
the fuzzy comparator should respect the classical comparators’ outcomes
when comparing possibility distributions expressing crisp values (such as 1/x
with x belonging to X).
For example, the “approximately equal” comparator, “possibly equal” or
“fuzzy equal” (FEQ), may be defined in the following equation, where values
p, p’ ∈ D, and their associated possibility distributions are πp and πp,
respectively. U is the discourse domain underlying the generalized fuzzy domain
D (see Definition 2.1):

FEQ(p, p') = msup
Ud∈

 min(πp(d), πp'(d)) (2.9)

Note that this definition is the possibility measure given in Equation 1.40 in
Chapter I.
On these definitions, GEFRED redefines the relational algebraic operators in
the so-called generalized fuzzy relational algebra: union, intersection, differ-
ence, Cartesian product, projection, selection, join, and division. These
operators are defined by giving the head and body of a generalized fuzzy
relation, which is the result of the operation. All these operators are defined in
the definition of GEFRED, but the fuzzy division is defined in Galindo, Medina,
Cubero, and García (2001). Fuzzy relational calculus is defined in Galindo,
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Medina, and Aranda (1999). An extension for fuzzy deductive relational
databases was presented in Blanco, Cubero, Pons, and Vila (2000).

Fuzzy Object-Oriented Database Models

Although the object-oriented database model has not been very successful on a
practical level, it has become increasingly important on a theoretical and scientific
level. With respect to the scope of this model when working with fuzzy
information, some proposals have emerged. We briefly discuss some of the latest
ones here. An overview of other approaches can be found in De Caluwe (1997).

A Generalized Object-Oriented Database Model

Tré, de Caluwe, and Van der Cruyssen (2000) propose a generalized object-
oriented database model, a formal framework for the definition of a fuzzy and/
or uncertain object-oriented database model. This model is obtained as a
generalization of a crisp object-oriented database model compliant with the
ODMG de facto standard and built upon an algebraic type system, and a
constraint system. The ODMG proposal still suffers from some shortcomings,
such as the absence of formal semantics and its limited ability to deal with
constraints, despite the fact that a thorough support of constraints is the most
obvious way to guarantee the integrity of a database.
Thus, this framework is based on a type system and a related constraint system,
which is meant to guarantee database integrity. The constraint system includes
a variety of constraint types. The constraint definition is so formal that is difficult
to set and understand. As you will see in Chapter IV, the FuzzyEER Model
includes an easy way to set fuzzy constraints.

A Fuzzy Object-Oriented Database Management System

Bordogna, Leporati, Lucarella, and Pasi (1999), as well as Bordogna, Lucarella,
and Pasi (2000), present a prototypal implementation of the Fuzzy Object-
Oriented Data Model (FOOD), which allows the representation and instantiation
of vague attribute values and uncertain and strengthened relations.
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The FOOD Model is defined as an extension of a graph-based object model
in order to manage both crisp and imperfect information by using fuzzy set
theory and possibility theory (see Chapter I). In this model a conceptual scheme
is defined as a quintuple {C, T, A, P, N}:

1. C is a finite set of class names (crisp and fuzzy classes). Fuzzy classes
collect objects, which can have a partial membership to the class.

2. T is a finite set of type names (crisp and vague types). Vague types
elements denote sets of vague and imprecise values.

3. A is a set of attribute names. Attributes are simple when their domain is
a type and are complex when their domain is a class. Moreover, both
single-valued and multivalued attributes exist.

4. P is the property relation. P relates one class with its attribute names and
both with the domain. This domain may be another class or type.

5. H is the inheritance relation. If the inheritance relation is fuzzy, then one
label specifies the extent to which the instances of the subclass are also
instances of the superclass.

Thus, the imperfection in data representation is modeled in FOOD in order to
define the following aspects:

1. Vague attribute values are defined to model situations in which the precise
value of a given object attribute is not precisely known. These authors use
possibility distributions. Note that the FuzzyEER Model (Chapter IV)
allows other interesting fuzzy attribute types.

2. Uncertain property and uncertain link relationships allow us to associate
an uncertainty degree, which can be interpreted as a tolerance threshold
to violate the constraint imposed on the actual attribute value.

3. Strengthened property and strengthened link relationships allow us to use
uncertainty degrees in the relationship between two objects.

4. Fuzzy classes are useful when we want to represent the partial member-
ship of an object to a class.

5. Fuzzy class hierarchies represent the vagueness in a hierarchy defined for
classification purposes. This situation occurs when both the superclass
and the subclass are fuzzy. In fact, due to this fact, the vague concepts
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represented in the superclass can be specialized or generalized by the
vague concepts represented in the subclass to a vague extent, which can
be specified by a fuzzy quantifier (see the “Fuzzy Quantifiers” section in
Chapter I).

The implementation has been conceived as an extension of an object-oriented
database management system, the commercial product O2, which is program-
mable by means of its own language (O2C), an object-oriented extension of the
C language, with direct access to data types and constructs defined.
This prototype lacks many of the characteristics that are usually found in a full-
featured application. However, it is the first step toward achieving a good fuzzy
object-oriented database.
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Chapter III

State of the Art
in Fuzzy

Database Modeling

On occasion, the term imprecision embraces several meanings that we should
differentiate. For example, as you saw in Chapter II, the information you have
may be incomplete or fuzzy (diffuse or vague), you may not know whether it
is certain (uncertainty), perhaps you are totally ignorant of the information
(unknown), you may know that the information cannot be applied to a specific
entity (undefined), or you may not even know whether the data can be applied
to the entity in question (total ignorance or a value of null) (Umano & Fukami,
1994). Each of these terms depends on the context in which it is applied.
The management of uncertainty in database systems is a very important
problem (Motro, 1995), as the information is often vague. Motro states that
fuzzy information is content-dependent, and he classifies it as follows:

• Uncertainty: It is impossible to determine whether the information is true
or false. For example, “John may be 38 years old.”

• Imprecision: The information available is not specific enough. For
example, “John may be between 37 and 43 years old,” “John is 34 or 43
years old” (disjunction), “John is not 37 years old” (negative), or even a
simple unknown.
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• Vagueness: The model includes elements (predicates or quantifiers) that
are inherently vague, for example, “John is in his early years” or “John is
at the end of his youth.” However, after these concepts have been defined,
this case would match the previous one (imprecision).

• Inconsistency: It contains two or more pieces of information that cannot
be true at the same time. For example, “John is 37 and 43 years old, or
he is 35 years old”; this is a special case of disjunction.

• Ambiguity: Some elements of the model lack complete semantics (or a
complete meaning). For example, “It is unclear whether the salaries are
annual or monthly.”

Zadeh (1965) introduces the fuzzy logic, as explained in Chapter I, in order to
deal with this type of data. Traditional logic, because it is bi-valued, can operate
only with concepts such as yes or no, black or white, true or false, or 0 or 1,
which allow for a very limited knowledge representation. Although other logics
take more truth values, namely multivalued logics (see the “Imprecision Without
Fuzzy Logic” section in Chapter II), fuzzy logic is one extension that takes
endless truth levels (or degrees), associating the concept of membership degree
or truth degree in an interval [0,1] within the fuzzy logic theory.
Fuzzy databases have also been widely studied (see Chapter II), with little
attention being paid to the problem of conceptual modeling (Chaudhry,
Moyne, & Rundensteiner, 1999). This does not mean that there are no
publications, however, but that they are sparse and have no standard.
Therefore, there have also been advances in modeling uncertainty in database
systems (Buckles & Petry, 1985; Kerre & Chen, 1995; Chen, 1998; Yazici
& George, 1999) including object-oriented database models (Van Gyseghem,
de Caluwe, & Vandenberghe, 1993; George, Srikanth, Petry, & Buckles,
1996; de Caluwe, 1997; Bordogna, Lucarella, & Pasi, 1999; Yazici and
George, 1999).
At the same time, the extension of the ER model for the treatment of fuzzy data
(with vagueness) has been studied in various publications (Zvieli & Chen, 1986;
Ruspini, 1986; Vandenberghe, 1991; Chaudhry, Moyne, & Rundensteiner,
1994, 1999; Chen & Kerre, 1998; Chen, 1998; Kerre & Chen, 2000; Vert,
Morris, Stock, & Jankowski, 2000; Ma, Zhang, Ma, & Chen, 2001), but none
of these publications refer to the possibility of expressing constraints by using
the tools by fuzzy sets theory. In Kerre and Chen (1995), you can find a
summary of some of these models.
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On the other hand, the main methodologies of databases design (Batini, Ceri,
& Navathe, 1994; Connolly, Begg, & Strachan, 1998; Elmasri & Navathe,
2000; de Miguel, Piattini, & Marcos, 1999; Atzeni, Ceri, Paraboschi, &
Torlone, 1999; Gardarin, 1999) have not paid attention to the modeling of data
with uncertainty, although the intent of uncertainty modeling of the real world
is rarely absent.
Based on these concepts, in this chapter we discuss different approaches, by
various authors, related to the uncertainty conceptual modeling problem in
database models.
Closing the modeling stage, in Chapter IV we present a Fuzzy Enhanced Entity-
Relationship model, also known as FuzzyEER, a tool for fuzzy database
modeling with many advantages with respect to the modeling tools presented
in this chapter: fuzzy values in the attributes, the degree in each value of an
attribute, the degree in a group of values of diverse attributes, as well as fuzzy
entities, fuzzy relationships, fuzzy aggregation, fuzzy constraints, and so on. We
also include a comparison of FuzzyEER and some other fuzzy models.

The Zvieli and Chen Approach

Zvieli and Chen (1986) offered the first great approach in ER modeling. They
allowed fuzzy attributes in entities and relationships and introduced three levels
of fuzziness in the ER model:

1. At the first level, entity sets, relationships, and attribute sets may be fuzzy,
namely, they have a membership degree to the model. For example, in
Figure 3.1, the fuzzy entity “Company” has a 0.9 membership degree, the
relationship “Accepts” has a 0.7 membership degree, and the fuzzy
attribute “EmailAddress” has a 0.8 membership degree.

2. The second level is related to the fuzzy occurrences of entities and
relationships. For example, an entity “Young_Employees” must be fuzzy,
because its instances, its employees, belong to the entity with different
membership degrees.

3. The third level concerns the fuzzy values of attributes of special entities and
relationships. For example, attribute “Quality” of a basketball player may
be fuzzy (the possibilities include bad, good, very good, and so on).
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The first level may be useful, but at the end you must decide whether such an
entity, relationship, or attribute will or will not appear in the implementation. The
second level is useful, too, but it is important to consider different degree
meanings (membership degree, importance degree, fulfillment degree, and so
on). A list of authors using different meanings may be found in Galindo, Medina,
Cubero, and García (2001). The third level is useful and is similar to writing the
data type of some attributes, because fuzzy values belong to fuzzy data types.

Proposal of Yazici and Merdan

Yazici and Merdan (1996) propose an extension of the IFO model, shown in
Figure 3.2a, for the processing of imprecise data and special treatment of data
where similarity exists in a label. They call this extension ExIFO, and by means
of examples they explain the implementation and validation of the representa-
tion of a fuzzy conceptual scheme by looking at a representation of uncertain

Figure 3.1. Example with membership degrees to the model in some sets
(entities, relationships, or attributes): The first level of the Zvieli and
Chen approach
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attributes. In the model, three new constructors are added, and by using these
new constructors, it is possible to represent attributes that explicitly have
uncertain values.
The ExIFO conceptual model (Yazici, Buckles, & Petry, 1999) allows
imprecision and uncertainty in database models, based on the IFO conceptual
model (Yazici & Merdan, 1996; Yazici & George, 1999). They use fuzzy-
valued attributes, incomplete-valued attributes, and null-valued attributes. In
the first case, the true data may belong to a specific set or subset of values; for
example, the domain of this attribute may be a set of colors {red, orange,
yellow, blue} or a subset {orange, yellow} where there is a similarity relation
between the colors. In the second case, the true data value is unknown; for
example, the domain of this attribute may be a set of years between 1990 and
1992. In the third case, the true data value is available but is not expressed
precisely; for example, the domain of this attribute may be whether a certain
telephone number exists. Each of these attribute types has a formal definition
and a graphical representation. In this study, the authors introduce high-level
primitives whose semantics are related to each other with logic operators OR,
XOR, or AND to model fuzzy entity type. An example involving an employee-
vehicle scheme is used in Figure 3.2b to illustrate the aggregation and compo-
sition of fuzzy entity types. The main contribution of this approach is the use of
an extended NF2 relation (Non First Normal Form) to transform a conceptual
design into a logical design. Consequently, the strategy is to analyze the
attributes that compose the conceptual model in order to establish an NF2

model.
The study in Yazici and Cinar (2000) is mainly a conceptual modeling approach
for the representation of complex-uncertain information (Yazici & Merdan,
1996) by using an object-oriented paradigm and an algorithm for transforming
a conceptual schema specification of the ExIFO Model into a logical schema
of the Fuzzy Object-Oriented Databases Model (FOOD). ExIFO attempts to
preserve the acquired strengths of semantic approaches while integrating
concepts from the object paradigm and fuzziness by adding new constructors.

The Chen and Kerre Approach

In Chen and Kerre (1998), Chen (1998), and Kerre and Chen (2000) these
authors introduce the fuzzy extension of several major EER concepts (super-
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Figure 3.2. Fuzzy ExIFO Model proposed by Yazici and Merdan (1996):
a) notation b) example employee-vehicle
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class, subclass, generalization, specialization, category, and shared subclass)
without including graphical representations. The basic idea is that if E1 is a
superclass of E2 and e ∈ E2, then E1(e) ≤ E2(e), where E1(e) and E2(e) are
the membership functions of e to E1 and E2, respectively. They discuss three
kinds of constraints with respect to fuzzy relationships (but they do not study
fuzzy constraints): (1) The inheritance constraint means that a subclass instance
inherits all relationship instances in which it has participated as a superclass
entity, (2) the total participation constraint for entity E is defined when for any
instance in E, ∃ αi such that ai > 0, where ai is one membership degree in the
fuzzy relationship, and (3) the cardinality constraints 1:1, 1:N, and N:M are also
studied with fuzzy relationships.
The fuzzy ER model (Chen, 1998) proposes a model generated by M = (E, R,
A) expressed by E as entity type, R as interrelation type, and A as attributes,
also including label types that generate, at the first level, L1(M) = (E, R, AE,
AR), and proposes four set types, with notation shown in Figure 3.3 (see an
example in Figure 3.1), and where µX is the membership function to the set X
(one Entity, one Relationship or one Attribute) and DE is the domain of E
composed of all possible entity types concerned:

• E = {µE (E) / E : E ∈ DE and µE (E) ∈ [0,1]}.
• R = {µR (R) / R : R is a relationship type involving entity types in DE and

µR (E) ∈ [0,1]}.
• AE = {µAE (A)/A : A is an attribute type of entity type E and µAE (A) ∈

[0,1]}.
• AR = {µAR (B)/B : B is an attribute type of relationship type R and µAR (B)

∈ [0,1]}.

The participation constraint (Figure 3.3) is modeled setting that an entity E λ-
participates in R if for every e of E, there exists an f in F such that µR(e,f) > = λ.
The cardinality constraint is shown at the end of Figure 3.3, where N and M are
fuzzy sets. The concept of fuzzy quantifier is not used in this approach.
At the second level, for each entity type E and relationship type R, the sets of
their values can be fuzzy sets, reflecting possible partial belonging of the
corresponding values to their types. The third level of fuzzy extensions concerns
attributes and their values. For each attribute type A, any of its values can be
a fuzzy set.
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Later on, in another section, an attribute-defined specialization is defined with
FSi ∈ F(Dom(A)), where all the FSi are fuzzy sets on Dom(A), the domain of
the attribute A. Graphically, this kind of attribute-defined specialization can be
represented as shown in Figure 3.4a. Figure 3.4b shows the entity Employee
and the fuzzy attribute Age with the labels “Young Employee,” “Middle-Aged
Employee,” and “Old Employee.” He also includes the fuzzy definition for
categories and shared subclass, that is, union and intersection (see Figure
3.4c). This proposal always makes reference to linguistic labels and to the
trapezoidal function over an attribute or specific entity, not to a set of different
attributes or different entities. This author, just like Yazici and Merdan (1996),
establishes his data models from the attributes and creates the object class or
entity by using generalization and specialization tools.
Chen (1998) defines that a linguistic variable X is composed of the tuple (T, U,
G, M), where T is the set of linguistic terms of X, U is the universe of discourse,
G is the set of syntactic rules that generate the element T, and M is the set of
semantic rules translated from T that correspond to the fuzzy subset of U. With
this definition, he defines a conceptual model and its mathematical representa-

Figure 3.3. ER fuzzy notation proposed by Chen (1998)
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Figure 3.4: Notation proposed by Chen (1998):
a) An attribute-defined overlapping specialization with FSi ∈ F(Dom(A))
at the first level; b) Employee in an overlapping specialization with the
fuzzy attribute Age; and c) Shared subclass Intersection
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tion. For example, let X = Age in Figure 3.5, and T is generated via G by the
set {Young, Middle-Aged, Old}. Each term of T is specifically handled by
M by fuzzy sets. The type of correspondence between an entity and a fuzzy
entity is also established, as well as the set of values that a membership degree
obtains from a fuzzy set: 1:1, 1:N, N:M, incorporating fuzziness to the ER
model.

The Chaudhry, Moyne, and
Rundensteiner Approach

Chaudhry, Moyne, and Rundensteiner (1994, 1999) propose a method for
designing Fuzzy Relational Databases (FRDB) following the extension of the
ER model of Zvieli and Chen (1986), taking special interest in converting crisp
databases into fuzzy ones. The way to do so is to define n linguistic labels as n
fuzzy sets over the universe of an attribute. Then, each tuple in the crisp entity
is transformed to up to n fuzzy tuples in a new entity (or n values in the same
tuple). Each fuzzy tuple (or value) does not store the crisp value but a linguistic
label and a grade of membership, giving the degree to which the corresponding
crisp entity belongs to the new entity. Finally, the crisp entity and the new fuzzy
entity are mapped to separate tables.

Figure 3.5. Linguistic variable “Age” with its corresponding values and
conceptual model, according to Chen (1998)
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Their ER model includes fuzzy relationships as relationships with at least one
attribute, namely, the membership grade. They propose FERM, a design
methodology for mapping a fuzzy ER data model to a crisp relational database
in four steps (constructing a fuzzy ER data model, transforming it to relational
tables, normalization, and ensuring correct interpretation of the fuzzy relational
operators). They also present the application of FERM to build a prototype of
a fuzzy database for a discreet control system for a semiconductor manufac-
turing process.
Chaudhry, Moyne, and Rundensteiner (1999) expand the model presented in
their 1994 paper, focusing on their proposal for the control processes
example. In each process, imprecise values are observed and associated to
linguistic labels, and every value involves a process called “DBFuzzifier
construct,” as shown in Figure 3.6.

Figure 3.6. Model proposed by Chaudhry, Moyne, and Rundensteiner
(1994): a) example of DBFuzzifier transformation and b) fuzzy interrelation
for labels
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Proposal of Ma, Zhang, Ma, and Chen

Ma, Zhang, Ma, and Chen (2001) work with three levels of the work of Zvieli
and Chen (1986) and incorporate into the Fuzzy Extended Entity-Relationship
model (FEER model) a way of managing complex objects in the real world at
a conceptual level, associating an importance degree of each of the components
(attributes, entities, etc.) to the scheme. However, their definitions of generali-
zation, specialization, category, and aggregation impose very restrictive con-
ditions. They also provide an approach to mapping an FEER model to a Fuzzy
Object-Oriented Database scheme (FOODB).
Figure 3.7a shows the following: 1) single-valued attribute type, 2) multivalued
attribute type, 3) disjunctive fuzzy attribute type, 4) conjunctive fuzzy attribute
type, 5) null attribute type, 6) open or null attribute type, 7) disjunctive
imprecise attribute type, 8) conjunctive imprecise attribute type, 9) entity with
grade of membership, 10) relationship with grade of membership, and 11)
attribute with grade of membership.
In addition, Figure 3.7b shows the following notations: 1) fuzzy total and
disjoint specialization, 2) fuzzy total and overlapping specialization, 3) fuzzy
partial and disjoint specialization, 4) fuzzy partial and overlapping specializa-
tion, 5) fuzzy subclass with fuzzy multiple superclasses, 6) fuzzy category, and
7) fuzzy aggregation.
Figure 3.8 shows an example of the EER fuzzy model utilizing some of the
notions proposed by Ma, Zhang, Ma, and Chen (2001). Thus, the “car” entity
is a superclass with two fuzzy subclasses “new car” and “old car” in an
overlapping specialization. Besides, the “young employee” fuzzy entity, having
fuzzy instances from the “company” entity, consists of the “union” category
from the fuzzy entity “buyer.” Also, “young employee” has a fuzzy relationship,
“like.” Finally, the “car” entity is an aggregation of some entities: “engine,”
“chassis,” “interior,” and “radio” (with an associated fuzzy degree of 0.7). Note
that “engine” has some fuzzy attributes, such as size and turbo.
Ma, Zhang, and Ma (2004) introduce an extended object-oriented database
model to handle imperfect as well as complex objects. They extend some major
notions in object-oriented databases such as objects, classes, objects-classes
relationships, subclass/superclass, and multiple inheritances.
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Approaches by Other Authors

Ruspini (1986) proposes an extension of the ER model with fuzzy values in the
attributes, and a truth value can be associated with each relationship instance.
In addition, some special relationships such as same-object, subset-of, mem-
ber-of, and so on are also introduced. Vandenberghe (1991) applied Zadeh’s
extension principle to calculate the truth value of propositions. For each
proposition, a possibility distribution is defined on the doubleton true, false of
the classical truth values. In this way, the concepts such as entity, relationship,
and attribute, as well as subclass, superclass, category, generalization, and
specialization, have been extended.

Figure 3.7. FEER notation by Ma, Zhang, Ma, and Chen (2001): a) fuzzy
attributes, entities, and interrelations, and b) specialization, aggregation,
and fuzzy categories
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The proposal of Vert, Morris, Stock, and Jankowski (2000) is based on the
notation used by Oracle and uses the fuzzy sets theory to treat data sets as a
collection of fuzzy objects, applying the result to the area of Geospatial
Information Systems (GIS).
Another line of work in fuzzy conceptual data modeling (without using the
Entity-Relationship model) is reported in Fujishiro et al. (1991), using a graph-
oriented schema for modeling a fuzzy database. Fuzziness is handled by
defining various links between records of the value database (actual data
values) and the explanatory database (semantic interpretation of fuzzy at-
tributes, symmetries, and so on). Extensions carried out to allow modeling
imprecision in semantic data models are also described in Rundensteiner and
Bic (1989), focusing on exploring the potential of semantic data models to allow
fuzziness to be represented.
Van Gyseghem and de Caluwe (1997) discussed two types of imperfect
information appearing in database applications: fuzzy information representing
information with inherent gradations, for which it is impossible to define sharp
or precise borders, and uncertain or imprecise information, representing
information that is (temporarily) incomplete due to a lack of sufficient or more
precise knowledge. Dealing with this kind of imperfect information within the

Figure 3.8. Example of Ma, Zhang, Ma, and Chen notation (2001) for a
car assembly company case
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formal and crisp environment of a computer, is based in this paper upon the
fuzzy set theory and its related possibility theory, which offers a formal
framework to model imperfect information, and upon the object-oriented
paradigm, which offers flexible modeling capabilities. The result is the UFO
database model, a “fuzzy” extension of a full-fledged object-oriented database
model.
This research discusses the UFO database model in detail in three steps. First,
it shows how fuzzy information is handled: Meaningful fuzzifications of several
object-oriented concepts are introduced in order to store and maintain fuzzy
information and to allow a flexible or “soft” modeling of database application.
Then, it discusses how uncertainty and imprecision in the information are
handled: Possible alternatives for the information are stored and maintained by
introducing role objects, which are tied like shadows to regular objects in the
database and allow the processing of uncertainty and imprecision to the user in
an implicit and transparent way, and they also allow the modeling of tentative
behavior and of hypothetical information in the database application. Both the
static and the dynamic aspects of (imperfect) information are developed in the
UFO database model, and imperfect information is considered at the data level
as well as at the metalevel of a database application. The process of “extending”
an object-oriented database model to the UFO database model, as discussed
here, adheres, as closely as possible, to the original principles of the object-
oriented paradigm to allow a flexible and transparent, but semantically sound,
modeling of imprecise information. The object-oriented database model, from
which the extension process starts, adheres to the standard proposal ODMG-
93 to allow for practical implementations of the UFO database model. For the
same purpose, the authors’ paper also discusses an interface of the UFO
database model to an extended relation database model that is capable of
handling some imperfect information and for which some prototypes are
already available.
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Chapter IV

FuzzyEER:
Main Characteristics of

a Fuzzy Conceptual
Modeling Tool

In this chapter we present the FuzzyEER Model, which is an extension of the
EER Model with fuzzy semantics and notations. The Entity-Relationship Model
was introduced by Chen (1976). Since then, numerous modifications and
extensions of its modeling capabilities have been suggested. We will mainly use
the approach by Elmasri and Navathe (2000) because it is very popular,
general, and has an international scope.
With regard to the fuzzy attributes, the following aspects will be defined in the
FuzzyEER Model: imprecise attributes, fuzzy attributes associated to one or
more attributes or with an independent meaning, as well as degrees of fuzzy
membership to the model itself. Furthermore, the following concepts will also
be defined: fuzzy aggregation, fuzzy entity, weak fuzzy entity, fuzzy relationship,
and defined specialization with fuzzy degrees. Fuzzy constraints are very
important, and we review them in this chapter as well.
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Finally, we also include a table to compare FuzzyEER and the modeling tools
for the currently most important published fuzzy databases. Appendix A
summarizes the conventions for FuzzyEER diagrams.

A Brief Introduction to
the ER/EER Model

The ER Model graphically represents data as entities, relationships, and
attributes. Entities are objects that exist in the real world and are represented
in the model by rectangles. Relationships relate different entities to each other
and are represented with diamond shapes. Both entities and relationships can
have different attributes, which identify or characterize them.
The EER Model allows us to extend the description of the entities with new
types (superclasses, subclasses, and categories). A subclass is a specialization
of a superclass, so that each member of a subclass must be a member of the
superclass. A superclass is a generalization of one or several subclasses. A
specialization to which the superclass and all its subclasses are connected is
represented with a circle. Subclasses are marked with the inclusion symbol (Ì)
in the connecting line. A shared subclass is a subclass with various superclasses
so that every member (or instance) of the subclass must belong to all the
superclasses. Naturally, a subclass inherits every attribute of all its super-
classes. On the other hand, a category (union type) is similar to a shared
subclass, in which every member of the subclass must belong to only one of the
superclasses, inheriting only the attributes of that superclass.

Fuzzy Values: Fuzzy Attributes
and Fuzzy Degrees

In this section we refer to the fact that the attributes of an entity may be fuzzy
values, and it is possible to operate with these values. The imprecision may
be expressed in some ways, and we have classified it in two basic types. The
first one we will properly call fuzzy attributes, and the second one we will
call fuzzy degrees. As you will see, we based our work on works by many
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authors, but we especially want to remark about the GEFRED Model (refer
to Chapter II).

Fuzzy Attributes

In order to model fuzzy attributes we classify data in two categories: ordered and
nonordered referential (or underlying) domain. In an ordered referential we can
express any type of possibility distribution or fuzzy set defined over this
referential, but in short, we can synthesize the following types of possibility
distribution: trapezoidal (such as those that you see in Figure 1.1 or Figure 4.2),
linguistic labels (associated to specific possibility distributions), approximate
values (triangular distributions), and intervals of possibility. In a nonordered
referential there are simple “scalars” (or labels) and possibility distribution over
scalars (such as Equation 1.3). In both contexts, the values Unknown, Undefined,
and Null are allowed and are defined as in Umano and Fukami (1994).
With these concepts, we classify fuzzy attributes as the following four types,
based on the definitions of Medina (1994) and Galindo (1999). This classifi-
cation is performed by taking into account the type of referential or underlying
domain. They allow the representation of imprecise information or if the values
only fuzzy processing only on crisp data. There are four possible types of fuzzy
attributes:

• Type 1: These are attributes with precise data, classic or crisp (tradi-
tional, with no imprecision). They can have linguistic labels defined over
them. This type of attribute is represented in the database system in the
same way as precise data but can be transformed or manipulated by using
fuzzy conditions. This type is practical for extending traditional databases,
allowing fuzzy queries to be made about classic data. In this type of
attribute we will not be able to store imprecision, and therefore, strictly
speaking, they are not fuzzy, although they do allow fuzzy queries or
manipulations to be carried out — for example, queries of the kind, “Give
me employees that earn a lot more than the minimum salary.”

• Type 2: These are attributes that gather imprecise data over an ordered
referential. These attributes admit both crisp and fuzzy data in the form
of possibility distributions over an underlying ordered domain. It is an
extension of the Type 1 that allows the storage of imprecise information,
such as “he is approximately 2 meters tall.”
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• Type 3: They are attributes over data of discreet nonordered domain
with analogy. In these attributes, some labels are defined (e.g., “blond,”
“ginger,” “brown,” etc.) that are scalars with a similarity relationship (or
proximity) defined over them (Definition 1.8). Thus, this fuzzy relation
indicates to what extent each pair of labels is similar. As we saw, they also
allow possibility distributions over this domain (Equation 1.3), for ex-
ample, the value (1/dark, 0.4/brown), which expresses that a certain
person is more likely to be dark than brown-haired but will definitely not
be blond or ginger.

• Type 4: These are attributes proposed in this model, and they are defined
in the same way as Type 3 attributes, without it being necessary for a
similarity relationship to exist between the labels (or values) of the domain.
In this case, the main thing is the degree associated to each individual label,
without evaluating the similarity between labels. For this reason, in this
case, it will, in principle, be more usual to find non-normalized values. A
possible example could be the type of role a client plays in a real estate
agency, where the degree measures the importance with which a client is
seeking or offering a property, without taking into account the similarity
between the two roles.

It should be noted that the fuzzy set of possible values for an attribute is called
fuzzy domain.

Fuzzy Degrees

In the previous section, different ways of including we explain fuzzy values in
attributes. However, there is another way of incorporating uncertainty in a
database, which consists of using fuzzy degrees (Galindo, 1999; Galindo,
Medina, Cubero, & García, 2001). The domain of these degrees may be the
interval [0,1], although other values are also permitted, such as possibility
distributions (usually over this unit interval), which, in turn, may be related to
specific linguistic labels (such as “a lot,” “normal,” etc.). In order to keep it
simple, we will use only degrees in the interval [0,1], because the other option
offers no great advantages and a greater technical and semantic complexity. In
the next sections you see some examples that use the definitions in this section.
The following are some of the most important ways of using these fuzzy degrees:
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• Associated degrees: These degrees are associated to a specific value
and incorporate imprecision to the associated value. They may be
associated to different concepts:
� Degree in each value of an attribute: An instance can have several

attributes. In turn, some of these attributes may have a fuzzy degree
associated to them. This implies that each value of this attribute has
an associated degree that measures the level of fuzziness of that value.

� Degree in a set of values of different attributes: This is an
intermediate case between the previous cases. Here, the degree is
associated to some attributes. Although this case is unusual, it is
sometimes very useful (Galindo, Medina, Cubero, & Pons, 1999).

� Degree in the whole instance of the entity: This is similar to the
previous case, but here the degree is associated to the whole
instance of the entity and not exclusively to the value of a specific
attribute of the instance. It can measure to what degree this tuple (or
instance) belongs to this table (or entity) of the database (Umano &
Fukami, 1994).

• Nonassociated degrees: There are cases in which we wish to express
imprecise information, which can be represented by using only the degree,
without associating this degree to another specific value or values.

On the other hand, the meaning of these degrees can be varied and depends on
their use. The processing of the data will be different depending on the meaning.
You will see some examples of each type when we use these concepts in the
third section of this chapter. The following are the most important possible
meanings of the degrees:

• Fulfillment Degree: A property can be fulfilled with a certain degree
between two extremes: total fulfillment (usually degree 1) and no fulfill-
ment at all (usually degree 0). This is usually used in fuzzy queries, when
a condition has been established over the values of an entity or relationship
(i.e., a selection with a fuzzy condition), and the degrees will express to
what extent this condition has been fulfilled. For example, the GEFRED
Model (Medina, Pons, & Vila, 1994; refer to Chapter II) uses an
associated degree in each value of an attribute with this meaning. Some
other authors use this meaning (Bosc, Dubois, Pivert, & Prade, 1997).
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• Uncertainty Degree: The uncertainty degree expresses the certainty
with which a specific piece of data is known. When certainty exists
regarding the truth of the degree, then it will be 1, and if certainty exists that
it is false, the degree will be 0. The values between 0 and 1 express
different levels of uncertainty, indicating that there is doubt. This meaning
is to some extent quite similar to the previous one, as this uncertainty may
be in relation to the membership of an object to a set (Umano & Fukami,
1994).

• Possibility Degree: It measures the possibility of the information used.
This meaning is similar to the previous one but can be seen to be a weaker
degree because it contains information that is more or less possible and not
more or less certain (Umano & Fukami, 1994; Medina, Pons, & Vila,
1994).

• Importance Degree: Different objects (i.e., instances, attributes, etc.)
can have different importance, so that some objects are more important
than others (Mouabdid, 1994; Bosc, Dubois, Pivert, & Prade, 1997).

When defining fuzzy sets, we speak of a membership degree to a fuzzy set.
This meaning be added to the degrees previously described. Various authors
have studied the degrees of fulfillment, uncertainty, possibility, importance, and
membership (Medina, Pons, & Vila, 1994, Mouaddib, 1994; Petry, 1996;
Bosc, Dubois, Pivert, & Prade, 1997; Dubois & Prade, 1998; Galindo, 1999;
Galindo, Medina, Cubero, & García, 2001; Ma, Zhang, Ma, & Chen, 2001).
In this chapter we do not aim to demonstrate the usefulness of these degrees
and their different meanings, because the authors who have used these degrees
with different meanings have already done so. Our objective is to show the need
for representing it in a conceptual model based on the EER Model, and we do
so in the following section.

Fuzzy Attributes in FuzzyEER Model

In the preceding section, we define several ways of allowing imprecise
information. In this section we define the application of each of these cases in
the conceptual model called FuzzyEER, including its representation or graphic
notation. Examples to clarify each definition are also given. In this section do
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not deal with the case of a degree associated to the whole instance, which we
look at in later sections.

Fuzzy Values in Fuzzy Attributes

Fuzzy values in the attributes refer to the different kinds of attributes of an entity
that can model fuzzy values (imprecise), and we classified them in the section
on fuzzy attributes. This corresponds with the third level of Zviely and Chen
(1986), but in a clearer and more complete way, according to the given
classification.
The graphic representation of the attributes in the EER Model is made by means
of a circle, labeled with the name of the attribute and joined by a line to the entity
or relationship to which it belongs (De Miguel, Piattini, & Marcos, 1999).
Some authors place the name of the attribute inside the circle (which can be an
oval of differing sizes in order to accommodate the name). However, we
believe that it is better to place the name outside the circle either on the left- or
right-hand side, so that the circle can be of a set size and does not depend on
the number of letters in the name of the attribute.

Definition 4.1: A type of entity or a relationship E with attributes A1, A2,
..., An and D1, D2, ..., Dn being their respective domains. A fuzzy attribute
is represented in the FuzzyEER Model depending on its type:

• Fuzzy attribute Type 1: It is graphically represented in the same way
as a classic attribute, with a normal circle with a line that joins it to
the entity, first placing the name of the attribute T1 followed by a
colon. See Figure 4.1a.

• Fuzzy attributes Type 2, 3, and 4: Their representation is similar except
that a circle of stars is used, and the marks T2, T3, or T4 are placed
before the name of the corresponding attribute. See Figure 4.1b.

Another option is to include next to the name of the attribute a list in
brackets with the linguistic labels that are defined for this attribute: {L1,
L2…}. These labels must be defined in the Data Dictionary of the model.

*
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Note that in the case of classic attributes a normal circle is used, and although
the Type 1 is included in fuzzy attributes, it does not in fact admit fuzzy
information (it simply allows fuzzy processing of nonfuzzy data). For this reason
Type 1 is not represented by a circle of stars like the rest of the fuzzy types, but
it does allow the declaration of fuzzy labels that can be used in different
operations (e.g., queries).
In De Miguel, Piattini, and Marcos (1999), a classification is proposed for the
attributes defined in the EER Model:

1. Identifying attribute or primary key, denoted by a solid black circle.
In order to avoid problems of ambiguity, distinguishability, or others, the
primary key cannot be represented by fuzzy values (Medina, Pons, &
Vila, 1994; Medina, 1994).

2. A simple attribute takes only a single value in a domain (for each
instance). This is the most usual kind of attribute. For example, a person’s
weight or height is a simple attribute, as only a single value is possible,
although it may or may not be fuzzy.

3. A derived attribute is obtained from already existing ones (these may or
may not be fuzzy). For example, age can be obtained from the date of
birth, and if that date is fuzzy, then age will be fuzzy. These attributes may
be associated to a rule d for derivation that defines how to make the

Figure 4.1. Graphic representation in FuzzyEER for a) fuzzy attribute
Type 1 (simple); b) fuzzy attribute Type n, with n∈{2,3,4} (simple); c)
derived fuzzy attribute, d) optional multivalued fuzzy attribute; e)
multivalued fuzzy attribute with a minimum compulsory value; and f)
generic example of a composite attribute with a fuzzy component

T1: Name: {L1, L2...} Tn: Name: {L1, L2...} b) a) 

Tn: Name: {L1, L2...} d) (0,m) Tn: Name: {L1, L2...} c) d 

Tn: Name: {L1, L2...} e) 
(1,m) 

f)  Name_composite 

Tn: Name1: {L1, L2...} 

 Namei 
. . . 
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calculation. Graphically, a derived attribute is represented by using a
dashed or broken line on the line that joins the circle of the attribute with
the entity or relationship to which it belongs. This dashed line may also be
labeled with the rule of the derivation, d.

4. A multivalued attribute is one that takes more than one value in a
domain (for each instance). For example, a person can have several values
for the attribute “telephone.” Graphically, this is expressed by changing
the line of the attribute to an arrow, which points towards the circle. This
arrow is labeled with two whole numbers, between round brackets and
separated by commas, that define the minimum and maximum number of
possible values, taking into account that
• If the minimum value is 0, it indicates that this attribute is optional and

that it cannot take any value. In this case the line of the arrow may be
dashed (broken).

• If a value is at least compulsory, then the minimum value will take a
whole number that is equal to or greater than 1, and the line of the
arrow will be normal (not dashed).

• If the minimum or maximum number is unknown, we will use a letter.
5. A composite attribute is composed of other attributes that can be of any

type. For example, an address can be composed of a street, number, city,
and so forth. A composite attribute is denoted by a normal circle with a
line that crosses all the lines of attributes that compose it. All components
of a composite attribute are represented normally (i.e., joined to the type
of entity or relationship to which it belongs).

Definition 4.2: The simple fuzzy attributes (Definition 4.1), and the
derived and multivalued attributes (optional and compulsory) preserve
the same definition and graphic representation when they are fuzzy. That
is to say, it is only necessary to place before the name of the attribute the
mark that distinguishes the type of fuzzy attribute (T1, T2, T3, or T4) and
change the circle to a circle of stars (except for T1). See Figures 4.1b, c,
d, and e, respectively.
In composite attributes, when one of the components is fuzzy, this
component will be represented according to its type. See a generic
example in Figure 4.1f.

*
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Example 4.1: In a theatrical company let us take the entity Employee, which
represents the actors of the company. In this entity, we can consider in a
simplified form the following attributes: Employee_ID, Height, Age, Color_hair,
and Color_skin. Some of these attributes can be characterized as fuzzy
attributes:

• Employee_ID: This is a classic attribute, and its domain will correspond
to numerical values, as this attribute is defined as a primary key for the
entity Employee.

• Height: It is a fuzzy attribute Type 1, and its domain can be defined as the
set of values in the interval (0, 2.5). We understand that it is a precise
attribute, but we can define linguistic labels (such as “short,”
“medium_height,” and “tall”) to be used when manipulating these data
(e.g., in queries). In this case, it is supposed that the exact height of an
employee is known, and if we do not know that height, then we must store
the null value (even though we know something about it). Note that this
attribute could be Type 2 if we wish to store fuzzy information about the
height of an actor, such as “about 1.72 meters tall,” or “tall,” for example.

• Age: It is a fuzzy attribute Type 2, and its domain corresponds to a fuzzy
set of ages considered as numerical values (ordered referential), allowing
linguistic labels such as “young,” “mature,” and “elderly.” These labels are
represented and defined as possibility distributions. In Figure 4.2 these
labels are defined. Note, for example, how the label “young” is defined as
a trapezoidal function with its four characteristic values (0/15, 1/20, 1/25,
0/30), and how the age 26 belongs to the label “young” (or to the set of
young people) in a degree of 0.8.

Figure 4.2. Example 4.1: Possibility distributions for the linguistic labels
of the fuzzy attribute T2: Age
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• Color_hair: It is a fuzzy attribute Type 3. Its underlying domain will
correspond to the set {“blond,” “dark,” “ginger”}; each of these labels
must be associated to a value of resemblance or similarity in the interval
[0,1]. It should be noted that the values of this domain are not ordered,
because no such relationship exists. Their associated similarity function is
represented in Table 4.1. The real domain is made up of simple values in
this referential (for example, 1/blond) or possibility distributions (for
example, {1/blond, 0.6/ginger}).

• Color_skin: It is a fuzzy attribute Type 4, and its underlying domain has
the labels {“white,” “yellow,” “brown,” “black”}. The fuzzy domain is
formed by adding a single degree to one or several labels of the underlying
domain. For example, a valid value is {0.8/white, 0.6/yellow, 0.4/brown,
0.1/black}. This differs from the previous case, as in this attribute there
is no table of similarity, because we assume that we are not interested in
establishing the similarity between labels. Rather, for each actor, we wish
to store information as precise as possible regarding the similarity degree
between his/her own skin color and the labels defined for this attribute.

 Blond Dark Ginger 
Blond 1 0.1 0.8 
Dark  0.1 1 0.3 
Ginger 0.8 0.3 1 

Table 4.1. Similarity function between the labels of the fuzzy attribute
Type 3 Color_hair (Example 4.1)

Figure 4.3. Example 4.1: Entity Employee for the actors of a theatrical
company, with fuzzy attributes Type 1, Type 2, Type 3, and Type 4
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Figure 4.3 represents the entity Employee with the notation of the FuzzyEER
Model. It defines fuzzy attributes Type 1, Type 2, Type 3, and Type 4,
according to this example. This entity may be very useful because it is very
common to seek an actor with particular features to represent a specific
character that requires particular physical characteristics.

*

Fuzzy Degree Associated to Each Value of an Attribute

In this case, each value of an attribute (for each instance) can have an associated
degree, generally in the interval [0,1]. The degree measures the level of
vagueness of that value. The significance of these degrees can vary as explained
in Chapter II.

Definition 4.3: Let E be an entity or a relationship with attributes (A1, A2,
...,An). For each attribute Ai with i∈ {1,..., n} (whether fuzzy or not), there
may be one or several fuzzy degrees associated to each value of each
instance of E. These degrees are represented as normal attributes but with
a circle with a dashed outline, joined by a line to the object E to which it
belongs. This degree will be placed next to the attribute that has that
degree associated to it, and in order to indicate it, an arrow originating
from its line points towards the line of the degree.
Furthermore, this degree may have different meanings that are expressed
by labeling the dotted circle with the expression Gn, or GMeaning, where “n,”
or its meaning, is one of those that are later defined or other new ones.
This expression can be optionally followed by the name of the attribute Ai
and, between brackets, any type of expression that can help to clarify the
meaning of that degree in each specific context and/or its use. Generi-
cally, we can define the following meanings:

• Membership Degree: The membership of a value to a specific
instance can be quantified by a degree. It is represented by G0 or
GMembership.

• Fulfillment Degree: In an instance, a property can be satisfied in an
attribute with a certain degree between two extremes. It is repre-
sented by G1 or GFulfillment.
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• Uncertainty Degree: The uncertainty degree expresses to what
degree we are certain that we know a specific piece of data for a
specific instance. It is represented by G2 or GUncertainty.

• Possibility Degree: It measures the possibility of the information
that is being modeled for each piece of data. It is represented by G3

or GPossibility.
• Importance Degree: Different values of an attribute can have

different importance, so that certain values of certain attributes are
more important than others. This importance may or may not depend
on the instance. It is represented by G4 or GImportance.

If the meaning is not defined as 0, 1, 2, 3, or 4, by default the attribute will
represent the membership degree G0.

*

Definition 4.4: Two types of fuzzy degrees associated to an attribute exist:

1. Derived fuzzy degree: If a function Q(x) exists that defines the
calculus of those degrees. That is, the function allows the degrees to
be automatically calculated based on the value of other attributes or
on any other information stored or available in the database. This
function could be, for example, a possibility distribution of a linguis-
tic label, when x is the value of the attribute to which the degree is
associated. In this case the function Q will be used by labeling the
dashed line that joins the dashed circle to its owner.

2. Nonderived fuzzy degree: In this case a function for automatically
calculating the degrees has not been defined. This case includes the
cases in which those degrees are introduced manually by the user.

*

It is important to distinguish between the value of the fuzzy attribute and the
value of the degree associated to that value. For example, if for a certain person
hair color is important (or a fulfillment degree of a particular property), then that
importance degree is independent of the person’s hair color. It is also
independent of the type of that attribute (Type 3 in the hair color case). That
is to say, the degree represents an importance degree of the whole value that
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hair color takes. Furthermore, it is important to point out that this attribute can
have a fuzzy value. It can be considered as a double attribute because it has two
related values (the value of the attribute, whether fuzzy or not, and the degree
associated to it).

Example 4.2: Let us imagine an entity for representing Basketball Players.
Each player has certain classic attributes, like Player_Id, Team, Nationality,
Number_of_Matches, and so forth. Let us consider a fuzzy attribute Type 2
Quality whose referential is the average number of points scored per match
(positive real numbers). The labels (Bad, Regular, Good, Very_Good) can be
defined for this attribute. Moreover, a degree that can have different meanings
can be associated to this attribute. The meanings may be as follows:

1. If we consider the derived type degree, and the function Q(x) is the
membership function of a label, such as “Good,” then this degree
represents the membership degree of each player to the fuzzy set
composed of the “Good” players. In this case, the dashed circle could be
labeled as G0 Quality (degree of “Good”).

2. The known quality of a player will be more certain if the player has played
a lot of matches. Thus, if this degree is labeled as G2 Quality, we are
referring to the fact that this degree measures the uncertainty or reliability
of the value of the attribute Quality. This can also be a derived degree if
we define the function Q, which can depend on the attribute
Number_of_Matches. This case is represented in the Figure 4.4.

Figure 4.4. Example 4.2 case b): fuzzy derived degree and associated
to the fuzzy attribute Type 2 Quality, with meaning of uncertainty
degree (G2)

T2: Quality {bad, regular, good,very_good}

BASKETBALL_PLAYERS
Player_Id

Nationality

Team

Number_of_Matches

G2 Quality
Q
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3. For each player this evaluation of Quality may be more or less important,
depending on his usual position in the team. In this case we can express
it by labeling the degree with G4 Quality.

*

The case (1) of the previous example allows us to store a value that may be
useful for helping to speed up a query of the type “give me good players.”
However, it is clear that this degree is not necessary for this type of queries, and
therefore the function that defines the calculus of the degree will not normally
be a label defined for the same attribute to which the degree is associated. If
this information is necessary, it can be calculated at any moment, although the
conceptual model does not express it explicitly.
On the other hand, an attribute can be associated to several degrees, each of
which may have a different meaning. In particular, the meanings of the sections
(1), (2), and (3) of the previous example are perfectly compatible, and it could
be useful to define two or three of them simultaneously in our FuzzyEER Model.

Fuzzy Degree Associated to Values of Some Attributes

In this case a degree associated to a set of attributes belonging to an entity is
required. The degree is not associated to a single attribute but to a set of
attributes. This case is unusual, but it can add expressiveness if it is incorporated
to a data model. An example of this attribute can be found in the concept of
fuzzy dependence proposed by Raju and Majumdar (1988).

Definition 4.5: Let E be an entity (or relationship) with attributes (A1, A2,
...,An), and X a subset of these attributes: X = {Ai : i∈I} of attributes, with
l being a set of indices so that I⊂{1,..., n}. We can define a fuzzy degree
associated to each value that the attributes of X take in each instance of
E. This degree is named Degree associated to the values of different
attributes. In a FuzzyEER Model this type of attribute is represented in a
similar way to that explained in the Definition 4.3, but now the arrow will
cross all the attributes of X (those that are associated with this degree).
To make it clearer the attributes of X can be placed after the GMeaning of the
degree. In general, this degree will be derived from the values of those
attributes.
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Derived fuzzy degrees are represented like the Definition 4.4.
*

Example 4.3: Let us suppose the attributes (Employee_ID, Job, Ability,
Experience) of an Employee entity. In this case, the attribute Job is considered
to be classic or ordinary (alphabetical), and the attributes Ability and Experi-
ence are fuzzy attributes Type 2 and 3 respectively, with labels {Clumsy,
Normal, Skilled} for the Ability, and labels {Apprentice, Normal, Expert} for
Experience.
Now we add a fuzzy grade to the group of attributes X = {Experience, Ability}.
We may call this degree “degree of competence or expertise,” and its meaning
can be varied according to the necessities of the model. For example:

1. Uncertainty degree G2: This represents the extent to which the values of
the attributes {Experience, Ability} are true. Depending on how the two
values have been calculated (whether they have been based on much or
little evidence) they can be more or less reliable. Figure 4.5 represents this
case, where d expresses the formula for the automatic calculation of the
fuzzy degrees.

2. Importance degree G4: For an employee, those attributes may be more
important than others. For example, a surgeon requires more experience
and ability than an administrative worker.

*

Figure 4.5. Example 4.3: Fuzzy degree associated with two attributes
(both being fuzzy)

d

EMPLOYEE Job

Employee_ID

T3: Experience:{ apprentice, normal, expert }

T2: Ability:{ clumsy, normal, skilled }

G2{experience, ability }
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Fuzzy Degree With Its Own Meaning

Another way of using the degrees is to consider the case in which a determined
degree has no reason to be associated with any other attribute but instead can
be fuzzy and have its own value (or meaning).

Definition 4.6: An entity or a relationship E may have a fuzzy degree with
its own meaning. This degree is graphically represented by a circle and a
dashed line with a G inside it, joined to E. That circle will be labeled with
the name of this degree. Here the meanings explained previously can also
be applied, but in general, it is best to use a sufficiently descriptive name,
because that degree has its own meaning, which should be expressed as
clearly as possible with its name.
Derived fuzzy degrees are represented like the Definition 4.4.

*

Example 4.4: The entity Medicine in Figure 4.6 has some attributes from which
we can highlight Components, which is a multivalued (not fuzzy) attribute,
Color, which is a fuzzy attribute Type 3, and two degrees:

• The Color attribute has a degree associated with each value that measures
the intensity of that color.

Figure 4.6. Example 4.4: Fuzzy degree associated with the fuzzy attribute
Type 3 Color, with meaning of Intensity degree, and one degree with its
own meaning, known as Danger

MEDICINE
Medicine_Id

Components

Name

T3: Color   {White, Red, Yellow, Blue,Orange}

(1,m)

GIntensity  Color

G   Danger



92   Galindo, Urrutia & Piattini

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• The attribute Danger measures how dangerous that substance is. This
degree is not associated with any other attribute. It is a fuzzy degree with
its own meaning.

*

Fuzzy Degree to the Model

This is a case of redefining the first level of Zvieli and Chen (1986), extending
the advantage brought about by the power of being able to use degrees with
different meanings.

Definition 4.7: An entity, relationship, or attribute may have a fuzzy
degree in respect to the model. This degree can have different meanings
just as we expressed in Definition 4.3. The type of degrees are denoted by
adding to the name of the object (entity, relationship, or attribute) the
expression Gn = α, where n is the number that indicates the meaning of
that degree or the meaning in words and α is the associated fuzzy degree,
with α ∈ [0, 1].

*

With this tool we can define a complete generic model and for certain uses
delimit the model to those entities, relationships, and attributes whose impor-
tance degree (for example) is greater than a value x and whose membership
degree is greater than another value y. In this way, the entities, relationships, or
attributes that do not reach those thresholds will be hidden (or eliminated).
Thus, we may obtain a model that is as complete or as simplified as we want,
paying attention to as many characteristics as we want.
Of course, if an entity is hidden from the model because it has a lower degree
than the desired degree, then the attributes and relationships in which that entity
is involved will also be hidden. And if a relationship is hidden, then its attributes
will also be hidden. If an attribute is hidden, then the fuzzy degrees that are
associated with it will also be hidden.
It is important to point out that by default, all the entities, relationships, and
attributes have degree 1 (the maximum) for any meaning.
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In the following section we present an example (Example 4.5) of the previous
definition.

Fuzzy Aggregations

De Miguel, Piattini, and Marcos (1999) state that an aggregation allows us to
represent types of compound entities, which are obtained through the union of
other simpler ones. The compound type is referred to as the all, while the
components are the parts. These authors define an aggregation as an entity,
which is composed of one set of different elements. They define two kinds of
aggregations:

1. Aggregation of entities: This aggregation expresses that each instance
of an aggregated entity is composed of other instances of other entities,
and it is denoted by a rhombus close to the aggregated entity (the all). The
other entities (the parts) join the rhombus with a line.

2. Aggregation of attributes: This is the most common type of aggregation
and expresses that an entity is a set of attributes.

Aggregation of entities may also be represented by creating relationships that
link each part with the all, but we consider that this representation simplifies the
understanding of the model. These concepts are also dealt with by other
authors, such as Batini, Ceri, and Navathe (1994).

Definition 4.8: A fuzzy aggregation is defined in two ways:

1. A fuzzy aggregation of types of entities allows us to represent that an
all is obtained through the union of different parts that can be types
of different objects, which belong to the aggregated entity (the all)
with a certain degree and which carry out different roles in the
aggregation. Following the notation of De Miguel, Piattini, and
Marcos (1999), the graphic representation of the fuzzy aggregation
of entities is a rhombus, which we show here with a dashed line,
joined to the entity that forms the all, and the different entities, which
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form the parts that are joined with lines. Those parts with fuzzy
degrees are joined with dashed lines, and beside these lines, the
degree that associates it with the aggregation and its meaning is
defined (using the format of Definition 4.3).

2. A fuzzy aggregation of attributes allows us to represent an entity and
a collection of attributes. These attributes represent the parts that
compose it. For this notation we will use the proposal in Definition 4.7.

*

Note that in Definition 4.7 an entity was represented as a being with diverse
attributes that have a degree with regard to the model. On the other hand, in
Definition 4.8 (2) the point of view changes to represent an entity as an
aggregation of attributes. In other words, the difference is that although
Definition 4.7 refers to the degree as the model, in Definition 4.8 the degree
refers to the entity of the aggregation. However, for the sake of simplicity, we
have not changed the notation; we consider that this small point, which causes
the difference between the two concepts, is not important in practice. If it were,
we could put a circle with a dashed line in Definition 4.8.
The classic aggregation of entities includes the (min, max) notation to express
the cardinality of each aggregated entity. In the FuzzyEER Model we can use
the fuzzy (min, max) notation (see the “Fuzzy Constrains” section, later in this
chapter).
Consider that in Definition 4.8 classic and fuzzy aggregation is not exclusive,
because normally only some of the parts will be fuzzy components. The same
thing happens in the aggregation of attributes as, in general, only some attributes
will be of fuzzy aggregation to the entity.

Example 4.5: Figure 4.7 models an entity Car with some attributes: serial
number (the primary key), color, year, potency, and country (of production).
On the other hand, a car is composed of a chassis, engine, radio, specialized
computer, and other entities. Some of these elements (attributes and entities)
have a membership degree to the model.
If we want a detailed model, we can use all elements, but if we do not need such
a detailed model, then we can get an element with a membership degree greater
than 0.7, for example. In this case, the model does not use some attributes
(color and country) and some entities (computer).

*
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It should be noted that the example in Figure 4.7 was also studied by Ma, Zhang,
Ma, and Chen (2001). We consider that the notation proposed in the FuzzyEER
Model is more representative than that of these authors as well as more complete.
Also, the type of example of Figure 4.7 is dealt with in Chen and Kerre (1998),
but this author does not use the concept of aggregation of entities.

Fuzzy Entities

There are two types of entities: the regular entities, which exist in the database
on their own account, and the weak entities, whose existence depends on
another entity (normally a regular one), known as owner entity.
On the other hand, in the section “Similarity Relations: The Buckles-Petry
Model” in Chapter II we established that a fuzzy degree can be associated to
each instance of an entity. This case expresses the concept of the fuzzy entity.
In this section we study both types of fuzzy entities.

Fuzzy Entity as a Fuzzy Degree in
the Whole Instance of an Entity

As we know, an entity is a real or abstract object about which we want to store
information in the database. On the other hand, an instance (occurrence) of the

Figure 4.7. Example 4.5: Fuzzy aggregations

CAR

ComputerRadioEngineChassis

G0 = 0.5

Serial_Number

Color G0 = 0.6

Country  G0 = 0.4

Year G0 = 0.9
Potency

G0 = 0.8
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entity is each one of the concrete realizations (objects or values) of that type of
entity. The graphic representation of the type of entities is a rectangle labeled
with the name of the type of entity it represents (Elmasri & Navathe, 2000; De
Miguel, Piattini, & Marcos, 1999; Silverschatz, Korth, & Sudarshan, 2002).
In the FuzzyEER Model, each instance in a fuzzy entity has a different degree
for measuring the relationship between itself and its entity (its degree of
pertinence to this type of entity, or its importance degree, its certainty degree).

Definition 4.9: A (regular) fuzzy entity is defined in a FuzzyEER Model as
an entity with an attribute that expresses a degree (with any meaning). In
other words: If E is a fuzzy entity with n instances, e1, e2, …, en, then at least
one mE function is defined about these instances so that

∀ ei ∈ E with i = 1, 2, ..., n, µE (ei) ∈ [0, 1] (4.1)

The expressionµE (ei) can measure the degree with which the instance ei
“belongs” to E, although it can have other meanings such as those
expressed in Definition 4.3.
The notation of a type of fuzzy entity is represented with a rectangle with
dashed lines. The fuzzy attribute representing the degree must also be
added with its meaning. This attribute is represented by a dashed circle
with a dashed line (which distinguishes it from other degrees). The circle
of that degree should be labeled with the symbol Gn, which we explain in
Definition 4.3.
Optionally, the function that allows this degree to be calculated may also
be added.

*

This is similar to the previous cases, but here the degree is associated with the
whole instance of a certain type of entity and not exclusively to a particular value
of an attribute.
Note that we can allow an entity to have several degrees associated with it. The
semantic concept becomes more complicated, but it would not make sense to
limit each entity to only one degree. Furthermore, constraints could be
established between different degrees (for example, the importance of each
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employee in his department should be greater than his degree of capacity for
a certain task).

Example 4.6: We may consider a fuzzy entity Employee with an attribute that
stores the total number of hours worked per week. For each employee, a
membership degree to the entity can be defined in such a way that the
employees will belong to the Employee type of entity with a certain degree,
according to the number of weekly hours. This degree will be calculated by
dividing the total number of hours worked by the minimum number of hours, so
that the belonging is total. Note that this is a derived fuzzy attribute in order to
obtain the membership degree to the entity.
Figure 4.8 models this example, where Q(h) is the calculus of the degree and
h is the number of hours worked per week. We can see that Q(h) = min{1,h/
m}, where m is the minimum number of hours for the total membership.
If m = 35, then an employee who works in the company for 15 hours will be
considered an employee with a degree of 0.43 (the result of the division 15/35)
so that this degree can be maintained in diverse calculations (selections with
different aims, gratifications, etc.).

*

Fuzzy Weak Entities

Weak entities depend on another entity known as owner entity. This depen-
dency can be a relationship of dependency on identification (Elmasri &
Navathe, 2000) or dependency on existence (De Miguel, Piattini, & Marcos,
1999). The graphic representation of a weak entity is a rectangle with double

Figure 4.8. Example 4.6: Fuzzy entity with a membership degree for each
instance, which depends on the number of hours (h) worked per week

 
Employee_ID

Weekly hours(h)

Gmembership Q(h)=min{1,h/35}

EMPLOYEE
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line (two concentric rectangles) with its name inside connected with a double
line to a type of relationship marked with an “E” (Existence) or an “ID”
(Identification) in a corner.
Both types of weak entities are very similar, and with that of Identification, that
of existence can be represented, although this second form helps us to better
represent the model. Take a look at both types in detail:

• Weak entity due to dependency on existence: In this case the weak
entity cannot exist if the type of owner entity disappears. Its existence
makes no sense without the existence of the owner entity. In general,
instances of this kind of weak entity do not exist in the real world if they
are not associated to an instance of the owner entity. A weak entity due
to dependency on existence is usually used to represent a multivalued
attribute in a regular entity, especially if that attribute is composite or, in
our case, is associated with a fuzzy degree.

• Weak entity due to dependency on identification: In this case, the
weak entity lacks its own primary key and needs the key of the owner
entity in order to identify each instance. Of course, the weak entity must
have other attributes, especially those that are known as the partial key.
The partial key distinguishes those instances that belong to the same
instance in the owner entity. In this case, if the owner entity disappears,
then the weak entity can continue to exist by simply looking for or creating
a new primary key for that weak entity.

Based on these concepts, we can define the concept of the fuzzy weak entity
by creating two new tools in order to amplify the expressiveness of the
FuzzyEER Model.

Definition 4.10: A fuzzy weak entity is defined in two cases, denoting the
owner entity as E:

1. A fuzzy weak entity due to dependency on existence: This case allows
us to express, in a different way, when an entity has a fuzzy multivalued
attribute (or with a fuzzy component in composite attributes). How-
ever, the most useful thing about this case is that we can use it
whenever we want to store the measurement in which the value of a
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certain fuzzy attribute B in each instance belongs to each one of the
fuzzy sets defined by the labels of B. In order to do that, we identify
the weak entity as EF with a rectangle with a dashed double line. Then
EF has the fuzzy attribute B (which is the partial key) and B has an
associated fuzzy degree, which may optionally have a meaning (just
like Definition 4.3).
The instances of EF are defined by using the m instances of the owner
entity E. In this way, for each instance ei of E with i = 1, 2, ..., m, we
deduce that EF has n instances:

zF
ij = < ki, bj, µbj (ei [B]) > with j = 1, 2, ..., n (4.2)

where ki is the key of the instance ei ∈ E, bj are the n labels with j =
1,..., n defined for the attribute B, µbj. is the membership function of
the label bj and ei [B] is the value of the attribute B in the instance ei.
In this case the key of the weak entity will be the union of ki and the
bj values, which shows the label. Fuzzy attributes cannot be members
of any key, but this is now possible because this attribute (B of EF)
only takes values in the labels (B of E).

2. A fuzzy weak entity due to dependency on identification: This hap-
pens when we have a fuzzy entity (Definition 4.9) that is weak. The
graphic representation is denoted by a square with a dashed double
line, and beside this an attribute with a circle with dashed lines, which
indicates a type of degree associated with the weak entity.
This case supposes that the key of the weak entity will be the union
of the key of the owner entity and an extra key, known as a partial
key, that the weak entity must have. So the values of that partial key
can be repeated in the weak entity if they belong to a different
instance than E.

In both types of weak entities, the partial key will be represented in the
same way as a primary key (solid black circle). Furthermore, the line
joining the weak entity with the rhombus of the relationship must be a
double line in order to express that all the instances of the weak entity
must be related to an instance of the owner entity.

*
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Some authors (Elmasri & Navathe, 2000) prefer to use a double line in the
relationship diamond to the owner entity.

Example 4.7: There is an Employee entity with the attributes (Employee_ID,
Employee_name, Contract_year, Evaluation). The Evaluation attribute is a
qualification that each employee obtains for his or her work over a certain
period of time. The attribute is defined as Type 2 and has the following labels
associated with it: {Deficient, Mediocre, Good, Excellent}. From this point of
view, Evaluation is an attribute that presents imprecision, and in some instances
it could be treated like Type 1 with the same labels and may be mapped in a
fuzzy domain.
For this case, an employee may have a membership degree to more than one
label of the Evaluation attribute so that it obtains the most representative
membership degree, which adjusts to the work of the employee. For example,
if an employee is evaluated as Good, this value may be more or less similar to
Excellent or Mediocre. Those similarity degrees can be important for some
tasks.
In Figure 4.9a, this model with the weak entity EmployeeF is expressed with the
maximum cardinality M. Observe that the Evaluation attribute of Employee
stores the evaluation that each employee obtains, while the Evaluation attribute
of EmployeeF stores each Evaluation label (of Employee attribute) with a
membership degree. Note that this attribute is Type 2 and will form part of the
key of EmployeeF (denoted by a circle of black stars).

*

Example 4.8: Figure 4.9b shows an example of a fuzzy weak entity, which is
due to dependency on identification. Imagine a pet hotel, in which the owner of
each animal may express an importance degree for it. This importance degree,
G4, is identified in the fuzzy weak entity by means of an attribute that considers
“the importance degree of each animal.” The key of the Pet entity will be
(Owner_ID, Pet_name).

*

This type of fuzzy weak entity due to dependency on existence covers and
improves the definition of Chaudhry, Moyne, and Rundensteiner, (1994,
1999). Its main advantage is that it speeds up some types of fuzzy queries,
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because the EF entity stores the similarity degrees already calculated. For
example, to see the employees that are “excellent” (with a minimum degree of
0.8), you must look in EmployeeF for instances with Evaluation = Excellent and
G0 ≥ 0.8. Another option is that when necessary, those degrees can be
calculated instead of being stored.
On the other hand, the fuzzy weak entities due to dependency on identification
are very interesting and useful. Let us think that if we consider the fuzzy entities
to be useful, then it may occur that a fuzzy entity is also weak, and for this reason
a formal definition of this concept is required.

Fuzzy Relationships

Some authors, such as Connolly, Begg, and Strachan (1998) and Elmasri and
Navathe (2000), define relationship as the generic structure of the set of
existing connections between two or more types of entities. A relationship can
associate an entity with itself, which is called a recursive relationship. On the
other hand, the instance (or occurrence) of a relationship will be the existing link
between the concrete occurrences of each type of entity that is involved in the

Figure 4.9. Weak fuzzy entities in FuzzyEER: a) with relationship of
dependency on existence (Example 4.7) and b) with relationship of
dependency on identification (Example 4.8)

EMPLOYEE
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EMPLOYEEF

Employee_ID
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Contract_year

T2: Evaluation {deficient,mediocre,good,excellent}
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PET G4 Pet
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relationship. A relationship is represented by using a rhombus labeled with its
name and joined to the associated types of entities with lines.
These authors also define the concept of relationship attributes. If a relationship
1:N has attributes, then they can be moved to the entity with the maximum
cardinality (N).
Then, using the general concept of fuzzy relation (see Chapter I), we can define
fuzzy relationships in the FuzzyEER Model.

Definition 4.11: Let R be a relationship linking one or more entities E1, E2,
..., Et. We will call it fuzzy relationship if it has at least a fuzzy degree with
a Gn meaning (see Definition 4.3), which links the entities associated with
R. A fuzzy relationship links or relates t entities (with t ≥ 2), associating
k degrees (with k ≥ 1) to this union, for each group of related instances.
A fuzzy relationship is represented by a function:

R: E1 × E2 × … × Et → [0, 1] k

R(e1, e2, ..., et ) → [0, 1] k (4.3)

where  ei ∈ Ei  with   i = 1, 2, ..., t, are the instances of the entities in the
relationship, and k ≥ 1 is the number of fuzzy degrees associated with R.
If R has other attributes, then each attribute may be represented by a
similar function, changing the domain in the right part.
The graphic representation of a fuzzy relationship is a rhombus with a
dashed line with a degree attribute, similar to that in Definition 4.9, with
the circle with a dashed line.
Similarly to Definition 4.9, the function that allows this degree to be
calculated can be added (if it exists).

*

Of course, a relationship (whether or not it is fuzzy) can include fuzzy attributes
(T1, T2, T3, or T4) or fuzzy degrees (associated or not associated), just as we
showed in the section on fuzzy values, earlier in this chapter. Furthermore, in
a fuzzy relationship we can use the (min,max) notation for the constraints of
participation and cardinality. We can also use the fuzzy (min,max) notation (see
the section on fuzzy constraints later in this chapter).
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Example 4.9: For a real estate agency, the entity District can have the attributes
(District_Id, Name, Quality). The attributes District_Id and Name are crisp.
The attribute Quality of the district is defined as a fuzzy attribute Type 3 with
the following labels: {Low, Regular, Good, Excellent}.
The relationship of proximity of the neighborhoods can be represented as the
fuzzy relationship Close_to, which appears in Figure 4.10. This expresses that
a proximity degree exists between any two districts.
Furthermore, the entity Landed_Property is modeled with some attributes,
which you can also see in Figure 4.10. Each landed property can be situated
in such a place that it belongs to several districts or to one district but is relatively
close to another district. For example, for a property, it can be indicated that
its neighborhood has the following possibility distribution (0.5/North, 1/East,
0.2/Plaza_España), indicating that it is situated in the eastern district and closer
to the northern district than to the España square district.
If District were an attribute of Landed_ Property, it would be sufficient to define
it as Type 3, to define each district as a label, and to establish a similarity
relationship (or proximity in this case) for every two districts. But this case is
special, because District is an entity with some attributes and is related to the
Landed_Property entity, so that a property may be related to several districts
(3 at most). At the same time, a district for a certain landed property may have
a membership degree that measures to what extent that property belongs to that
district. In our model it is represented by the degree GMembership.

Figure 4.10. Example 4.9: Fuzzy relationships

Landed_Property

Landed_Property_Id

T1: Number_of_rooms

Address

T3: Kind {Flat, Chalet, House, Semi_detached_house,…}

T2: Price

District

District_Id
Name

T3: Quality
{Low, Regular, Good, Excellent}

Close_to

GProximity

(0,3)                                  (0,n)

GMembership

Situated_in
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The fuzzy relationship Close_to in fact generates a similar structure to a Type
3 fuzzy attribute. On the other hand, the fuzzy relationship Situated_in generates
a similar structure in the Landed_Property entity, as if that entity had a Type 3
fuzzy attribute called District. The model reflects that the entities
Landed_Property and District are related in such a way that each landed
property may be situated in a maximum of three districts, and each one of those
associations gives the degree at which that landed property belongs to the
district.
Due to the fact that District has several attributes, it cannot be used as a fuzzy
attribute Type 3 of Landed_Property.

*

A more detailed example of this case is found in Urrutia and Galindo (2002) and
Urrutia (2003).

Fuzzy Degrees in Specializations

In the same way as the fuzzy degrees were incorporated in the aggregation in
the “Fuzzy Aggregations” section, fuzzy degrees can be used in specializations.

Definition 4.12: We can assign a degree to a specialization in two ways,
and the meaning of this degree may be expressed in the model:

1. Degree in the subclasses: This degree expresses a fuzzy degree of
some subclass in the specialization. It is denoted by Gn = α, labeling
the line joining the subclass with the circle referred to as specializa-
tion circle, where n is the meaning of this degree (just like Definition
4.3), and α is the associated fuzzy degree, with α  ∈ (0,1). See Figure
4.11a.

2. Degree in the specialization: This degree expresses a fuzzy degree
of all the specialization (or all its subclasses). It is denoted by Gn = α
labeling the specialization circle. See Figure 4.11b.

*
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Note that in Figure 4.11, inside the specialization circle, we can use “d” (for
disjoint specializations), “o” (for overlapping specializations), “fd” (for fuzzy
disjoint specializations), and “fo” (for fuzzy overlapping specializations). Dis-
joint and overlapping specializations are explained, for example, in Elmasri and
Navathe (2000), whereas fuzzy disjoint and fuzzy overlapping specializations
are explained in Galindo et al. (2003) and Galindo, Urrutia, and Piattini
(2004a). In short, fuzzy specializations occur when a subclass is a fuzzy entity.
This type of concept (adding a degree) can be used for all the hierarchies of
specialization, generalization, and aggregation in the same way as they were
dealt with here. In Marín et al., (2000) there are similar examples to the notation
of Figure 4.11. Other applications of the theory fuzzy sets in fuzzy specializa-
tions are found in Galindo, Urrutia, and Carrasco (2002), Galindo, Urrutia, and
Piattini (2004a), and Galindo, Urrutia, Carrasco, and Piattini (2004b).

Fuzzy Constraints

In this section our aim is to relax the constraints, which can be expressed in a
conceptual model by using the Enhanced Entity Relationship modeling tool, so
that these constraints can be made more flexible. We also study new constraints
that are not considered in classic EER models. We use the fuzzy quantifiers

Figure 4.11. a) Degree in some subclasses of the specialization and b)
degree in the specialization

Superclass

d/o/
fo/fd

Subclass
...

Subclass

[Attribute clasification]

Gn =<degree>

⊃⊃

b)Superclass

d/o/
fo/fd

Subclass
...

Subclass

[Attribute clasification]

Gn=<degree> Gn=<degree>⊃⊃

a)
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(refer to Chapter I), which have been widely studied in the context of fuzzy sets
and fuzzy query systems for databases. In addition, we examine the represen-
tation of these constraints in an EER model and their practical repercussions.
In Chapter III you see that only Chen (1998) fuzzifies only the participation and
cardinality constraints in an ER relationship. The other approaches about fuzzy
modeling tools do not include fuzzy constraints or some technique to relax the
constraints expressed in the ER/EER model so that they can be made more
flexible, because the constraints of the traditional model are either too restric-
tive or too permissive.
We can cite, in another line, the work by Davis and Bonnell (1989). They
present a set of constructs for capturing certain types of semantic integrity
constraints, based on the specific types of logic propositions that exist on a
collection of relationships between a given entity set and the entity to which it
is associated through these relationships. For example, let E be an entity with
two relationships (P and Q). Using classical logic, we can then apply the
following constraint based on the implication function: If an instance e ∈ E uses
relation P, then e uses relation Q. It can be observed that these constraints need
only classical logic and that some of their cases are also solved by the EER
Model.
We study the following constraints in this section: the fuzzy participation
constraint, the fuzzy cardinality constraint, the fuzzy completeness constraint to
represent classes and subclasses, the fuzzy cardinality constraint on overlap-
ping specializations, fuzzy disjoint and fuzzy overlapping constraints on special-
izations, fuzzy attribute-defined specializations, fuzzy constraints in union types
or categories, and fuzzy constraints in shared subclasses. We also demonstrate
how fuzzy (min,max) notation can substitute the fuzzy cardinality constraint but
not the fuzzy participation constraint. All these fuzzy constraints have a new
meaning and offer greater expressiveness in conceptual design.

Constraints in the ER/EER Model

Using the ER/EER Model, constraints play a fundamental role: They express
how the entities are related. Basically, we have the following types of con-
straints in a schema using the ER/EER Model:

1. The participation constraint: The participation of an entity in a relation-
ship can be total or partial. If each instance must compulsorily relate to the
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other instance or instances of the relationship, then participation is said to
be total. If this relationship is not mandatory for all instances belonging to
this type, then participation is said to be partial. In ER diagrams, total
participation is displayed as a double line connecting the participating
entity type to the relationship, whereas partial participation is represented
by a single line. Figure 4.15 shows both constraint types. We discuss fuzzy
participation constraints in a later section.

2. The cardinality constraint: This constraint expresses whether the
relationship between entities is “one to one” (1:1), “one to many” (1:N),
or “many to many” (N:M). We explain how to relax this constraint in the
“Fuzzy Cardinality Constraint on Relationships” section.

3. The completeness constraint on specializations: This constraint may
be total or partial. A total specialization constraint specifies that every
instance in the superclass entity must be a member of one (or some) of the
subclasses entity in the specialization. This is shown in EER diagrams by
using a double line to connect the superclass to the circle referred to as the
specialization circle, to which all the subclasses are joined by a single line
with the inclusion symbol. A single line is used to display a partial
specialization, which allows an instance to not belong to any of the
subclasses. The inverse is not possible, because by definition each
member of a subclass must be a member of the superclass. The “Fuzzy
completeness constraint on specializations” section includes an explana-
tion of this constraint in a fuzzy model.

4. Disjoint or overlapping constraints on specializations: A disjoint
specialization occurs when subclasses are disjoint, that is, every member
of the superclass must belong to a maximum of one of the subclasses.
Disjoint specializations are shown in EER diagrams by using a circle with
the letter “d.” An overlapping specialization permits the subclasses to
contain common elements, that is, each member of the superclass may
belong to various subclasses. Overlapping specializations are shown in
EER diagrams by using a circle with the letter “o.” Later in this chapter,
we study fuzzy disjoint and overlapping constraints on specializations as
well as the cardinality constraint on overlapping specializations, a con-
straint that is not studied in classic EER models.

5. Completeness constraint in union types: A category (Elmasri &
Navathe, 2000; Elmasri, Weeldreyer, & Hevner, 1985) can be total or
partial. A category is total if every superclass instance must be a member
of the category. This is shown in EER diagrams by using a double line to
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connect the category with a circle with the union symbol (∪). This is a
strange case, because this union type can be represented by using a total
disjoint specialization (the superclass is the category, and the subclasses
are all superclasses of the union type). A category is partial if every
superclass instance may or may not be a member of the category. This is
shown in EER diagrams by using a single line to connect the category to
the circle with the union symbol. The classic model does not study the
participation constraint of each superclass in the category. The section on
fuzzy constraints in union types discusses these two constraints in a fuzzy
model.

In addition, the (min,max) notation allows for the expression of the participa-
tion and cardinality of an entity in a relationship. In this notation, min and max
indicate the minimum and maximum number of entity instances that take part in
the relationship. The (min,max) notation is better, as it allows for the use of
numbers other than 1 and N. It can clearly be seen that the (min,max) notation
includes participation and cardinality in classic ER models. Later in this chapter
we study fuzzy (min,max) notation on relationships.
If a relationship of the ER Model has a degree greater than 2, then the
constraints are also applicable to each entity participating in such a relationship.
In this case, each entity treats the rest of the entities, which participate in the
relationship as if they were a single entity.

Thresholds and Fuzzy Quantifiers for Relaxing
Constraints

Definition 1.22 in Chapter I defines the fuzzy quantifiers. Applied in the context
of databases, the usefulness of fuzzy quantifiers is shown by the flexibility they
offer when carrying out queries that involve these quantifiers, as in the division
operation of relational algebra in fuzzy or classical databases, for example
(Galindo, Medina, Cubero, & García, 2001). Applied in the context of
conceptual data models, fuzzy quantifiers allow expressions about the number
of instances satisfying a given condition, or the proportion with respect to the
total. We shall study this in subsequent sections. Of course, the quantifier Q
must be previously defined in the model’s data dictionary (metadata).
In this context, we need a threshold γ ∈ [0, 1] indicating the minimum fulfillment
degree that must be satisfied. This threshold will be written in square brackets:
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Q[γ]. For example, we may use “almost_all [0.2]” to indicate that this fuzzy
quantifier must be satisfied at a minimum degree of 0.2. Consequently, the
underlining constraint requires that

Q(φ) ≥ γ (4.4)

Every time the database is modified, the DBMS computes φ and checks
whether Equation 4.4 is satisfied. We define the meaning of φ in subsequent
sections, because it depends on where the fuzzy quantifier is used. In order to
simplify the expression, we can set a default value for γ at 0.5, for example. We
consider 0.5 to be a good default value because it is in the middle of the interval
[0, 1], but it may be changed.
If Q is an increasing function, then we can simplify Equation 4.4 because

φ ≥ Q-1 (γ) (4.5)

Similarly, if Q is a decreasing function, then

φ ≤ Q-1 (γ) (4.6)

The last two equations may be useful because Q and γ are constants, whereas
φ is a varying value. Value φ may change with every DML sentence INSERT,
DELETE, or UPDATE. In this way, we can store Q-1(γ), avoiding the use of
Q with those DML sentences.
In addition, another optional value δ can be established, which is greater than
the threshold γ in the following way: Q[γ, δ] such that γ < δ. The value δ is more
restrictive than γ and establishes that when the constraint is unfulfilled with this
higher value, the DBMS will inform the user but will permit the modification of
the database that is underway. If the quantifier is unfulfilled with a value between
γ and δ, then the DBMS must warn the user (or only the database administra-
tor). Both values would be close in order to avoid too many warnings from the
DBMS. Therefore, the warning message is generated when Equation 4.4 is
satisfied and the following equation is not satisfied:

Q(φ) ≥ δ (4.7)
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In other words, the warning area is defined with

δ > Q(φ) ≥ γ (4.8)

Finally, if Equation 4.4 is false, then it defines the area that is not allowed, and
an error message must be generated.

Example 4.10: Figure 4.12 depicts a fuzzy quantifier with the thresholds γ and
δ. We want to evaluate to what extent value φ satisfies the quantifier. This
evaluation is carried out by Q(φ). It should be noted that these thresholds divide
the domain of φ into three areas: the allowed area, the not allowed area, and
the warning area. The warning area is included in the allowed area. Note that
the not allowed area is defined when Equation 4.4 is false.

*

A fuzzy quantifier can be written in three ways:

1. Quantifier without a threshold g: Default threshold is γ = 0.5. For example,
approx_2.

Figure 4.12. Thresholds γ and δ in a fuzzy quantifier “approximately
between a and b” and its generated areas
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2. Quantifier with a threshold γ: For example, approx_8[0.25].
3. Quantifier with two thresholds γ and δ, with γ < δ: For example,

approx_3[0.25,0.75].

Fuzzy Participation Constraint on Relationships

In addition to being either total or partial, in the fuzzy model that we propose
here, the participation of an entity in a relationship can be fuzzy by using a
relative fuzzy quantifier (principally).

Definition 4.13: Let E1 and E2 be two entities and R a relationship between
them. A Fuzzy Participation Constraint of E1 in R is represented by using
a zigzag line (or broken line) joining E1 and R, indicating on this line which
quantifier Q has been used, followed optionally by one or two thresholds,
[γ] or [γ, δ], with the meaning and default value having the one explained
earlier. We propose another representation using a single line crossed
with an arc labeled with Q.
This constraint asserts Equation 4.4, with φ defined by Equation 1.64,
which we reproduce here:





=Φ
relative is  if/
absolute is  if

Qba
Qa

(4.9)

where a is now the number of E1 instances related to E2, and b is the total
number of instances in E1.
If Q is used with two thresholds, then it defines a warning area (see the
preceding section). A warning message must be generated when the
condition is satisfied with γ and is not satisfied with δ. It should be noted
that the warning area is included in the allowed area. The warning area
is defined when Equation 4.4 is satisfied and Equation 4.7 is not satisfied.
In other words, the warning area is defined with Equation 4.8. Finally, if
Equation 4.4 is false, then it defines the not allowed area.

*
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This fuzzy constraint implies that every DML sentence may generate an error
or warning when the fuzzy quantifier is not satisfied. This message forces the
user to maintain a “good” database or warns the user when the database is not
“good enough.”

Example 4.11: Suppose we have an Employee entity and a Project entity
linked by the relationship Works_for. The participation of Employee in this
relationship can be represented by a relative fuzzy quantifier such as “almost all”
(refer to Figure 1.26), indicating that “almost all employees work for some
project.” Figure 4.13 represents these two entities, the relationship between
them, and the fuzzy constraint, using the two graphic representations proposed
in Definition 4.13.
The threshold γ = 0.2 in “almost_all [0.2]” indicates the minimum degree with
which this quantifier must be fulfilled in the database. If we divide the number
of employees who work for a project (value a) by the total number of
employees in the database (value b), the result φ should be, in accordance with
Equation 4.5, a value greater than or equal to Q-1(0.2) = 0.5, because this is the
value (on the X axis) for which the quantifier “almost all” attains a degree 0.2:
Q(0.5) = 0.2. From value 0.5 of φ, this quantifier obtains a degree greater than
or equal to 0.2, which was the constraint imposed by the threshold γ in the initial
quantifier. The constraint then establishes that φ ≥ 0.5 must be satisfied.
In this example, the value 0.5 obtained by the expression Q-1(0.2) indicates the
constraint that, in our database, a minimum of 50% of the employees must work
for some project.

*

Figure 4.13. Example 4.11: Fuzzy participation constraint in an ER
model, using the fuzzy quantifier almost_all (with the two representations
proposed in Definition 4.13)

Project Employee Works_for 
Almost all[0.2] 

b) 

Project Employee Works_for 
Almost all[0.2] 

a) 
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In general, if Q is a relative fuzzy quantifier with an increasing function, then
Equation 4.5 states that the constraint must be satisfied in the database in a
minimum percentage of 100Q-1(γ). In this case, it is also possible to express
this percentage instead with the quantifier Q and the threshold γ. Although this
may appear easier, it must be noted that the intuitive and natural expressiveness
of the quantifier is lost, that this is not valid with absolute fuzzy quantifiers, and
the method must be adapted for decreasing fuzzy quantifiers. Fuzzy quantifiers
are easy and general as well as very expressive and intuitive.
On the practical level this will be implemented as a trigger that in each
operation of the type UPDATE, DELETE, or INSERT checks the value φ,
and if Equation 4.4 is false, then the DBMS must produce an error message
indicating the unfulfillment of this fuzzy constraint, and the operation is aborted.
On the other hand, if Equation 4.8 is true, then a warning message must be
generated, but the operation is allowed. Finally, in any other case the operation
is normally allowed.
It should be noted that fuzzy quantifiers expressed in this type of constraint can
also be absolute; however, due to the significance of a participation constraint,
this will generally be relative because the number of entity instances would vary
too much. In the case of an absolute fuzzy quantifier, such as “many” or
“approximately between 100 and 200,” this quantifier will restrict the quantity
of entity instances related to the other entity. In our example, the fuzzy quantifier
would restrict the number of employees who are assigned to work on any
project.
In some models it might even be useful to establish several fuzzy quantifiers as
a constraint on fuzzy participation. In this case, all fuzzy quantifiers in the same
constraint must be coherent, as two quantifiers can be contradictory.
A fuzzy participation constraint is not as restrictive as a total participation
constraint, nor as permissive as the partial participation constraint, so that the
fuzzy participation constraints extend the ER Model, allowing a new expres-
siveness that would have been impossible in the traditional model.

Fuzzy Cardinality Constraint on Relationships

Fuzzy participation constraints establish a condition globally on the entity
instances. On the other hand, fuzzy cardinality constraints establish fuzzy
conditions on each instance in a particular and individual way. In classical
modeling, the cardinality constraint states whether the relationship between
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entities is “one to one” (1:1), “one to many” (1:N), or “many to many” (N:M).
The model we propose allows us to express cardinality as a fuzzy value by using
an absolute fuzzy quantifier (principally).

Definition 4.14: Let E1 and E2 be two entities and R be a relationship
between them. We suppose that ei with i = 1, 2, ..., b1 are the instances of
E1, and wj with j = 1, 2, ..., b2 are the instances of E2. A Fuzzy cardinality
constraint is defined with two quantifiers, separated by the notation “:”,
that is, Q1:Q2, just below the diamond, which represents the relationship
between both entities. The quantifier on the left of the separator “:” will
correspond to the entity on the left (or above), and the quantifier on the
right will correspond to the other entity (E1 and E2, respectively). This
constraint establishes two conditions:

1. Condition of Q1:

Q1(φ1i) ≥ γ1 ∀ i = 1, 2, …, b1 (4.10)

where γ1 is the threshold for Q1, b1 is the total number of instances in
E1 and φ1i with i = 1, 2, ..., b1 is defined by





=Φ
relative is  if/
absolute is  if

12

1
1 Qba

Qa

i

i
i (4.11)

with ai being the number of E2 instances related with the instance ei
∈ E1, and b2 is the total number of instances in E2.

2. Condition of Q2:

Q2(φ2j) ≥ γ2 ∀ j = 1, 2, …, b2 (4.12)

where γ2 is the threshold for Q2 and φ2j with j = 1, 2, ..., b2 is defined
by
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⎩
⎨
⎧

=Φ
relative is  if/
absolute is  if

21

2
2 Qba

Qa

j

j
j (4.13)

with aj being the number of E1 instances related to the instance wj ∈ E2.

The warning area is similarly defined by using δ1 and δ2, respectively.
*

This fuzzy constraint has an effect on each instance and must be satisfied by
each one. Generalizing, quantifier Q1 must be satisfied for all quantification
values φ1i with i = 1, 2, ..., b1, that is, φ1i must be in the allowed area of Q1 with
its threshold γ1. On the other hand, quantifier Q2 must be satisfied for all
quantification values φ2j with j = 1, 2, ..., b2, that is, φ2j must be in the allowed
area of Q2 with its threshold γ2.

Example 4.12: Following the previous example, if we suppose that the entity
Employee is on the left of the relationship Works_for, and the entity Project is
on the right, a fuzzy cardinality constraint is shown in Figure 4.14.
These constraints express the condition that each employee will work for a
maximum of approximately three projects, and each project will have approxi-
mately eight employees, requiring both constraints to be satisfied with the
minimum fulfillment degrees indicated in square brackets.

*

It should be noted that the fuzzy quantifier of this type of constraint can also be
relative; however, due to the meaning of a cardinality constraint, this quantifier
will generally be absolute. In the case of a relative fuzzy quantifier, this quantifier

Figure 4.14. Example 4.12: Fuzzy cardinality constraint in a FuzzyEER model

Project Employee Works_for 

Less_than_approx_3 [0.8] : Approx_8 [0.4] 
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will indicate the number of instances of the other entity to which each entity is
related, with respect to the total number of instances of the other entity. Thus,
if in Example 4.12 we use the quantifier “almost all” on the left, then we are
saying that “each employee must work for almost all the existing projects.”
In some models it might even be useful to establish various fuzzy quantifiers on
one or in both sides of a fuzzy cardinality constraint. Of course, in this case all
the fuzzy quantifiers in the same constraint must be coherent.
If a relationship joins three or more entities (a relationship with a degree greater
than 2), then we can put the fuzzy cardinality quantifier associated with each entity
at the side of the arc, which joins this entity with the relationship. If there is already
a quantifier for the fuzzy participation constraint, then in order to avoid ambiguity,
we must put the text “Card:” in front of the cardinality quantifier.

Fuzzy (min, max) Notation on Relationships

Nonfuzzy participation and cardinality of an entity in a relationship can be
expressed with this notation, which is more expressive both in classical and
fuzzy modeling. In fuzzy modeling both min and max can have values, which are
fuzzy quantifiers in a similar way to the one explained above.

Definition 4.15: Let E1 and E2 be two entities and R be a relationship
between them. We denote the instances of E1 as ei with i = 1, 2, ..., b1, and
the instances of E2 as wj with j = 1, 2, ..., b2. A Fuzzy (min,max) Notation
of E1 on R is represented by using two fuzzy quantifiers in parentheses (Q
min ,Q max) beside the line joining E1 and R. This constraint establishes that

λmin ≤ φmin, i ∧ λmax ≥ φmax, i ∀ i = 1, 2, …, b1 (4.14)

where b1 is the total number of instances in E1 and





=Φ
relative is  if/
absolute is  if

min2

min
min, Qba

Qa

i

i
i (4.15)





=Φ
relative is  if/
absolute is  if

max2

max
max, Qba

Qa

i

i
i (4.16)



FuzzyEER   117

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

with ai being the number of E2 instances related with the instance ei ∈ E1,
and b2 is the total number of instances in E2. Furthermore,

λmin = min{α : α = 1
min
−Q  (γmin)} (4.17)

λmax = max{β : β = 1
max
−Q  (γmax)} (4.18)

where γmin and γmax are the minimum thresholds for Qmin and Qmax, respec-
tively. The allowed area is the interval [λmin, λmax]. The warning area is
defined when the thresholds δmin and δmax are used for Qmin and Qmax,
respectively. The warning message must be shown when Equation 4.14 is
satisfied and the following equation is not satisfied:

λ’min ≤ φmin, i ∧ λ’max ≥ φmax, i ∀ i = 1, 2, …, b1 (4.19)

where

λ’min = min{α : α = 1
min
−Q  (δmin)} (4.20)

λ’max = max{β : β = 1
max
−Q  (δmax)} (4.21)

Hence, the warning area is the union of two intervals: [λmin, λ’min] ∪ [λ’max,
λmax]. We know that λmin < λ’min and λ’max < λmax, because γmin < δmin and γmax
< δmax respectively, and the quantifiers are defined with convex functions.
Note that Equations 4.20 and 4.21 are similar to Equations 4.17 and 4.18,
replacing γmin and γmax with δmin and δmax, respectively.
In other words, Equation 4.19 may be changed to obtain an equation that
must be satisfied. Applying De Morgan’s law, the warning area is defined
when the following equation is satisfied:

λ’min > φmin, i ∨ λ’max < φmax, i ∀ i = 1, 2, …, n (4.22)
*

It should be noted that if a constraint exists on E1 using (min,max) notation, then
this constraint has an effect on each instance and must be satisfied by each one.
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These two quantifiers indicate, respectively, the minimum and maximum
number of E2 instances related with each E1 instance.

Observations:

• If Qmin (0) ≥ γmin, then we cannot use Qmin [γmin].
In this case we must use 0 instead of Qmin: [0, Qmax].

• If Qmax (ψ) ≥ γmax, where ψ is the maximum value in the underlying domain
of Qmax (if Qmax is relative, ψ = 1), then we cannot use Qmax [γmax].
In this case we must use the letter “N” instead of Qmax, expressing a
cardinality constraint “to many”: [Qmin, N].

• If Qmin and Qmax are of the same type (absolute or relative), then φmin, i  =
φmax, i.

• In conclusion, we must use fuzzy quantifiers, which express a good
constraint. An example of a bad constraint is [approx_3_or_less,
almost_all].

Example 4.13: In the context of the previous examples, we can use the
following constraints with the fuzzy (min,max) notation. These constraints are
represented in Figure 4.15. On the employee side, the (min,max) constraint
indicates that an employee may work for no projects (0 as minimum) and up
to approximately three projects as a maximum. The two values after the
quantifier indicate that if this is fulfilled to a degree greater than or equal to 0.75
the operation will normally be permitted; if it is fulfilled to a degree between
0.25 and 0.75, then the user will be informed but the operation will be allowed;
and if the constraint is fulfilled to a degree of less than 0.25, this means that the
constraint is not being fulfilled because it reaches an intolerable degree, and
therefore the operation underway must not be permitted.
On the Project side in Figure 4.15, we can find a constraint indicating that each
project must have a minimum of approximately two employees working for it
(with a degree of 0.5 as a minimum). If the quantifier approx_2 is defined as a
triangular function (refer to Figure 1.2) with a center in 2 (m = 2), and a margin
equal to 2 (a = 0 and b = 4), then the value 0.5 is achieved with the minimum
value 1, so that this quantifier with the minimum degree of 0.5 guarantees the
total participation of the entity Project in the relationship Works_for. This
possibility is also indicated by the double line, which connects the entity to the
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relationship. It should be noted that we are using two quantifiers for the min
value, but both are coherent.
At the same time, the number of employees in each project is restricted to a
maximum of approximately eight (with a minimum degree of 0.25).

*

In the classical ER Model, the (min,max) notation substitutes the other two
notations for the participation and cardinality constraints, because if min = 0,
then we are dealing with a partial participation, and if min > 0, we are dealing
with a total participation. On the other hand, if max = 1, the relationship will be
1:1 or 1:N (on the side of 1), and if max > 1 (or max = N), we are dealing with
a relationship N:M or 1:N (on the side of N).
However, in the ER Model with fuzzy constraints, the fuzzy (min,max) notation
adds expressiveness to the conceptual model, but it can only substitute fuzzy
cardinality constraints.

Fuzzy (min, max) Notation and Fuzzy Cardinality Constraints

With regard to cardinality constraints, the semantic of both notions is clearly
different. It should be noted that in Example 4.12, the quantifier “approx_8”
indicates that a Project must have approximately eight employees, but in
Example 4.13, the same quantifier indicates that a Project must have a
maximum of approximately eight employees.
In general, a fuzzy cardinality constraint with any type of quantifier can be
represented by using the fuzzy (min, max) notation so that both values, min and
max, have the value of this fuzzy quantifier. The fuzzy cardinality constraint
expressed in Example 4.12 can be expressed in fuzzy (min,max) notation so
that the minimum value is equal to the maximum and both have the value of
“approx_8.”

Figure 4.15. Example 4.13: Fuzzy (min,max) notation in a FuzzyEER model

Project Employee Works_for 

(0,approx 3[0.25,0.75])                (approx 2,approx 8[0.25]) 
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Expressiveness is also equivalent on the other side, with one exception
depending on the types of both quantifiers:

• If the (min,max) notation uses two quantifiers of the same type
(absolute or relative), then this constraint can be expressed by means of
a fuzzy cardinality constraint using a quantifier that embraces both. For
example, the constraint in Example 4.13 can be expressed with the fuzzy
cardinality notation using a wider quantifier, instead of the quantifiers
“approx_2” and “approx_8,” such as “approx_between_2_and_8” (similar
to the trapezoidal membership function in Figure 4.12 with a = 2 and b =
8). It can be observed that the resulting wider quantifier may be automati-
cally generated starting from the other two quantifiers (min and max).

• If the (min,max) notation uses two quantifiers of different types (one
absolute and one relative), then this restriction cannot be expressed with
a single fuzzy cardinality quantifier, because different types of quantifiers
have different domains and cannot be joined in another quantifier that
embraces both.

It is important to note that this second kind of (min,max) notation should be
uncommon because perhaps it is not intuitive to check that the two fuzzy
quantifiers are not contradictory. They can also be contradictory after a DML
sentence. For example, if we use approx_half instead of approx_2 in Example
4.13 (refer to Figure 4.15), both quantifiers in (min,max) notation (approx_half
and approx_8) are not contradictory when the number of employees is six, for
example, because the constraint is (approx_3,approx_8). However, if the
number of employees is 200, for example, both quantifiers are contradictory,
because approx_100 is clearly greater than approx_8.
As in fuzzy cardinality constraints, because of their meanings, the (min,max)
notation will preferably use two absolute quantifiers, although two relative
quantifiers are also accepted here.

Fuzzy (min, max) Notation and Fuzzy Participation Constraints

On the other hand, the (min,max) notation and a fuzzy participation constraint
are not exclusive. Although a fuzzy participation constraint establishes a global
condition on all entity instances, the (min,max) notation individually restricts the
relationship of each instance with the other participating entity.



FuzzyEER   121

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Example 4.14: If we merge Examples 4.11 and 4.13, then we obtain the model
in Figure 4.16, which demonstrates that both constraints are different and
coherent. It is also important to note the different meanings even though we use
the following (min,max) notation: (almost_all,almost_all).

*

For these reasons, the most useful notations are the fuzzy (min,max) notation
(mainly with absolute fuzzy quantifiers) and the notation for fuzzy participation
constraints (mainly with relative fuzzy quantifiers). The notation for fuzzy
cardinality restriction can be eliminated because this can be expressed with the
fuzzy (min,max) notation.
In a new expression for fuzzy participation constraints, we can use fuzzy
(min,max) notation instead of the quantifier Q in Definition 4.13. These
minimum and maximum values restrict the quantity of entity instances related to
the other entity. We must distinguish this notation for fuzzy participation and the
usual fuzzy (min,max) notation. This new notation refers to the number of
instances (in the constrained entity) related to the other entity. Usual fuzzy
(min,max) notation refers to the number of instances in the other entity related
to each instance in the constrained entity. This extension is not very useful, but
the formal definition for it is easy, using Definitions 4.13 and 4.15.

Fuzzy Completeness Constraint on Specializations

In EER models, the relationship between a class and all its subclasses can be
total or partial. In our fuzzy model, this constraint can be fuzzy mainly by utilizing
a relative fuzzy quantifier, although as indicated in the case of participation
constraints, they can also be absolute fuzzy quantifiers.

Figure 4.16. Example 4.14: Fuzzy participation constraint with another
constraint using fuzzy (min,max) notation

Project Employee Works_for 
Almost all[0.2] 

(0,approx 3[0.25,0.75])                (approx 2,approx 8[0.25]) 
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Definition 4.16: Let E be a superclass, and S1, S2, …, Sn the set of its n
subclasses. A fuzzy completeness constraint is represented by an arc
crossing the line between E and the specialization circle (or instead by a
zigzag line), labeled with a quantifier Q and its required thresholds. This
constraint asserts Equation 4.4, with φ defined by Equation 4.9 (or 1.64),
where a is the number of E instances that belong to “any” subclass or
subclasses, and b is the total number of instances in E.
The warning area is defined when Equation 4.8 is satisfied.

*

Example 4.15: Let us consider the models in Figure 4.17 depicting an entity
Employee, which is a superclass with two subclasses defined by the attribute
Contract_Type: Permanent and Temporary. The relative fuzzy quantifier
“almost all” (refer to Figure 1.26) indicates that “almost all employees must
have a Permanent or Temporary contract, but other minority contract types
may exist (work experience, grants, etc.).” These other contract types are not
included in the model for various reasons (unknown types, types without own
attributes, etc.).

*

Figure 4.17. Example 4.15: Fuzzy completeness constraint on an attribute-
defined specialization with the defining attribute Contract_Type (with the
two representations proposed in Definition 4.16)

Employee 

Almost_all[0.2] 

Contract_Type 

Permanent Temporary 

d 

a) 

Permanent Temporary 

d 

Employee 

Almost_all[0.2] 

Contract_Type 

b) 
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In the previous example, the specialization is disjoint (with a “d” in the circle)
because there cannot be an employee with various types of contracts. How-
ever, fuzzy constraints can also be applied to overlapping specializations (with
an “o” in the circle), as shown in the following example.

Example 4.16: Let us consider an entity Employee that is a superclass with various
subclasses defining the abilities of the employees: Management_Programmer,
Systems_Programmer, Internet_Programmer, Analyst, Graphic_Designer, and
Accountant, just as in Figure 4.18. A relative fuzzy quantifier such as “almost all”
indicates that “almost all employees must have one or some of the abilities expressed
in the subclasses.”

*

In a new expression for fuzzy completeness constraints, we can use fuzzy
(min,max) notation instead of the quantifier Q in Definition 4.16. These
minimum and maximum values restrict the quantity of superclass instances that
belong to “any” subclass. This extension is not very useful, but the formal
definition for it is easy, using Definitions 4.15 and 4.16.

Figure 4.18. Examples 4.16 and 4.17: Fuzzy completeness constraint and
fuzzy cardinality constraint on an overlapping specialization
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Fuzzy Cardinality Constraint
on Overlapping Specializations

In an overlapping specialization we can also establish the minimum and
maximum number of subclasses to which each member of the superclass can
belong in a flexible manner. This can easily be expressed using the fuzzy
(min,max) notation.

Definition 4.17: Let E be a superclass and S1, S2, …,Sb the set of b
subclasses of an overlapping specialization. In addition, we suppose that
ei with i = 1, 2, ..., n are the instances of E. A fuzzy cardinality constraint
on this overlapping specialization is represented with a fuzzy (min,max)
notation, (Qmin ,Qmax), next to the circle containing the letter “o”
(overlapping). This constraint establishes that

λmin ≤ φmin, i ∧ λmax ≥ φmax, i ∀ i = 1, 2, …, n (4.23)

where





=Φ
relative is  if/
absolute is  if

min

min
min, Qba

Qa

i

i
i (4.24)





=Φ
relative is  if/
absolute is  if

max

max
max, Qba

Qa

i

i
i (4.25)

with ai being the number of subclasses to which instance ei belongs.
Furthermore, λmin and λmax are defined in the same way as in Equations
4.17 and 4.18.
The warning area is defined when the thresholds δmin and δmax are used for
Qmin and Qmax, respectively. The warning message must be shown when
Equation 4.23 is satisfied and the following equation is not satisfied:

λ’min ≤ φmin, i ∧ λ’max ≥ φmax, i ∀ i = 1, 2, …, n (4.26)
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where λ’min and λ’max are defined in Equations 4.20 and 4.21. We can also
apply De Morgan's law here.

*

This fuzzy constraint has an effect on each superclass instance and must be
satisfied by each one. In general, both min and max should be absolute quantifiers,
although relative quantifiers will also be accepted (with regards to the total
number of subclasses, value b).

Example 4.17: Continuing with Example 4.16, we can establish a fuzzy cardinality
constraint on the overlapping specialization, such as (approx_2, approx_half).
This establishes the constraint whereby each employee must appear in a
minimum of “approximately 2” skills and in a maximum of “approximately half”
of the existing skills (or subclasses).
This schema is also depicted in Figure 4.18. It should be noted that the fuzzy
quantifier almost_all is a fuzzy completeness constraint (zigzag line), and the
(min, max) notation is used for a fuzzy cardinality constraint.

*

Finally, it is important to note that the quantifiers can be of any type (absolute
or relative). In this case each quantifier can also be followed — optionally, of
course — by one or two fulfillment degrees in square brackets [γ, δ], with the
same meaning and default value as explained previously in the “Thresholds and
Fuzzy Quantifiers for Relaxing Constraints” section.

Fuzzy Disjoint and Fuzzy Overlapping
Constraints on Specializations

In specializations, the disjoint constraint specifies that the subclasses of the
specialization must be disjoint. This means that an entity can be a member of at
most one of the subclasses (zero or one). If the subclasses are not obliged to
be disjoint, this is an overlapping specialization. Thus, it can be interesting to
include to what extent the superclass instance belongs to each of the subclasses
by using linguistic labels (“a lot,” “a little,” etc.) or, more simply, the membership
degrees in the interval [0, 1].
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It should be noted that each subclass is to be considered as a fuzzy subset of
the superclass. As with all fuzzy sets, the elements of the subclass are not clearly
defined, because each element can belong to the fuzzy set with a certain degree.
We can use the concept of fuzzy entity (Definition 4.9). This definition allows
for two new definitions, according to the specialization type:

Definition 4.18: Let E be a superclass with n subclasses, S1, S2, …,Sn, in a disjoint
specialization. This specialization is a fuzzy disjoint specialization when at least
one of the subclasses is a fuzzy entity (Definition 4.9), and for any instance e ∈
E, there is zero or one subclass Si with i ∈ {1, 2, ..., n} such that

µi(e) > 0 (4.27)

where µi(e) is the membership degree of e to Si. As with any disjoint
specialization, S1 ∩ S2 ∩ … ∩ Sn = ∅.
This constraint will be represented by the letter “f” (fuzzy) before the
letter “d” in the specialization circle, that is “fd”.

*

Of course, if Si is a nonfuzzy subclass, then µi(e) = 1 if e belongs to Si, and  µi(e)
= 0 if e does not belong to Si.

Definition 4.19: Let E be a superclass with n subclasses, S1, S2, …, Sn, in
an overlapping specialization. This specialization is a fuzzy overlapping
specialization when at least one of the subclasses is a fuzzy entity, and for
any instance e ∈ E, there are zero or more subclasses Si with i ∈ {1, 2, ...,
n} such that µi(e) > 0, where µi(e) is the membership degree of e to Si.
This constraint will be represented by the letter “f” (fuzzy) before the
letter “o” in the circle, that is, “fo”.

*

Note that these definitions do not force all the subclasses to be fuzzy entities.
Definition 4.19 is more flexible than Definition 4.18, because an instance e   E
may belong to some subclasses with different membership degrees.
These definitions have two points of view:
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1. From the point of view of subclasses: Subclasses are fuzzy sets, and
their underlying domain is all the superclass instances; that is, each
superclass instance has a membership degree to each subclass (including
the value 0). Let S be a subclass of E. Then the fuzzy set of S is represented
by (using the format of Equation 1.1):

{µS(e1) / e1, µS(e2) / e2, …, µS(em) / em} (4.28)

where ei, with i = 1, 2, ..., m, are all the instances of superclass E, and
µS(ei) is the membership degree of ei to subclass S.

2. From the point of view of superclass instances: Each superclass
instance may belong to some subclasses. This membership is measured
with a fuzzy set. The underlying domain of this fuzzy set is the set of all
subclass names. Let Sj, with j = 1, 2, ..., n, be the n subclasses of E. Then
the fuzzy set of instance ei is

{µS1(ei) / S1, µS2(ei) / S2, …, µSn(ei) / Sn} (4.29)

where µSj(ei), with j = 1, 2, ..., n, is the membership degree of ei to
subclass Sj. It is important to note that in disjoint specializations, the
number of subclasses for a superclass instance is one.

Both points of view work with fuzzy sets with a different discrete underlying
domain. It may be represented with the format of Table 4.2, where the first
point of view is represented by the fuzzy sets given by the columns, and the
second point of view is given by the rows.

Example 4.18: Figure 4.19 indicates that our conceptual schema is also
concerned with storing the extent to which each employee belongs to each of
the subclasses. Thus, the set of system programmers is a fuzzy set (an employee
can belong to this set with a certain membership degree), whereas we suppose
that the set of accountants is not a fuzzy set (an employee can or cannot belong
to this set). This is the first point of view.
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The second point of view starts with a particular employee; an employee who
is an expert at programming management applications, although he or she may
also be skilled in other types of applications and less skilled as an analyst, could
be represented in the database by the following fuzzy set: {1/
Management_Programmer, 0.8/Systems_Programmer, 0.3/Analyst}. It should
be noted that the underlying domain is the set of all the subclass names.

Table 4.2. Representing fuzzy sets on a specialization with n subclasses
and m superclass instances

Figure 4.19. Example 4.18: Fuzzy overlapping specialization

Subclasses 

Instances 
S1 S2 . . . Sn 

e1 µS1(e1) µS2(e1) . . . µSn(e1) 

e2 µS1(e2) µS2(e2) . . . µSn(e2) 

   . . .  

ei µS1(ei) µS2(ei) . . . µSn(ei) 

   . . .  

em µS1(em) µS2(em) . . . µSn(em) 
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This database model allows us to make selections of the following type: “Find
the name of the best management applications programmer amongst those who
are not assigned to many projects and who is at least a regular analyst.”

*

This constraint does not prevent the use of other fuzzy constraints (complete-
ness or cardinality). These cases must be studied in order to define the method
with which the DBMS ensures the fulfillment of these constraints:

1. If a fuzzy completeness constraint exists, then the DBMS must
compute whether each superclass instance belongs to some subclass, for
example, in order to decide if “almost all” superclass instances belong to
some subclass. The problem is that membership is now fuzzy. The
membership degree of an instance to the subclasses may be computed in
various ways: (1) by using the greatest membership degree of this instance
to any subclass, that is, the height (function Hgt in Definition 1.10)
(Pedrycz & Gomide, 1998) of the second point of view fuzzy set; or (2)
by using the fuzzy set cardinality (function Card in Definition 1.12)
(Pedrycz & Gomide) of the second point of view fuzzy set (adding all the
membership degrees), or by using generalized measures, such as the fuzzy
set energy (Luca & Termini, 1974). We can certainly set a minimum
threshold l in order to decide whether a superclass instance belongs to
some subclass.
Then, in order to compute the value of a in Definition 4.16, we must count
how many instances of E have a fuzzy membership degree to “any”
subclass or subclasses. The fuzzy membership degree is solved with the
two previous options. The problem is then to count these elements. We
propose the following four options, where b is the total number of
instances in E, and a is computed by

∑
=

=
b

i
ia

1
α (4.30)

The definition of αi gives the four options:
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• Option 1:



 ≥

=
caseother any in 0

)(Hgt if)(Hgt λ
α ii

i

II
(4.31)

where Ii is the fuzzy set for instance ei ∈ E from the point of view of
superclass instances. Value λ is the limit or minimum threshold to
reject instances with a very small membership degree.

• Option 2:



 ≥

=
caseother any in 0

)(Card if))Card(,1(min λ
α ii

i

II
(4.32)

• Option 3:
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I
(4.33)

• Option 4:
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
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α i

i

I
(4.34)

These four options are sufficiently efficient and allow the system to be very
flexible. With a fixed λ, we can sort the four options according to the
results of the count operation:

Option 1 ≤ {Option 2, Option 3} ≤ Option 4 (4.35)
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Options 2 and 3 cannot be sorted, because even though Card(Ii) ≥ Hgt(Ii),
Option 3 adds 1 (if the height is greater than or equal to λ), whereas
Option 2 adds a value less than or equal to 1 (if the cardinality is greater
than or equal to λ).

2. If a fuzzy cardinality constraint exists (only on overlapping specializa-
tions), then the DBMS must compute the number of subclasses to which
each superclass instance belongs. For example, in order to decide if the
number of subclasses of a superclass instance is between “approxi-
mately 2” and “approximately half” of the existing subclasses, using
fuzzy (min,max) notation. However, this number is not simple, as
membership is now fuzzy. This problem may be solved in two ways: (1)
by using the fuzzy set cardinality (Pedrycz & Gomide, 1998) of the
second point of view fuzzy set or by using generalized measures, such
as the fuzzy set energy (Luca & Termini, 1974); or (2) by counting the
number of subclasses with a membership degree greater than a minimum
value (usually 0). After the DBMS has computed this number, the
system must check to see whether this number satisfies the fuzzy
cardinality constraint.

The cardinality of a fuzzy set can be a complex problem and has been studied
by various authors, especially Dubois and Prade (1985a) and Delgado,
Sánchez, and Vila (2000). Nevertheless, in this application efficiency is very
important (especially in large databases), but other methods can also be used.
This definition complements the definition of fuzzy types given in Marín et al.
(2000).

Fuzzy Attribute-Defined Specializations

There are certain kinds of fuzzy attributes, summarized in the “Fuzzy Attributes”
section, earlier in this chapter. We can define an attribute-defined specialization
(Elmasri & Navathe, 2000) by using fuzzy attributes:

Definition 4.20: A fuzzy attribute-defined specialization is exactly the
same as an attribute defined specialization in EER models where this
attribute is a fuzzy attribute. It is represented with an angled line joining
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the superclass with the circle. This line will be labeled with the name of
fuzzy attribute Type n, preceded by the text “Tn:”.

*

This constraint establishes that every subclass instance has a valid value (in a
certain fuzzy range) for that attribute, according to the subclass. In general,
each subclass corresponds with one of the linguistic labels defined on this
attribute. Each subclass would be a fuzzy entity, but this is not mandatory. For
example, in Figure 4.19 the attribute Abilities would be considered as a fuzzy
attribute Type 3. It should be noted that this makes it necessary to define a
similarity relation on all the subclasses.
This definition is independent of all constraints such as fuzzy or crisp disjoint or
overlapping specializations. The classification of each instance e of superclass
E is then an automatic process, according to the characteristics of the
specialization:

1. Fuzzy disjoint (fd): Instance e is assigned to one subclass S. Subclass S
is the subclass with a greater value of µS(e) (membership degree of e to
S). This membership degree is stored only if S is a fuzzy entity.

2. Fuzzy overlapping (fo): Instance e is assigned to all subclasses Si, such
that µSi(e) > 0. These membership degrees are stored only in the fuzzy
subclasses (subclasses that are fuzzy entities).

3. Nonfuzzy disjoint (d): Instance e is assigned to one subclass S. Subclass
S is the subclass with a greater value of µS(e), but this membership degree
is not stored and is considered as 1.

4. Nonfuzzy overlapping (o): Instance e is assigned to all subclasses Si,
such that µSi(e) > 0, but these membership degrees are not stored and are
considered as 1.

These four cases may be used with the four fuzzy attribute types. Then, 16
different possibilities are produced.
The following example shows two fuzzy attribute-defined specializations
(disjoint and overlapping). In one specialization, each pair of subclasses has a
fuzzy similarity degree between them (Type 3). This property is useful for
comparing them and for searching the more important instances in some
queries. In the other specialization there is no similarity relation (Type 4).
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Example 4.19: The conceptual model represented in Figure 4.20 states that in
a real estate agency, every landed property belongs to one subclass, which has
its own attributes. Thus, this is a total disjoint specialization (a double line and
a “d” inside the circle). The attribute Kind is a fuzzy attribute Type 3, because
if one person is looking for a chalet, for example, then this customer is possibly
interested in semidetached houses, because these two types are similar. This
factor is taken into account in order to show all the relevant properties to our
customer. In this sense, fuzzy queries are studied in Chapter VII and in this
context in Galindo, Medina, and Cubero, and Pons (1999) and Urrutia and
Galindo (2002). It should be noted that the subclasses are not fuzzy, because
every landed property belongs to only one subclass.
Every landed property has an owner, who is a customer. Another kind of
customer is a claimant who is looking for a landed property. The overlapping
specialization results in the fact that one customer may be an owner and a
claimant at the same time. The fuzzy attribute Type 4, Kind, allows us to store
possibility distributions over the subclasses in order to express any fuzzy
concept. In this example we are interested in measuring the urgency of the
customer. Thus, a customer with the value {0.4/Owner, 1/Claimant} is a
customer who is urgently looking for a landed property and who is offering
some property without urgency. It can be seen that the subclasses are not fuzzy,
because a customer is or is not an owner and/or a claimant.

*

Figure 4.20. Example 4.19: Fuzzy attribute-defined disjoint specialization
with total participation constraint
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 Example 4.20: Figure 4.22 includes another three examples of fuzzy attribute-
defined specializations using two fuzzy overlapping specializations and one
disjoint specialization. The first one is a specialization with a total participation
constraint (double line), and it establishes that all employees must belong to one
or more categories. In addition, Category is a fuzzy attribute Type 3.
The second one is a specialization with a fuzzy participation constraint with the
fuzzy quantifier almost_all in the labeled arc: Almost all researchers must belong
to one or more research lines. In addition, Research_Line is a fuzzy attribute
Type 3. We use a labeled arc instead of a zigzag line in the fuzzy participation
constraint because in this case it is clearer.
The third one is a disjoint specialization with a total participation constraint, and
it establishes that all temporary employees are beginners or seniors, according
to their seniority (or antiquity). Subclasses are not fuzzy because we do not
want to store the membership degree. In addition, a temporary employee
cannot belong to both subclasses. The antiquity is a crisp and known value, but
we can make flexible queries by using this attribute; that is, it is a fuzzy attribute
Type 1.

*

Fuzzy Constraints in Union Types or Categories:
Participation and Completeness

In the EER Model we can also find the union types or categories (Elmasri,
Weeldreyer, & Hevner, 1985; Elmasri & Navathe, 2000). This represents the
case when some different superclasses may or may not be members of a special
subclass (called category). By definition, each member of the subclass or
category must be a member of at least one of the superclasses. Union types are
represented with the union symbol inside a circle. Superclasses are joined to
that circle by a line. The subclass or category is joined to that circle by a single
line with the inclusion symbol. Furthermore, in partial categories it is possible
that superclass instances do not belong to the category, because the category
is a subset of the union of all superclasses.
It should be noted that the total categories (double line) indicate that all the
superclass instances belong to the category. In this case, the category may be
represented by using a generalization in which the category is transformed into
a superclass with total participation constraint.
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In this type of specialization, it is possible to apply fuzzy constraints in two ways:

Definition 4.21: Let C be a category (or subclass) of a union type, with n
superclasses: Ei with i = 1, 2, ..., n. A fuzzy participation constraint in one
or more superclasses is represented by an arc crossing the lines that join
the selected superclasses with the circle. The arc must be labeled with its
fuzzy quantifier or with the fuzzy (min, max) notation.
The selected superclasses are those superclasses that are constrained.
They are denoted by Ej, ∀ j ∈ J with J ⊆ {1, 2, …, n}. The union of the
selected superclasses is denoted by ∇:

�
Jj

jE
∈

=∇ (4.36)

1. If the arc is labeled with the quantifier Q, this constraint establishes
Equation 4.4, with φ defined by Equation 4.9, where a is the number
of instances in ∇ that belong to C, and b is the total number of
instances in ∇.

2. If the arc is labeled with the fuzzy (min, max) notation (Qmin, Qmax),
this constraint establishes that

λmin ≤ φmin ∧ λmax ≥ φmax (4.37)

where

λmin = min{α : α = 1
min
−Q  (γmin)} (4.38)

λmax = max{β : β = 1
max
−Q  (γmax)} (4.39)

where γmin and γmax are the minimum thresholds for Qmin and Qmax,
respectively, and
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



=Φ
relative is  if/
absolute is  if

min

min
min Qba

Qa
(4.40)





=Φ
relative is  if/
absolute is  if

max

max
max Qba

Qa
(4.41)

with a and b being the same values defined in previous case.

The warning area is similarly defined, using δ1 and δ2, respectively.
*

This constraint restricts the number of instances (in the union ∇ of any group of
superclasses) that belong to the category. The fuzzy quantifier will normally be
relative. For example, with the quantifier “almost all” on one superclass, the
constraint states, “Almost all the superclass elements belong to the category.”
Another option is to join two or more superclasses with an arc, indicating that
the union of instances of these superclasses is constrained in participation. This
constraint allows the use of the (min, max) notation, indicating the minimum and
maximum number of instances in ∇ that belong to the category (using absolute
or relative fuzzy quantifiers), and in this case, we must perform the observations
appearing in the “Fuzzy (min,max) Notation on Relationships” section in order
to express a good constraint.

Definition 4.22: A fuzzy completeness constraint in the category (on the
union of all superclasses) is represented by an arc crossing the line that
joins the category with the circle. The arc is labeled with one fuzzy
quantifier, or with the fuzzy (min, max) notation. This constraint is a fuzzy
participation constraint (Definition 4.21) embracing all superclasses: J =
{1, 2, ..., n}.

*

This constraint restricts the number of instances of all superclasses (the union)
that belong to the category. This fuzzy quantifier will normally be relative. For
example, with the quantifier “almost all” on the category, the constraint states,
“Almost all elements of all superclasses belong to the category.” This constraint
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also allows the use of the fuzzy (min,max) notation, indicating the minimum and
maximum number of all superclass instances that belong to the category. It
should be noted that this second way always refers to all the superclasses
instances, that is, to the union of all the superclasses. Consequently, relative
fuzzy quantifiers are preferable in this constraint.

Example 4.21: Let us consider four entity types for vehicles: Car, Truck,
Motorbike, and Bicycle. Some vehicles may belong to the Registered Vehicle
entity. Figure 4.21 depicts this model with some participation constraints:
Almost all the cars must be registered vehicles. All the trucks must also be
registered. Moreover, the model allows a maximum of approximately five
bicycles to be registered vehicles. The arc labeled with the fuzzy quantifier
“most” indicates that most motorbikes or bicycles (its union) must be
registered.
For the sake of simplicity, we introduce a fuzzy completeness constraint in the
same specialization. This constraint establishes that approximately half of the
existing vehicles must be registered vehicles.

*

In real models, fuzzy constraints in the same specialization must be mixed with
care.

Figure 4.21. Example 4.21: Fuzzy constraints on a union type or category
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Fuzzy Constraints in Intersection Types or Shared
Subclasses: Participation and Completeness

A shared subclass (or intersection type) is a subclass with several superclasses
(Elmasri & Navathe, 2000). Each member of the subclass must be a member of all
the superclasses; that is, the subclass is a subset of the intersection of all the
superclasses. A shared subclass is represented, joining it with all its superclasses by
a single line and the inclusion symbol. Another representation utilizes the intersection
symbol inside a circle: Superclasses are joined to that circle by a line, and the
subclass is joined to that circle by using a single line with the inclusion symbol.
As with union types, in this type of specialization it is possible to apply fuzzy
constraints in two ways:

Definition 4.23: Let S be a shared subclass (of an intersection type), with
n superclasses: Ei with i = 1, 2, ..., n. A fuzzy participation constraint in
one or more superclasses is represented by an arc crossing the lines that
join the selected superclasses with the circle. The arc must be labeled with
its fuzzy quantifier or with the fuzzy (min, max) notation.
The selected superclasses are those superclasses that are constrained.
They are denoted by Ej, ∀ j ∈ J with J ⊆ {1, 2, …, n}. The intersection of
the selected superclasses is denoted by ∆:

�
Jj

jE
∈

=∆ (4.42)

1. If the arc is labeled with the quantifier Q, then this constraint
establishes Equation 4.4, with φ defined by Equation 4.9, where a is
the number of instances in ∆ which belong to S, and b is the total
number of instances in ∆.

2. If the arc is labeled with the fuzzy (min, max) notation (Qmin , Qmax),
then this constraint establishes the constraint expressed in Equation
4.37, with φmin and φmax computed by using the values a and b defined
in the previous case of this definition.

The warning area is similarly defined by using δ1 and δ2, respectively.
*
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This constraint restricts the number of instances in the intersection of any group
of superclasses (∆) that belong to the shared subclass. This fuzzy quantifier
should be relative. For example, with the quantifier “almost all” on one
superclass, the constraint expresses that “almost all the superclass elements
belong to the shared subclass.” Another option is to join two or more
superclasses with the arc, indicating that the intersection of instances of those
superclasses are constrained in participation. This constraint allows the use of
the fuzzy (min, max) notation, indicating the minimum and maximum number of
instances in ∆ that belong to the shared subclass (using absolute or relative fuzzy
quantifiers). Generally speaking, the participation constraint is not useful, as
one constraint on one superclass (or on several superclasses) depends on the
membership of its instances to the other superclasses (it should be remembered
that the subclass is a subset of the intersection).

Definition 4.24: A fuzzy completeness constraint in a shared subclass (on
the intersection of all superclasses) is represented by an arc crossing the
line that joins the shared subclass with the circle. The arc is labeled with
one fuzzy quantifier, or with the fuzzy (min, max) notation. This constraint
is a fuzzy participation constraint (Definition 4.23) embracing all super-
classes: J = {1, 2, ..., n}.

*

This constraint restricts the number of instances in the intersection of all the
superclasses that belong to the shared subclass. This fuzzy quantifier will
normally be relative. For example, with the quantifier “almost all” on the shared
subclass, the constraint states, “almost all the elements of the intersection of all
the superclasses belong to the shared subclass.” This constraint also allows the
fuzzy (min, max) notation to be used, indicating the minimum and maximum
number of instances in the intersection (of all the superclasses) that belong to
the shared subclass. Notice that this constraint is always referred to as the
intersection of all superclasses.

Example 4.22: Let us consider an entity for Special Employees with its own
attributes (extra payment, number of awards, motive, etc.). A member of this
shared subclass must be an engineer, a chief (boss), and a permanent em-
ployee. Figure 4.22 depicts this model with the following participation con-
straint: Almost all the chiefs and permanent employees must be special
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employees. It is interesting to note how this constraint means that almost all the
chiefs and permanent employees must also be engineers (because all special
employees belong to the engineer superclass).
On the other hand, the fuzzy completeness constraint establishes that approxi-
mately half of the employees who are engineers, chiefs, and permanent
employees must be special employees.

*

Comparison of Some Fuzzy Models

In Chapter III we discussed some conceptual models proposed by other
authors. None of these investigations uses a CASE support tool proposed to
help in a system design that involves uncertainty. Our proposal has a tool called
FuzzyCASE, which allows us to model by using EER and FuzzyEER tools. It
incorporates all the notations shown in this work and in other works related to

Figure 4.22. Examples 4.20 and 4.22: Three fuzzy attribute-defined
specializations and fuzzy constraints in a shared subclass.
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the FuzzyEER Model (such as the fuzzy constraints that are not detailed in Table
4.3 but that have not been dealt with by any author in his or her publications).
Some of the most important models are those proposed by Chaudhry, Moyne,
and Rundensteiner (1994, 1999), Yazici and Merdan (1996), Chen (1998),
and Ma, Zhang, Ma, and Chen (2001). Table 4.3 shows a comparison of the
FuzzyEER Model with those models. Each cell shows a “Yes” if the model has
that component or modeling tool (even if it has another notation). In the
opposite case, the cell is empty. On the other hand, if the cell has a “Yes*,” the
component has been confined in that model but with different characteristics
than those of the FuzzyEER Model, or its characteristics are limited and more
reduced than those of the FuzzyEER Model proposed here. In general this
difference is caused by the use of different types of domains and treatment of
imprecision, or by a type of degree.

Conclusion and Future Lines

Fuzzy databases have been widely studied, with the aim of allowing the storage
of imprecise or fuzzy data and the imprecise queries about the existing data
(Petry, 1996; Medina, 1994; Galindo, 1999).
However, the application of fuzzy logic to databases has traditionally paid little
attention to the problem of the conceptual model, just as Chaudhry, Moyne,
and Rundensteiner, (1999) affirm. Few investigations study a complete and
exhaustive notation of the many characteristics, which may be improved by
using fuzzy logic (see Chapter III), and none of these works refer to the
possibility of extending constraints by using the tools offered by fuzzy sets
theory. The FuzzyEER Model intends to do so, and in the beginning of this
chapter we focused on the following: types of fuzzy attributes (T1, T2, T3, and
T4), fuzzy degrees associated or not associated with different items and with
different meanings, degrees with respect to the model, fuzzy aggregations, fuzzy
entities and relationships, fuzzy weak entities, and degrees in a specialization.
All these concepts allow us to extend the EER Model to the FuzzyEER Model
defined in this chapter. Therefore, it may be stated that a data model that
contemplates fuzzy data allows us to represent a type of data in an information
system, which the traditional systems do not deal with and therefore lose this
information. This reduces the risk of obtaining empty answers from queries in
the database, because fuzzy logic allows us to use a finer scale of discrimination,
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as it considers the interval [0, 1] instead of the set {0, 1}. In other words, it
allows us to recover instances that would not be obtained by using a precise
method, as they only partially meet the imposed conditions. Furthermore, the
set of instances can be ordered according to the level at which it satisfies the

* The component has been defined in that model but with more limited
characteristics than those of the FuzzyEER Model.

Table 4.3. Comparison of some fuzzy models: FEER, FERM, ExIFO,
Fuzzy ER, and FuzzyEER
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  2. Fuzzy degree associated to an attribute Yes*  Yes* Yes* Yes 

  3. Fuzzy degree assoc. to some attributes     Yes 

  4. Fuzzy degree with its own meaning     Yes 

  5. Fuzzy degree to the model Yes*  Yes* Yes Yes 

  6. Fuzzy entities Yes*  Yes* Yes* Yes 

  7. Fuzzy weak entity (existence)  Yes*   Yes 

  8. Fuzzy weak entity (identification)     Yes 

  9. Fuzzy relationship Yes*  Yes* Yes* Yes 

10. Fuzzy aggregation of entities Yes*  Yes* Yes* Yes 

11. Fuzzy aggregation of attributes Yes  Yes Yes Yes 

12. Fuzzy degree in the specialization Yes  Yes* Yes Yes 
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14. Fuzzy constraints    Yes* Yes 

15. Graphic and CASE Tool     Yes 
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conditions. This leads the way for creating queries and operations, which would
be nonviable in a traditional system.
In the “Fuzzy Constraints” section, we presented a system for expressing
flexible constraints, which can be used in a conceptual model utilizing the
FuzzyEER Model. These restrictions can be represented by using fuzzy
quantifiers (refer to Chapter I). The constraints studied are the fuzzy participa-
tion constraint, the fuzzy cardinality constraint, the fuzzy completeness con-
straint on specializations, the fuzzy cardinality constraint on overlapping
specializations, fuzzy disjoint and fuzzy overlapping constraints on specializa-
tions, fuzzy attribute-defined specializations, fuzzy participation and complete-
ness constraints in union types or categories, and fuzzy participation and
completeness constraints in intersection types or shared subclasses.
In addition, we have studied the fuzzy (min, max) notation and shown how this
notation can substitute fuzzy cardinality constraints and that a fuzzy cardinality
constraint can only substitute the (min, max) notation if both quantifiers are of the
same type (absolute or relative). Despite this equivalence in the majority of cases,
we consider that it is preferable to use the (min, max) notation for greater clarity.
The studied constraints on specializations include and improve the types of
constraints proposed in Varas, Contreras, and Campos, (1998), which are not
considered in other models (Elmasri & Navathe, 2000). Our proposal im-
proves on these constraints, because it uses the power and flexibility offered by
fuzzy sets theory.
The fuzzy constraints have a novel meaning and offer great expressiveness to
the conceptual model. Furthermore, the conceptual model continues to be an
easy-to-understand system of expression even for nontechnical users, which is
fundamental in conceptual modeling.
Some cases where the FuzzyEER Model has been applied and the results have
been published include the following: for the quality control of the paper
(Urrutia, 2002, 2003), for the management of a real estate agency (Urrutia &
Galindo, 2002; Urrutia, 2003) and for museum exhibitions using the Internet
(Aranda, Galindo, & Urrutia, 2002).
Chapter V studies how all the information that FuzzyEER can model can be
represented in a relational database, and Chapter VI discusses the mapping of
FuzzyEER Model concepts to relations, giving a FuzzyEER-to-relational
mapping algorithm.
Some of the FuzzyEER notations may be used in the FSQL (Fuzzy SQL)
server, which is an extension of SQL for permitting fuzzy queries and operations
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(Galindo, Medina, Pons, & Cubero, 1998; Galindo, Medina, Cubero, & Pons,
1999; Galindo, 1999, 2005). In Chapter VII, we extend the first definition of
FSQL in order to use all capabilities of the FuzzyEER Model.
In the near future we will try to study new useful components for FuzzyEER, to
study how all the information that FuzzyEER can model can be represented in
object-oriented databases, and to include fuzzy capabilities into deductive
database modeling (Di Battista & Lenzerini, 1993; Blanco, Cubero, Pons, &
Vila, 2000; Blanco, 2001) and into temporal database modeling (Gregersen &
Jensen, 1999).
With regard to fuzzy constraints, an interesting research line is to achieve
notational constructs to allow a greater selection of other fuzzy integrity
constraints. For example, relaxing the constraints proposed in Davis and
Bonnell (1989). In order to facilitate the task of using fuzzy quantifiers on the
part of designers, another interesting study  would be to classify the quantifiers
that can be used in natural language and the relationships among them. As
previously indicated, one constraint can be established with various fuzzy
quantifiers, and in this case, the use of certain quantifiers conditions and limits
the possibility of using others in the same constraint.
Other important future lines of works are (1) studying the repercussions of a
fuzzy relationship between two entities with fuzzy constraints, (2) studying the
repercussions of the inheritance characteristic with fuzzy entities and con-
straints, and (3) relaxing the universal quantifier (quantifier  ), which refers to
all instances of any entity (for example, see Equations 4.10, 4.12, 4.14, 4.19,
4.23, and 4.26). The next step will be to define an automatic transformation of
these fuzzy constraints into a fuzzy DBMS to create the necessary elements
(e.g., triggers and assertions) in order to assure the fulfillment of the fuzzy
constraints.
Object-modeling methodologies, such as OMT (Object-Modeling Technique)
and UML (Universal Modeling Language), are becoming increasingly popular
in software design and engineering, but an important part of these methodolo-
gies is similar in many ways to EER diagrams. The FuzzyEER concepts are
easily mapped to these object-modeling methodologies.
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Chapter V

Representation of
Fuzzy Knowledge in

Relational Databases:
FIRST-2

The Relational Model was developed by E.F. Codd of IBM and published in
1970. It is currently the most used and has been a milestone in the history of
databases, revolutionizing the market. In fact, relational databases have been
the most widespread of all databases. On a theoretical level, many Fuzzy
Relational Database models (Chapter II), which are based on the relational
model, extend this so that vague and uncertain information can be stored and/
or treated with or without fuzzy logic (see Chapter I).
The FuzzyEER Model (see Chapter IV) is an extension of the EER Model for
creating conceptual schemas with fuzzy semantics and notations. This extension
is a good eclectic synthesis between different models (see Chapter III) and
provides new and useful definitions: fuzzy attributes, fuzzy entities, fuzzy
relationships, fuzzy specializations, and so forth.
In this chapter, we propose the incorporation of FuzzyEER concepts into a
relational DBMS. Our aim is to present this extension as simply and usefully as
possible. We then extend the FIRST definitions (Medina, 1994; Medina, Pons,
& Vila, 1995; Galindo, 1999), which have been used in some applications
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(Blanco, Cubero, Pons, & Vila, 2000; Carrasco, 2003). FIRST-2 is the
extension of FIRST in order to incorporate these new definitions.
Chapter VI describes the steps of an algorithm for FuzzyEER-to-FIRST-2
mapping. Chapter VII defines the FSQL language (Fuzzy SQL), which
facilitates fuzzy database access and creation (queries, updates, etc.). Al-
though FSQL is independent of FIRST-2, FSQL needs a fuzzy database as
powerful as the one represented by using FIRST-2. Chapter VIII shows some
applications of fuzzy databases, FIRST-2, and the FSQL language.
The section “Fuzzy Values: Fuzzy Attributes and Fuzzy Degrees” in Chapter IV
showed the fuzzy attributes included in the FuzzyEER Model. We then define
how to represent fuzzy data and fuzzy metaknowledge data.
For each fuzzy attribute type, it is necessary to clarify two aspects:

1. How to represent the values (which the attribute can store). This question
is examined in the first two main sections in this chapter.

2. What information needs to be stored in the Fuzzy Metaknowledge Base
(FMB) to process it, and how this information should be organized. This
question is explained in the third main section of this chapter.

The FMB will be responsible for organizing all the information related to the
inexact nature or context of these attributes. The FMB is contemplated as an
extension of the catalogue of the system (Data Dictionary), and it organizes the
information by using tables or relations.
In this chapter, we focus on these two aspects. Firstly, for each fuzzy type of
information, we define its representation in the database of data, and then we
detail the structure of the FMB, clarifying the second point. Certain approaches
sharing this objective, such as Bosc and Galibourg (1989), have focused on
queries rather than on representation issues.
In this representation, the following aspects have predominated (Medina, 1994):

• Execution speed against storage economy: For some of the types that this
attribute can collect, it might be possible to use a more compact represen-
tation. However, this would result in a slower execution of the operations
that involve fuzzy attributes.

• Uniformity in the presentation: Classical attributes are used to represent
fuzzy attributes.
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• Use of the elements of the RDBMS host to represent the information in a
relational format. This criterion enables the reduction of any fuzzy opera-
tion to the terms of the relational classic model.

Representation of Fuzzy Values
in Fuzzy Attributes

In this section, we study those fuzzy attributes that admit (either in their storage
or processing) fuzzy values, which are more complex than a simple fuzzy
degree. These attributes are the four fuzzy types that we list in Chapter IV.

Fuzzy Attributes Type 1

These attributes are represented as usual attributes because they do not allow
fuzzy values. Nevertheless, information is stored in the FMB about the nature
or context of them. They are classical attributes that admit fuzzy processing, and
we will be able to perform fuzzy (flexible) queries by using the labels, for
example.

Fuzzy Attributes Type 2

This type of attribute enables the storage of inexact information on ordered
underlying domains. In Table 5.1, we show the system used to represent the
fuzzy attributes Type 2. There, we can see that a fuzzy attribute Type 2, called
F, for example, does in fact comprise five classical attributes:

• FT: This attribute stores the type of value corresponding to the data that
we want to store, indicating its representation. This is one of the
following types: UNKNOWN (0), UNDEFINED (1), NULL (2),
CRISP (3), LABEL (4), INTERVAL (5), APPROXIMATE VALUE
#d with implicit margin (6), TRAPEZOIDAL (7), APPROXIMATE
VALUE d ± m with explicit margin m (8), POSSIBILITY DISTRIBU-
TION-2 with 2 values (9), and POSSIBILITY DISTRIBUTION-4
with 4 values (10).
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• F1, F2, F3, and F4: The names of these attributes are formed by adding
the numbers 1, 2, 3, and 4 to the attribute name. They store the description
of the parameters that define the data and depend on the type of value
(attribute FT).

For each possible type of value of the attribute FT, we have the following
meaning of the other four attributes:

• UNKNOWN, UNDEFINED, NULL: These three values do not need
any parameter for which, as Table 5.1 shows, the other 4 attributes remain
Null (this value is the Null of the SGBD host, not the NULL of the fuzzy
value).

• CRISP: A crisp value d needs one parameter, F1, in which the crisp value
will be stored: d.

• LABEL: A label type value needs only one parameter to store the
identifier associated to the label (FUZZY_ID). This indicator is useful to
be able to access the FMB and to obtain the associated description to the
label. Note that the labels are stored in the FMB, and when an attribute
takes the value of a label, only the identifier of the label is stored, not its
definition. If we change the definition of a label in the FMB, then we are
also changing all the values that store that label.

• INTERVAL: This attribute needs the two extreme values of the interval
[n, m], which are stored in F1 and F4, respectively.

Table 5.1. Internal representation for fuzzy attributes Type 2 (for an
attribute F)

Type of values Attributes in the DB for each fuzzy attribute Type 2 
 FT F1 F2 F3 F4 
UNKNOWN 0 NULL NULL NULL NULL 
UNDEFINED 1 NULL NULL NULL NULL 
NULL 2 NULL NULL NULL NULL 
CRISP d 3 d NULL NULL NULL 
LABEL 4 FUZZY_ID NULL NULL NULL 
INTERVAL [n,m] 5 n NULL NULL m 
APPROXIMATE VALUE #d 6 d d − margin d + margin margin 
TRAPEZOIDAL 7 α β γ δ 
APPROXIMATE VALUE d ± m 8 d d − m d + m m 
POSSIBILITY DISTRIBUTION-2 9 p1 d1 p2 d2 
POSSIBILITY DISTRIBUTION-4 10 d1 d2 d3 d4 
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• APPROXIMATE VALUE d: This value needs only a value that is stored
in F1 and is the central value of the triangular possibility distribution (refer
to Figure 1.2b). Nevertheless, in order to reduce operations (mathematics
and access to data), FIRST-2 takes advantage of the attributes F2, F3,
and F4 to store the values d – margin, d + margin, and margin,
respectively. The margin value is a value stored in the FMB for each fuzzy
attribute Type 2 (or 1), and its value depends on the meaning of this
attribute. This allows us to store approximate values without indicating the
margin by using the default margin stored in the FMB. If the margin of
the FMB changes, these values must also change.

• TRAPEZOIDAL: This attribute must necessarily store the four values
that identify the trapezoidal function [α, β, γ, δ] (refer to Figure 7.1).
Although the labels are also trapezoidal, this type allows us to store a
trapezoidal function without having a defined label for that function.

• APPROXIMATE VALUE d ± m: This value and the following ones are
new in FIRST-2 and need the central value of the triangular possibility
distribution (refer to Figure 1.2b), which is stored in F1. The attributes F2,
F3, and F4 store the values d – m, d + m, and m, respectively. The m
value is now the margin, but in this type of value, the m value is not
associated to the FMB. Thus, if the FMB changes, these values do not
change. The user, of course, can change this type of value by using DML
statements.

• POSSIBILITY DISTRIBUTION-2 (2 values): This type stores one
or two possible values (d1 and d2). Each one has a possibility degree (p1
and p2, respectively). We can represent this value with the possibility
distribution {p1/d1, p2/d2}.

• POSSIBILITY DISTRIBUTION-4 (4 values): This type stores one,
two, three, or four possible values (d1, d2, d3, and d4), with possibility
degree 1 for all of them. Thus, we can represent this value with the
possibility distribution {1/d1, 1/d2, 1/d3, 1/d4}.

FIRST-2 does not allow any type of possibility distribution on a numeric
underlying domain because these values are unusual. The values POSSIBIL-
ITY DISTRIBUTION-2 and -4 represent the types 6 and 4, respectively, of
the GEFRED Model (see Table 2.4), limiting the number of possible values.
However, it is easy to extend the representation of fuzzy attributes Type 2 in
order to extend this limit. In fact, FIRST-2 does not allow many types to be
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represented (compare this representation with the types of membership
functions in Chapter I).
To summarize, for a fuzzy attribute Type 2, the representation uses five
attributes to store the code of the value type (FT), and the attributes F1, F2,
F3, and F4 to store the parameters of each datum. FIRST represents the
trapezoidal value storing β – α in F2 and γ – δ in F3, but it does not imply any
advantage — these values are useful for obtaining the linear functions, but in
order to decide what function to use, we need the values β and γ. Although
FIRST-2 does not allow us to store the extended trapezoid function (refer to
Chapter I), the extension for including this type of membership function is easy.
In such a case each fuzzy attribute would need more attributes in order to store
a list of points P1/N1, … Pn/Nn, where all the Pi belong to [0, 1] and all
the Ni are between α and β or between γ and δ. The maximum value of n
should be stored in the FMB (in the attribute LEN of the FUZZY_COL_LIST
table; see the corresponding section on this table later in this chapter).
Fuzzy time attributes are treated as fuzzy attributes Type 2, where the
underlying domain is the domain of date/time data types. Thus, in these fuzzy
attributes, F1, F2, F3, and F4 are not numeric. The values in the FMB (such
as margin, labels, etc.) may be stored in seconds, minutes, hours, and so forth
(see attribute UM in the FUZZY_COL_LIST table, later in this chapter). If the
context needs date/time data types, then the FMB must copy its tables,
changing the required data types.

Fuzzy Attributes Type 3

Type 3 attributes collect simple scalar data (SIMPLE) or possibility distribu-
tions (POSSIBILITY DISTRIBUTION) on this scalar domain. They also
accept data of the types UNKNOWN, UNDEFINED, and NULL.
As in fuzzy attributes Type 2, attributes of this type need to store in the database
the type of the value stored and the data of this value. The FMB also contains
the attributes that are of this type, along with the “similarity relations” (“prox-
imity relations” or “relations of resemblance”) defined on the underlying
domain (the scalars).
In Table 5.2, we show the system used to represent the fuzzy attributes Type
3. We can see that a fuzzy attribute Type 3, called F, for example, comprises
a variable number of classical attributes:
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• FT: The type of value that corresponds to the data that we want to store.
This could be UNKNOWN (0), UNDEFINED (1), NULL (2), SIMPLE
(3), and POSSIBILITY DISTRIBUTION (4).

• FT = 3: In this case, the representation needs only two more attributes,
called FP1 and F1, where F1 stores the label identifier, and FP1 stores
the possibility degree of this label. In a SIMPLE value, only the first FP1
is used, which should be 1 in order to be normalized (Definition 1.11).

• FT = 4: In this case, a list of n couples is needed, with n > 1, with the format
(possibility value/label identifier). These attributes store the next possibil-
ity distribution (using the Equation 1.1 format): {FP1/F1, ..., FPn/Fn}.

All the possibility values FP1, …, FPn, should belong to interval [0, 1]. In a
value of type POSSIBILITY DISTRIBUTION (FT = 4), it is able to store to
n couples. It can use fewer than n couples leaving the remainder attributes to
NULL, but it cannot store more than n couples. That is to say, the length of a
possibility distribution is delimited to the length n, which is adopted in the initial
definition of each fuzzy attribute Type 3 or 4.
As you will see, the FMB stores the labels, their similarity relation (symmetrical
or nonsymmetrical), and the value of n.

Fuzzy Attributes Type 4

The representation of fuzzy attributes Type 4 is exactly the same as the
representation of the fuzzy attributes Type 3 (refer to Table 5.2); the only
difference is in the FMB. Apart from indicating that these are of Type 4 and the
value of its particular n value (the maximum length of its possibility distribu-
tions), these attributes have no similarity relation between the labels. This

Table 5.2. Internal representation for fuzzy attributes Type 3 or 4 (for an
attribute F)

Type of values Attributes in the DB for each fuzzy attribute Type 3 
 FT FP1 F1 ... FPn Fn 
UNKNOWN 0 NULL NULL ... NULL NULL 
UNDEFINED 1 NULL NULL ... NULL NULL 
NULL 2 NULL NULL ... NULL NULL 
SIMPLE 3 P d ... NULL NULL 
POSSIBILITY DISTRIBUTION 4 p1 d1 ... pn dn 
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characteristic simplifies this type of attribute with respect to Type 3. On the
other hand, Type 4 can also be considered as equal to Type 3, having the
precaution of storing a similarity relation in which the value is 0 for any different
couple of labels, and 1 if the labels are equal. That is to say, for any couple of
different labels of a fuzzy attribute Type 4, its similarity degree must be 0.
Fuzzy attributes Type 3 can also be used to define attributes in which the
similarity relation has certain special characteristics (for example, not comply-
ing with the symmetrical property).

Representation of Fuzzy Degrees

We also consider here different types of attributes, but in this section we
consider only those that are represented simply by means of a fuzzy degree. The
domain of this degree should be the interval [0, 1]. For the majority of
applications, it is sufficient to admit two decimals of precision. Thus, in Oracle,
for example, the type of this attribute could be NUMBER(3,2).
In all these cases, the representation is then as simple as adding one attribute
to the table. The following aspects must be controlled: names assigned to these
attributes, the meaning (or significance) of those degrees, and whether they are
associated to values of other attributes in the same table.
So that they may be processed uniformly, minimizing the number of tables in the
FMB, the types of degrees that we include in this section are called fuzzy
attributes Type 5, 6, 7, and 8, respectively.

Fuzzy Degree Associated to Each Value of an Attribute:
Type 5

In fuzzy attributes Type 5, this degree simply adds one attribute to the table.
This attribute can be assigned any name, but FIRST-2 proposes that it be
called DegreeF, where F is the name of the associated attribute. FSQL
language has the function FDEGREE in order to access to this degree (see
Chapter VII). In addition, the associated attribute of each degree and the
meaning of each degree must be stored in the FMB.
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Fuzzy Degree Associated to Values of Some Attributes:
Type 6

The Type 6 degree adds one attribute to the table. This attribute can be
assigned any name, but FIRST-2 proposes that it be called DegreeF,
where F is the acronym of all the associated attributes. FSQL language has
the function FDEGREE in order to access this degree (see Chapter VII).
If there is a conflict with the name, it can be changed. As you will see, the
associated attributes and the meaning of each degree must be stored in the
FMB.

Fuzzy Degree Associated to the Whole Tuple: Type 7

The Type 7 degree also adds one attribute to the table. This attribute can
be assigned any name, but FIRST-2 proposes that it be called DegreeF,
where F is the table name. Nevertheless, FSQL language has the function
FDEGROW in order to access this degree (see Chapter VII). The FMB
stores the attributes of this type that exist, along with the meaning of each
of them.

Fuzzy Degree With Its Own Meaning: Type 8

The Type 8 degree also adds one attribute to the table. This attribute can
be given any name, and the user must write the name. The user should
choose a good name that indicates something about its meaning. Moreover,
this degree can have a standard meaning (or significance) stored in the FMB
(see the section “Table FUZZY_DEGREE_SIG (FDS),” later in this
chapter). This kind of degree does not have a default meaning because the
meaning should be expressed in the name. The FMB stores the attributes
of this type that exist, along with their associated standard meaning (if they
have one).
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FMB (Fuzzy Metaknowledge Base):
Definition of Tables

As you have seen in the previous sections, certain types of information about
the attributes need to be stored in an accessible form by the system or by the
users. The Fuzzy Metaknowledge Base organizes all the information related to
the imprecise or vague nature of these attributes.
The elements of the fuzzy processing stored in the FMB are as follows:

1. Attributes with fuzzy processing: Attributes of the database that
receive fuzzy processing and the type of these attributes (from Type 1
to 8).

2. Information about these attributes: Depending on its type, different
information is stored for each attribute:
• Types 1 and 2:

� Linguistic labels: name and definition (trapezoidal fuzzy set) for
each one.

� The margin value for approximate values.
� The much value M: minimum distance M to consider two values

as “very” separated (called “much”). This last value is used in
comparisons such as “much greater than” (MGT/NMGT) and
“much less than” (MLT/NMLT).

• Types 3 and 4:
� Maximum length for possibility distributions in values of these

types (value n used in the fuzzy attributes Type 3 and Type 4
sections).

� Linguistic labels: name.
� Similarity relations between these labels (only for fuzzy attributes

Type 3).
• Types 5 and 6:

� Degree significance (or meaning).
� Attribute or attributes to which the degree is associated (in the

Type 5 case, there is only one attribute).
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• Types 7 and 8:
� Degree significance (or meaning), which is optional in the Type

8 (fuzzy degree with its own meaning).
3. Other objects or information:

• Fuzzy qualifiers (associated to any fuzzy attribute) are used to set a
linguistic threshold in queries or to make comparisons with degree
attributes.

• Fuzzy quantifiers (associated to an attribute, to a table, or to the
system). Fuzzy quantifiers (refer to Chapter I) are used in
� Fuzzy queries (see Chapter VII): For example, “Give me em-

ployees who belong to most projects.”
� Fuzzy constraints (see “Fuzzy Constraints” section in Chapter

IV): For example, “An employee must work in many projects.”
• Compatible columns: Those columns or attributes that may be com-

pared are compatible. Thus, the definition of all values in the FMB must
be done for one of them. For a Type 3 attribute, the user defines its
labels and the similarity relation in the FMB. The other attributes that
use these labels are marked as compatible to the first one.

It is important to emphasize that in order to compare two attributes Type 3 or
two attributes Type 4, they should have the same domain, and therefore they
must be marked as compatible. For the Type 1 or 2, they do not need to be
compatible, because each attribute has its own labels, and the possibility
distribution of these labels is what is compared (the definition that both labels
have in the FMB). Thus, for example, we will be able to compare two fuzzy
attributes Type 2, such as “height” and “weight,” although this comparison does
not make sense and is meaningless. Marking two attributes Type 1 or 2 as
compatible avoids the creation of labels in one of them. In the Type 3 and 4,
marking the attributes as compatible is obligatory, because (for the compari-
son) the attributes to be compared must have the same labels and the same
characteristics.
Subsequently, we detail how FIRST-2 implements the FMB, its basic nucleus.
This is done by means of the tables defined in the next section. FIRST-2 also
defines some views that facilitate access to certain data (see the “Useful Views
on the FMB” section later in this chapter). A summary of these objects is shown
in Table 5.3.



156   Galindo, Urrutia & Piattini

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

These tables and views are a general basic structure. A good structure should
consist of sets of views with different information about all the accessible
objects. For example, Oracle organizes its data dictionary into three kinds of
views containing similar information and distinguished from each other by their
prefixes: Prefix USER_ is adopted in views containing user objects (what is in
the user’s schema), views with prefix ALL_ contain accessible objects (what
the user can access), and views with prefix DBA_ are database administrators’
views (what is in all the users’ schemas).

Relations in the FMB

Figure 5.1 shows the FMB relations (or tables), their attributes, their primary
keys (underlined), and their foreign keys (with arrows).
We use OBJ# as the relation identifier, and COL# as the column or attribute
identifier (as does Oracle). In a relational database, each attribute is assigned
univocally to a couple of data (OBJ#, COL#), where OBJ# is the indicator of
a table and COL# is the indicator of the column or concrete attribute in that
table. From now on, we shall refer to OBJ# as the indicator of a table, although
this can also be the indicator of a view (if we have one or several fuzzy tables,
we will be able to define a fuzzy view on them).
For each table/view of the FMB, a public synonymous with the acronyms of the
table/view is created in order to facilitate access, because the names of these

Table 5.3. Tables and views of FIRST-2 and its synonyms

N. Table/View  Utility Synonym 
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 

T. FUZZY_COL_LIST 
T. FUZZY_DEGREE_SIG 
T. FUZZY_OBJECT_LIST 
T. FUZZY_LABEL_DEF 
T. FUZZY_APPROX_MUCH 
T. FUZZY_NEARNESS_DEF 
T. FUZZY_COMPATIBLE_COL 
T. FUZZY_QUALIFIERS_DEF 
T. FUZZY_DEGREE_COLS 
T. FUZZY_DEGREE_TABLE 
T. FUZZY_TABLE_QUANTIFIERS 
T. FUZZY_SYSTEM_QUANTIFIERS 

List of fuzzy columns (or attributes). 
Fuzzy degrees significances (or meanings). 
List of fuzzy objects of columns. 
Trapezoidal definitions (for labels). 
Margin and M values (Types 1 and 2). 
Similarity relations (Type 3). 
Compatible fuzzy attributes. 
Qualifiers definition. 
Columns with an associated fuzzy degree. 
Information about fuzzy degrees of tables. 
Fuzzy quantifiers associated to tables. 
Fuzzy quantifiers associated to the system. 

FCL 
FDS 
FOL 
FLD 
FAM 
FND 
FCC 
FQD 
FDC 
FDT 
FTQ 
FSQ 

13. 
14. 
15. 

V. LABELS_FOR_OBJCOL 
V. LABELS _OBJCOL_T3 
V. ALL_COMPATIBLES_T34 

Trapezoidal labels for each attribute. 
Labels for Type 3 and 4. 
Compatible attributes Type 3 and 4. 

LFOC 
LOCT3 
ACT34 
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objects are long. Table 5.3 shows the set of tables and views of the FMB, its
utility, and its synonym.
Subsequent sections describe how each table is created in FIRST-2, its
structure, its meaning, and the meaning of each of its attributes. The primary key
of each table is underlined in Figure 5.1.

Table FUZZY_COL_LIST (FCL)

The FCL table contains a description of those attributes in the database for
fuzzy processing or treatment. The columns of this table and their meanings are
as follows:

• OBJ#: This column stores the object number of the table that has a fuzzy
attribute.

• COL#: This column stores the column number that admits a fuzzy
processing in the table OBJ#. In fuzzy attributes Type 2, 3, or 4, this
attribute stores the column number of the type attribute (FT in Tables 5.1
and 5.2).

• F_TYPE: This column stores the type of fuzzy attribute of the column
identified by (OBJ#, COL#). This type can be an integer value between
1 and 8.

• LEN: This column stores information when the type of the fuzzy attribute
(column F_TYPE) is Type 3 and 4. For these attributes, the column stores
the maximum length n of a possibility distribution, that is, the maximum
number of couples (possibility value / label) that admits a possibility
distribution in this fuzzy attribute Type 3 or 4.

• CODE_SIG: This column stores information when the type of the attribute
(column F_TYPE) is Type 5, 6, and 7. This column is a numerical value
and it expresses the meaning of this degree, which must exist in table
FUZZY_DEGREE_SIG. This value is optional for Type 8.

• COLUMN_NAME: For the sake of convenience, this field is useful for
putting the alphanumeric name (without codes) of the attribute (OBJ#,
COL#), using, for example, the format <Owner>.<Table>.<Column>.

• COM: This column stores an optional comment about each attribute.
• UM: This column stores the unit of measurement of the attribute optionally.
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Table FUZZY_DEGREE_SIG (FDS)

This table contains a list with the meanings of the degrees used in the previous
table:

• CODE_SIG: This stores the numerical code of the meaning.
• SIGNIFICANCE: This stores the alphanumeric meaning or significance

in the database’s own language. As you see in Chapter IV, these meanings
can vary (fulfillment degree, uncertainty degree, possibility degree, impor-
tance degree, etc.).

Table FUZZY_OBJECT_LIST (FOL)

This table contains a list of the fuzzy objects that are defined in the columns of
the database. The attributes of this table have the following meanings:

• (OBJ#, COL#): This stores the attribute identifier to which the object
belongs.

• FUZZY_ID: The identifier of the fuzzy object.
• FUZZY_NAME: The name of the object without spaces.
• FUZZY_TYPE: The type of the object. It may be one of the following

codes, and each code has an associated object. Fuzzy quantifiers codes
begin at 10:

0 For scalars of fuzzy attributes Type 3, subject to processing by
means of a symmetrical similarity relation defined in table
FUZZY_NEARNESS_DEF (with a nonordered underlying do-
main).

1 For scalars of fuzzy attributes Type 3, subject to processing by
means of a nonsymmetrical similarity relation (proximity relation)
defined in table FUZZY_NEARNESS_DEF (with a nonordered
underlying domain).

2 For scalars of fuzzy attributes Type 4, subject to processing without
similarity relation (with a nonordered underlying domain).
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3 For qualifiers defined over the fulfillment degree in the query
(threshold) and stored in table FUZZY_QUALIFIERS_DEF.

4 For linguistic labels of fuzzy attributes Type 1 or 2, which are of the
trapezoidal type defined in table FUZZY_LABEL_DEF (with an
ordered underlying domain).

10 Linguistic labels defined on absolute quantifiers (without argu-
ments) and stored in the table FUZZY_LABEL_DEF with α, β, γ,
δ ≥ 0. See Example 1.6.

11 Linguistic labels defined on relative quantifiers (without arguments)
and stored in the table FUZZY_LABEL_DEF with α, β, γ, δ ∈ [0,
1]. See Example 1.6.

12 Linguistic labels defined on absolute quantifiers with one argu-
ment x. They are also stored in the table FUZZY_LABEL_DEF
with the values α, β, γ, and δ (which can be negative), so that the
final quantifier is understood to be defined by adding (or reducing)
the argument x to each value: [α + x, β + x, γ + x, δ + x]. See
Example 1.7.

13 Linguistic labels defined on absolute quantifiers with one argument
x. They are also stored in the table FUZZY_LABEL_DEF with α, β,
γ, and δ usually in the interval [0, 1], so that the final quantifier is
understood to be defined by multiplying each value by the argument
x: [α * x, β * x, γ * x, δ * x]. See Example 1.7.

14 Linguistic labels defined on relative quantifiers with one argu-
ment x. They are also stored in the table FUZZY_LABEL_DEF
with the values α, β, γ, and δ (which can be negative), so that the
final quantifier is understood to be defined by adding (or reducing)
the argument x to each value: [α + x, β + x, γ + x, δ + x]. See
Example 1.7.

15 Linguistic labels defined on relative quantifiers with one argument
x. They are also stored in the table FUZZY_LABEL_DEF with α, β,
γ, and δ usually in the interval [0, 1], so that the final quantifier is
understood to be defined by multiplying each value by the argument
x: [α * x, β * x, γ * x, δ * x]. See Example 1.7.

16 Linguistic labels defined on absolute quantifiers with two argu-
ments x and y. They are also stored in the table FUZZY_LABEL_DEF
with the values α, β, γ, and δ (which can be negative), so that the final
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quantifier is understood to be defined by [α + x, β + x, γ + x, δ + x].
See Example 1.7.

17 Linguistic labels defined on absolute quantifiers with two argu-
ments x and y. They are also stored in the table FUZZY_LABEL_DEF
with α, β, γ, and δ usually in the interval [0, 1], so that the final
quantifier is understood to be defined by [α * x, β * x, γ * x, δ * x].
See Example 1.7.

18 Linguistic labels defined on relative quantifiers with two arguments
x and y. They are also stored in the table FUZZY_LABEL_DEF with
the values α, β, γ, and δ (which can be negative), so that the final
quantifier is understood to be defined by [α + x, β + x, γ + x, δ + x].
See Example 1.7.

19 Linguistic labels defined on relative quantifiers with two arguments
x and y. They are also stored in the table FUZZY_LABEL_DEF with
α, β, γ, and δ usually in the interval [0, 1], so that the final quantifier
is understood to be defined by [α * x, β * x, γ * x, δ * x]. See
Example 1.7.

For more information about absolute and relative quantifiers (with or without
arguments), refer to Chapter I. The FUZZY_TYPE for fuzzy quantifiers is
shown in Table 5.4. Some examples are shown in Tables 5.5 and 5.6.

Table 5.4. Fuzzy quantifiers types

* Building Type sets how to obtain the final quantifiers starting from the
values [α, β, γ, δ] and the arguments x and y.

FUZZY_TYPE Num. of 
Arguments 

Absolute 
Relative 

Building 
Type* 

Final 
Quantifier 

10 0 A - [α, β, γ, δ] 
11 0 R - [α, β, γ, δ] 
12 1 A Sum [α+x, β+x, γ+x, δ+x] 
13 1 A Product [α*x, β*x, γ*x, δ*x] 
14 1 R Sum [α+x, β+x, γ+x, δ+x] 
15 1 R Product [α*x, β*x, γ*x, δ*x] 
16 2 A Sum [α+x, β+x, γ+y, δ+y] 
17 2 A Product [α*x, β*x, γ*y, δ*y] 
18 2 R Sum [α+x, β+x, γ+y, δ+y] 
19 2 R Product [α*x, β*x, γ*y, δ*y] 
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Table FUZZY_LABEL_DEF (FLD)

This table contains the points that define the trapezoidal possibility distribution
associated to the types of objects from 4 to 19 (trapezoidal labels and fuzzy
quantifiers) of the attribute FUZZY_TYPE of the table
FUZZY_OBJECT_LIST. The fields of this table are as follows:

• (OBJ#, COL#, FUZZY_ID): These three fields are the primary key of this
table and are the foreign key to the table FUZZY_OBJECT_LIST.

• ALFA, BETA, GAMMA, and DELTA: These fields define a trapezoidal
possibility distribution (see Figure 7.1).

Although FIRST-2 does not allow us to set labels such as “extended trapezoid
function” (refer to Chapter I), the extension for including this type of member-
ship function is easy. Furthermore, this table would need more attributes in
order to store a list of points P1/N1, … Pn/Nn, where all the Pi belong to
[0, 1], and all the Ni are between α and β or between γ and δ.

Table FUZZY_APPROX_MUCH (FAM)

This table stores data that are useful for fuzzy attributes Type 1 or 2. Its columns
have the following meaning:

• (OBJ#, COL#): These columns store the attribute identifier.
• MARGEN (margin, in Spanish): This is the margin used in the triangular

labels of the approximate values.
• MUCH: This is the value M that indicates the minimum distance to

consider two values of this attribute to be very separated.

This table should have a constraint that forces the value MARGEN to be less
than the MUCH value for obvious and semantic reasons.
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Table FUZZY_NEARNESS_DEF (FND)

This table presents the measures of resemblance, similarity, or proximity
between the different values in the underlying domain of fuzzy attributes Type
3. Its columns are as follows:

• (OBJ#, COL#): These columns store the identifier of the attribute Type
3, which possesses the similarity relation.

• FUZZY_ID1: The identifier of an object label. The three attributes
(OBJ#, COL#, FUZZY_ID1) form a foreign key that should exist in the
table FUZZY_OBJECT_LIST, and in this table, column FUZZY_TYPE
should have the value 0 or 1.

• FUZZY_ID2: The identifier of another object label. The three attributes
(OBJ#, COL#, FUZZY_ID2) form a foreign key that should exist in the
table FUZZY_OBJECT_LIST, and in this table, column FUZZY_TYPE
should have the value 0 or 1.

• DEGREE: The similarity, proximity, or resemblance degree between the
labels indicated by the two previous attributes (FUZZY_ID1 and
FUZZY_ID2). This value should belong to the interval [0, 1].

Table FUZZY_COMPATIBLE_COL (FCC)

The FCC table indicates the fuzzy attributes that are compatible with others
(mainly Type 3 or 4). In this way, it is unnecessary to define the labels (for Type
1, 2, 3, or 4) and the similarity relations (if they are Type 3) for each one of them.
Its columns have the following meanings:

• (OBJ#1, COL#1): These columns store the identifier of the fuzzy
attribute that is compatible with another. It indicates that this attribute
does not own labels and will take the labels defined by the following
attribute.

• (OBJ#2, COL#2): These columns store the identifier of an attribute that
has labels (and a similarity relations if it is Type 3) defined on it, and they
will be adopted for the previous attribute.
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Table FUZZY_QUALIFIERS_DEF (FQD)

Definition of qualifiers defined over the fulfillment degree in a query (threshold)
and that they will be able to be used in simple comparisons:

• (OBJ#, COL#, FUZZY_ID): These three fields are the primary key and
foreign key to the table FUZZY_OBJECT_LIST and have identical
meanings.

• QUALIFIER: The qualifier is a number in the interval [0, 1].

Table FUZZY_DEGREE_COLS (FDC)

Declaration of the columns associated to a fuzzy degree. The number of
associated columns to a degree of Type 5 is one. In addition, a degree of Type
6 can be associated to any quantity of columns. The columns of this table are
as follows:

• (OBJ#1, COL#1): These columns store the identifier of the attribute Type
5 or 6. These attributes are the foreign key of the table
FUZZY_COL_LIST.

• (OBJ#2, COL#2): These two fields specify a column or attribute to which
the fuzzy degree, defined by the two previous attributes, is associated.

It should be noted that the primary key of this table includes the four attributes,
because a degree can be associated to many attributes (the case of the Type
6) and, additionally, an attribute can have many associated degrees to it (of
Type 5 or 6 indistinctly). Of course, the degrees of Type 7 and 8 do not use this
table.

Table FUZZY_DEGREE_TABLE (FDT)

This table stores information about the fuzzy tables, that is, tables with one or
more degree attributes (i.e., Type 7 degrees). Fuzzy tables come from fuzzy
entities or relationships (Definitions 4.8, 4.9, and 4.10). The columns of this
table are as follows:
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• OBJ#: This column stores the identifier of the table that represents the
fuzzy entity or relationship.

• COL#: This column stores the identifier of the degree column, which must
be represented in table FUZZY_COL_LIST with F_TYPE = 7. The
meaning of the degree is expressed in that table.

• DEGREE_TYPE: The type of degree that can only be used at an
informative level because it does not have an influence on the system. It
can be of the following types:
“C” for degrees of fuzzy entities calculated automatically
“M” for degrees of fuzzy entities introduced manually
“E” for fuzzy weak entities due to dependency on existence
“I” for fuzzy weak entities due to dependency on identification
“R” when table OBJ# represents a fuzzy relationship and the degrees are

calculated automatically
“S” when table OBJ# represents a fuzzy relationship and the degrees are

introduced manually

As the definitions of fuzzy entities (Definition 4.9) and fuzzy relationships
(Definition 4.11) express, the degree can be calculated automatically with a
predefined function. The fuzzy weak entities due to dependency on identifica-
tion are treated as the normal weak entities, bearing in mind that the primary key
of the owner entity must be included.

Table FUZZY_TABLE_QUANTIFIERS (FTQ)

Definition of quantifiers associated to a relation or table (not to an attribute).
These quantifiers are used in fuzzy constraints (refer to Chapter IV) and fuzzy
queries (see Chapter VII). The columns of this table are as follows:

• OBJ#: This column stores the identifier of the table to which the quantifier
is associated.

• FUZZY_NAME: The name of the quantifier without spaces.
• FUZZY_TYPE: The type of quantifier. This attribute uses the same codes

as the table FUZZY_OBJECT_LIST for quantifiers (see Table 5.4).
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• ALFA, BETA, GAMMA, and DELTA: These columns define the trap-
ezoidal fuzzy quantifier.

Note that the primary key of this table is (OBJ#, FUZZY_NAME), which
indicates that one table cannot have two quantifiers with the same name, but the
same name can be used in different tables, and, of course, with possibly
different definitions.

Table FUZZY_SYSTEM_QUANTIFIERS (FSQ)

Definition of quantifiers associated to the system (neither an attribute nor a
table). These quantifiers are used in fuzzy constraints (refer to Chapter IV) and
fuzzy queries (see Chapter VII). The columns of this table are as follows:

• FUZZY_NAME: The name of the quantifier without spaces.
• FUZZY_TYPE: The type of quantifier. This attribute uses the same codes

as the table FUZZY_TABLE_QUANTIFIERS: See the preceding sec-
tion and Table 5.4.

• ALFA, BETA, GAMMA, and DELTA: These columns define the trap-
ezoidal fuzzy quantifier.

Note that the primary key of this table is (FUZZY_NAME), which indicates
that each system quantifier has a unique name. Table 5.5 shows an example of
FUZZY_SYSTEM_QUANTIFIERS with one quantifier of each type.
Some quantifiers are very dependent on the context, so they are not good
system quantifiers. System quantifiers should either be relative or absolute with
one or two arguments and type product (types 11, 13, 14, 15, 17, 18, and 19),
because these types are not very dependent on the context (particularly the
relative quantifiers).
This table should store some default values, and according to the previous
information, Table 5.6 proposes some interesting system quantifiers. Fur-
thermore, two quantifiers (∃ and ∀) must be implemented directly in the
system: Exists and For_all (or All), with the Equations 1.65 and
1.66, respectively.
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* Maximum value in the underlying domain (MAX≡∞).

Table 5.5. An example of table FSQ with one quantifier of each type

FUZZY_NAME FUZZY_TYPE ALFA BETA GAMMA DELTA Final Quantifier 
Approx_8 10 6 8 8 10 [6, 8, 8, 10] 
Almost_All 11 0.4 0.9 1 1 [0.4, 0.9, 1, 1] 
Much_Greater_Than_x 12 1 9 MAX* MAX* [1+x, 9+x, 

MAX+x, MAX+x] 
About_Half_of_x 13 0.25 0.5 0.5 0.75 [0.25x, 0.5x, 

0.5x, 0.75x] 
Approx_xth_part 14 -0.2 0 0 0.2 [x-0.2, x, x, 

x+0.2] 
Less_Than_xth_part 15 0 0 1 1.25 [0, 0, x, 1.25x] 
Approx_Between_x_and_y 16 -5 0 0 5 [x-5, x, y, y+5] 
Approx_Between_ 
Half_x_and_Half_y 

17 0.25 0.5 0.5 0.75 [0.25x, 0.5x, 
0.5y, 0.75y] 

Approx_Between_ 
xth_and_yth_part 

18 -0.1 0 0 0.1 [x-0.1, x, y, 
y+0.1] 

Approx_Between_Half_ 
xth_and_Half_yth_part 

19 0.4 0.5 0.5 0.6 [0.4x, 0.5x, 0.5y, 
0.6y] 

Table 5.6. An example of table FSQ with interesting system quantifiers
(this table may be used as default table FSQ)

FUZZY_NAME FUZZY_TYPE ALFA BETA GAMMA DELTA Final Quantifier 
Fuzzy_Exists 10 0 1 MAX MAX [0, 1, ∞, ∞] 
Most 11 0.4 0.9 1 1 [0.4, 0.9, 1, 1] 
Almost_All 11 0.4 0.9 1 1 [0.4, 0.9, 1, 1] 
About_Half 11 0.25 0.5 0.5 0.75 [0.25, 0.5, 

0.5, 0.75] 
Minority 11 0 0 0.1 0.6 [0, 0, 0.1, 0.6] 
About_Half_x 13 0.25 0.5 0.5 0.75 [0.25x, 0.5x, 

0.5x, 0.75x] 
Approx_x 13 0.9 1 1 1.1 [0.9x, x, 

x, 1.1x] 
Twice_x (or Double_of_x) 13 1.75 2 2 2.25 [1.75x, 2x, 

2x, 2.25x] 
Approx_xth_part 14 -0.2 0 0 0.2 [x-0.2, x, x, 

x+0.2] 
Less_Than_xth_part 15 0 0 1 1.25 [0, 0, x, 1.25x] 
More_Than_xth_part 15 0.75 1 100 100 [0.75x, x, 100x, 

100x] 
Approx_Between_ 
Half_x_and_Half_y 

17 0.25 0.5 0.5 0.75 [0.25x, 0.5x, 
0.5y, 0.75y] 

Approx_Between_x_and_y 17 0.75 1 1 1.25 [0.75x, x, 
y, 1.25y] 

Approx_Between_ 
Twice_x_and_Twice_y 

17 1.75 2 2 2.25 [1.75x, 2x, 
2y, 2.25y] 

Approx_Between_ 
xth_and_yth_part 

18 -0.1 0 0 0.1 [x-0.1, x, y, 
y+0.1] 
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Useful Views on the FMB

These views simplify access to certain data. We present some views here,
although more, of course, can be defined.

View LABELS_FOR_OBJCOL (LFOC)

The view LABELS_FOR_OBJCOL (LFOC) serves to easily obtain or query
the defined labels on fuzzy attributes Type 1 or 2 and the parameters of the
associated trapezoidal fuzzy set. The statement that creates this view is the
following:

CREATE or replace view LABELS_FOR_OBJCOL AS

  SELECT FOL.OBJ# OBJ#, FOL.COL# COL#, COLUMN_NAME,

Fuzzy_Name LABEL, ALFA, BETA, GAMMA, DELTA

  FROM  FOL, FLD, FCL

  WHERE FOL.OBJ# = FLD.OBJ# AND FOL.COL# = FLD.COL#

    AND FCL.OBJ# = FOL.OBJ# AND FCL.COL# = FOL.COL#

    AND FLD.FUZZY_ID = FOL.FUZZY_ID

    AND FOL.FUZZY_TYPE = 4;

The columns of this view have the following meanings:

• (OBJ#, COL#): These columns store the identifier of the attribute Type
1 or 2 that owns the label.

• COLUMN_NAME: The name of the attribute.
• LABEL: The name of the linguistic label.
• (ALFA, BETA, GAMMA, DELTA): These columns define the trapezoidal

label.
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View LABELS_OBJCOL_T3 (LOCT3)

The view LABELS_OBJCOL_T3 (LOCT3) serves to obtain or to easily
query the defined labels on fuzzy attributes Type 3 as well as the similarity
relation among them.

CREATE or replace view LABELS_OBJCOL_T3 AS

    SELECT FND.OBJ# OBJ#, FND.COL# COL#, FUZZY_TYPE,

FOL1.FUZZY_NAME LABEL_1,

FOL2.FUZZY_NAME LABEL_2,

           DEGREE

    FROM  FOL FOL1, FOL FOL2, FND

    WHERE FOL1.OBJ# = FOL2.OBJ# AND FOL1.COL# = FOL2.COL#

AND FOL1.OBJ# = FND.OBJ#  AND FOL1.COL# = FND.COL#

      AND FOL1.FUZZY_TYPE = FOL2.FUZZY_TYPE

AND FOL1.FUZZY_TYPE IN {0,1}

      AND FND.FUZZY_ID1 = FOL1.FUZZY_ID

      AND FND.FUZZY_ID2 = FOL2.FUZZY_ID;

The columns of this view have the following meanings:

• (OBJ#, COL#): These columns store the identifier of the attribute Type
3 that owns the labels and the similarity relation between them.

• FUZZY_TYPE: This column takes 0 for symmetrical similarity relations
and 1 for nonsymmetrical similarity relations (proximity relations).

• LABEL_1: The name of a linguistic label defined in the previous fuzzy attribute.
• LABEL_2: The name of another linguistic label.
• DEGREE: The similarity degree between LABEL_1 and LABEL_2.

View ALL_COMPATIBLES_T34 (ACT34)

The ALL_COMPATIBLES_T34 (ACT34) view serves to easily query the
fuzzy attributes Type 3 or 4, which have been defined as being compatible to



Representation of Fuzzy Knowledge in Relational Databases   169

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

one another. In this way, we can discover which fuzzy attributes (Type 3 or 4)
do not have defined labels on them and which attributes own the labels. In
addition, the maximum length for the possibility distributions is shown.

CREATE or replace view ALL_COMPATIBLES_T34 AS

    SELECT distinct

           FCL1.COLUMN_NAME COLUMN_1,

          FCL1.LEN         LENGTH_1,

          FCL2.COLUMN_NAME COMPATIBLE_WITH,

          FCL2.LEN         LENGTH_2,

          FCL1.F_TYPE

    FROM  FCL FCL1, FCL FCL2, FCC

    WHERE FCL1.OBJ# = FCC.OBJ#1 AND FCL2.OBJ# = FCC.OBJ#2

      AND FCL1.COL# = FCC.COL#1 AND FCL2.COL# = FCC.COL#2

      AND FCL1.F_TYPE IN {3,4};

The columns of this view have the following meanings:

• COLUMN_1: The name of the column that is compatible with another.
This indicates that this attribute does not own labels and will take the labels
defined by the attribute COMPATIBLE_WITH.

• LENGTH_1: The maximum number of couples (possibility value, label)
that admits a possibility distribution in fuzzy attribute COLUMN_1.

• COMPATIBLE_WITH: The name of the column that has objects defined
on it and that will be adopted for the previous attribute COLUMN_1.

• LENGTH_2: The maximum number of elements in possibility distributions
of the previous fuzzy attribute.

• F_TYPE: This column stores the fuzzy data type of the previous two
attributes. In this view, this column can be an integer value 3 or 4.



170   Galindo, Urrutia & Piattini

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 5.1. FMB scheme of FIRST-2
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Chapter VI

Mapping FuzzyEER
Model Concepts

to Relations

This chapter shows the transformation of the FuzzyEER model to a logical
design by using relational databases. The FuzzyEER-to-Relational mapping
algorithm is based on the “classical” EER-to-Relational mapping algorithm,
published in Elmasri and Navathe (2000) and summarized in the first section of
this chapter, but other versions are very similar (De Miguel, Piattini, & Marcos,
1999; Silverschatz, Korth, & Sudarshan, 2002). The FuzzyEER-to-Relational
mapping algorithm includes additional rules for mapping fuzzy concepts.
The following sections translate the FuzzyEER concepts, that is, the definitions
in Chapter IV, to the FIRST-2 schema, which was exposed in Chapter V.
Thus, this chapter relates Chapter IV with Chapter V, obtaining a fuzzy
relational database. In addition, we need a comprehensive fuzzy database
language with statements for data definition, query, and update. This language
is FSQL (Fuzzy SQL), and we describe it in Chapter VII.
It should be noted that some definitions in Chapter IV define fuzzy degrees to
the model (see the “Zvieli and Chen Approach” section in Chapter III and the
“Fuzzy Degree to the Model” section in Chapter IV). Of course, these degrees
are not mapped to the relational database. As such, Definitions 4.7, 4.8, and
4.12 are not treated in this chapter.
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EER-to-Relational Mapping Algorithm

Basically an EER schema may be mapped into the corresponding relational
database schema in 10 steps. The first seven steps are related to ER models, and
the last steps are related to the superclass/subclass relationships in EER models.

STEP 1: For each regular (strong) entity type E, create a relation R that includes
all the simple attributes or the simple component attributes of composite
attributes of E. One or some attributes must be the primary key of E.

STEP 2: For each weak entity type W with owner entity type E, create a
relation R, including the attributes as in Step 1. Furthermore, R must include a
foreign key to the relation of E. The primary key of R is the combination of the
primary key of the owner (relation of E) and the partial key of W, if any. It is
common to choose the propagate option for the referential triggered action, that
is, the SQL clauses ON UPDATE CASCADE and ON DELETE CASCADE
in the foreign key, because a weak entity has an existence dependency on its
owner entity.

STEP 3: For each binary 1:1 relationship type, choose one of the participating
entities and include the primary key of the other one as foreign key of one of
the entities’ relations. It is better to choose an entity type with total participation
in the relationship. Include all the simple or composite attributes in the relation
of the chosen entity. An alternative mapping of a 1:1 relationship type is possible
by merging the two entity types and the relationships into a single relation. This
is better when both participations are total.

STEP 4: For each regular binary 1:N relationship, identify the relation S that
represents the participating entity type at the N-side of the relationship type.
Include as foreign key in the S relation the primary key of the other relation.
Include all the simple or composite attributes in the relation of S.

STEP 5: For each binary M:N relationship type, create a new relation R.
Include as foreign key in R the primary keys of the relations that represent the
participating entity types; their combination will form the primary key of R.
Include in R all the simple or composite attributes in the relationship. The
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propagate (CASCADE) option for the referential triggered action should be
specified on the foreign keys in the relation corresponding to the relationship,
because each relationship instance has an existence dependency on each of the
entities it relates.

It should be noted that we can always map 1:1 or 1:N relationships in a manner
similar to M:N relationships, and this quality is particularly useful when few
relationships instances exist, in order to avoid null values in foreign keys. In this
case, the primary key will be only one of the foreign keys that reference the
participating relations.

STEP 6: For each multivalued attribute A, create a new relation. This relation
includes the attribute A, plus a foreign key K, to the primary key of the
relation that represents the entity type or relationship type that has A as an
attribute. The primary key is A and K. The propagate (CASCADE) option for
the referential triggered action should be specified on the foreign key in the
relation corresponding to the multivalued attribute for both ON UPDATE and
ON DELETE.

STEP 7: For each n-ary relationship type, where n > 2, create a new relation.
Include as foreign key the primary keys of the relations that represent the
participating entity types; their combination will usually form the primary key. If
the cardinality constraints of any of the participating entity types is 1, then the
primary key should not include the corresponding foreign keys. Include all the
simple or composite attributes in the relationship. The propagate (CASCADE)
option for the referential triggered action should be specified on the foreign keys.

Derived attributes and the (min, max) notation are translated into triggers
because they do not have standard constraints. The trigger of derived attributes
computes the value when some other values are modified or when we insert an
instance with the derived attribute. Similarly, the trigger of a constraint with the
(min, max) notation controls that the constraint be satisfied.

STEP 8: Convert each specialization with m subclasses {S1, S2, …, Sm} and
superclass C with attributes {k, a1, a2, …, an}, where k is the primary key, into
relation schemas using one of the four options:
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1. Option 8A: Create a relation for C with attributes {k, a1, a2, …, an} and
create m relations with the attributes of {S1, S2, …, Sm}, respectively. The
primary key of all these relations is k, which must be added to the m
relations.

2. Option 8B: Create m relations with the attributes of {S1, S2, …, Sm},
respectively. In addition, these m relations must include the attributes {k,
a1, a2, …, an}, where k is the primary key for all of them.

3. Option 8C: Create a single relation with all the attributes and t: {k, a1, a2,
…, an} ∪ {attributes of S1} ∪ … ∪ {attributes of Sm} ∪ {t}. The primary
key is k. This option is for a specialization whose subclasses are disjoint,
and t is a type attribute that indicates the subclass to which each tuple
belongs, if any.

4. Option 8D: Create a single relation with the attributes {k, a1, a2, …, an}
∪ {attributes of S1} ∪ … ∪ {attributes of Sm} ∪ {t1, t2, …, tm}. The
primary key is k. This option is for a specialization whose subclasses are
(mainly) overlapping, and ti with i = 1, 2, ..., m are Boolean attributes
indicating whether a tuple belongs to Si.

STEP 9: A shared subclass (or intersection type) is a subclass of several
superclasses, and all must have the same key. We can apply any of the options
discussed in Step 8, although option 8A is usually used.

STEP 10: A category is a subclass of the union of two or more superclasses that
can have different keys. To map a category, it is customary to specify a new key
attribute, called a surrogate key, when creating a relation to correspond to the
category. The category is mapped into a relation with its attributes and the
surrogate key as the primary key. We also add the surrogate key as a foreign key
to each relation corresponding to a superclass of the category. For a category
whose superclasses have the same key, a surrogate key is unnecessary.

Fuzzy Values in Fuzzy Attributes

Definitions 4.1 and 4.2 (in Chapter IV) define fuzzy attributes in the FuzzyEER
Model:
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1. Fuzzy attributes Type 1 are represented as usual attributes (see the
corresponding section in Chapter V), storing in the FMB the values
expressed in the “FMB (Fuzzy Metaknowledge Base): Definition of
Tables” section in Chapter V (linguistic labels, the margin value and the
much value). This attribute type implies to update the following FMB
tables: FCL, FOL, FLD, and FAM.

2. Fuzzy attributes Type 2 are represented as the corresponding section in
Chapter V shows, storing in the FMB the values expressed in the “FMB
(Fuzzy Metaknowledge Base): Definition of Tables” section in Chapter V
(linguistic labels, the margin value and the much value). See Table 5.1.
This attribute type implies to update the following FMB tables: FCL,
FOL, FLD, and FAM.

3. Fuzzy attributes Type 3 are represented as the corresponding section in
Chapter V shows, storing in the FMB the values expressed in the “FMB
(Fuzzy Metaknowledge Base): Definition of Tables” section in Chapter V
(length, linguistic labels, and the similarity relation). See Table 5.2. This
attribute type implies to update the following FMB tables: FCL, FOL, and
FND.

4. Fuzzy attributes Type 4 are represented as the corresponding section in
Chapter V shows, storing in the FMB the values expressed in the “FMB
(Fuzzy Metaknowledge Base): Definition of Tables” section in Chapter V
(length and linguistic labels). See Table 5.2. This attribute type implies to
update the following FMB tables: FCL and FOL.

According to this, primary key attributes, simple attributes, composite at-
tributes, derived attributes, and multivalued attributes (fuzzy or crisp) are
represented by using the classic techniques shown in the preceding section.
Instead of updating the tables FCL, FOL, FLD, AM, and FND, it is also
possible to update the table FCC, but only if the attribute is compatible with
other already existing attributes.

Fuzzy Degrees

Definition 4.3 defines fuzzy degrees associated with each value of an attribute.
This degree is represented as a numeric attribute. This attribute type implies to
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update the following FMB tables: FCL (inserting a Type 5 attribute) and FDC
(inserting only one row with the associated attribute identifier). Optionally, if the
degree has a special meaning this must be inserted in the FDS table. Derived
fuzzy degrees (Definition 4.4) are implemented by using triggers.
Definition 4.5 defines fuzzy degrees associated with values of some attributes.
This degree is also represented as a numeric attribute. This attribute type
implies to update the following FMB tables: FCL (inserting a Type 6 attribute)
and FDC (inserting as many rows as associated attributes). Optionally, if the
degree has a special meaning, this must be inserted in the FDS table. Derived
fuzzy degrees are implemented by using triggers.
Definition 4.6 defines nonassociated fuzzy degrees, that is, fuzzy degrees with
their own meaning. This degree is also represented as a numeric attribute. This
attribute type implies to update the FCL table (inserting a Type 8 attribute).
Optionally, if the degree has a special meaning, this must be inserted in the FDS
table. Derived fuzzy degrees are implemented by using triggers.
Definitions 4.9, 4.10, and 4.11 define fuzzy degrees associated with the
whole tuple: fuzzy entities, fuzzy weak entities, and fuzzy relationships. These
degrees are also represented as numeric attributes. This attribute type implies
to update the FCL table (inserting a Type 7 attribute). Optionally, if the degree
has a special meaning, this must be inserted in the FDS table. Derived fuzzy
degrees are implemented by using triggers. In addition, this degree inserts one
row in the FDT table, with the suitable value in the column DEGREE_TYPE
(see the “Table FUZZY_DEGREE_TABLE (FDT)” section in Chapter V).
On the other hand, any fuzzy attribute or fuzzy degree may have fuzzy qualifiers.
In this case, fuzzy qualifiers are inserted in the FOL and FQD tables.

Fuzzy Constraints

Fuzzy constraints use fuzzy quantifiers (see Definition 1.22) with zero, one, or
two thresholds γ and δ (see the “Thresholds and Fuzzy Quantifiers for Relaxing
Constraints” section in Chapter IV). These quantifiers must be inserted in the
FMB. Quantifiers associated with an attribute are inserted in the FLD and FOL
tables, quantifiers associated with a table (called table quantifiers) are defined
in the FTQ table, and quantifiers associated with the system (called system
quantifiers) are defined in the FSQ table. In the FOL, FTQ, and FSQ tables,
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the quantifier must be inserted by using the suitable value of attribute
FUZZY_TYPE (see Table 5.4). We suggest inserting in the FSQ table at least
those quantifiers expressed in Table 5.6, because those quantifiers are general
and basic enough and can be used in fuzzy constraints and in fuzzy queries (see
Chapter VII).
All constraints are implemented by using triggers, which check whether the
constraints are satisfied. Each constraint is represented by using a condition
with the quantifier function and the thresholds. If the quantifier is absolute, then
it uses only the value a of Equation 4.9, and if the quantifier is relative, then it
uses the a and b values of that equation.
These values have different meanings according to the constraint type, and
these meanings are indicated in the definition of each constraint: Definitions
4.13, 4.14, 4.15, 4.16, 4.17, 4.21, 4.22, 4.23, and 4.24.
Definitions 4.18 and 4.19 define fuzzy disjoint and overlapping specializa-
tions, respectively. There, the constraint sets that at least one of the subclasses
is a fuzzy entity (Definition 4.9). Two options exist:

1. From the point of view of subclasses: Each fuzzy entity in the subclasses
is considered like any other fuzzy entity (see the preceding section). This
is the solution if you use Options 8A or 8B (especially the second one)
in order to map the specialization (see STEP 8 in the “EER-to-Relational
Mapping Algorithm” section, earlier in this chapter).

2. From the point of view of the superclass: Each subclass is considered like
a crisp entity, and we add a new fuzzy attribute in the superclass. If a
similarity relation between the subclasses exists, then the fuzzy attribute is
either a Type 3 or a Type 4. This attribute type was treated in the “Fuzzy
Values in Fuzzy Attributes” section, and now, the length (attribute LEN in
the FCL table) and the linguistic labels of this attribute depend on the
chosen option when converting the specialization (STEP 8):
• Option 8A: The length is the number of fuzzy subclasses, and the

linguistic labels are the names of those subclasses.
• Option 8C: The fuzzy attribute is the attribute t with length equal to

1 (disjoint specialization), and the linguistic labels are the names of all
subclasses (fuzzy or not).

• Option 8D: The fuzzy attribute is the attribute t with length equal to
the number of subclasses m (overlapping specialization), and the
linguistic labels are the names of all subclasses (fuzzy or not).
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It should be noted that the length of this attribute in overlapping specialization
controls the number of subclasses to which each member of the superclass can
belong in a flexible manner. Thus, this length must be less than or equal to m.
Finally, Definition 4.20 defines the fuzzy-attribute-defined specializations.
Obviously, this definition implies a new fuzzy attribute in the superclass. In this
case, the classification of each instance in the superclass is an automatic process,
according to this fuzzy attribute and the specialization type (fd, fo, d, or o). In
general, disjoint specializations (d) should be treated as fuzzy disjoint specializa-
tions (fd), and overlapping specializations (o) should be treated as fuzzy
overlapping specializations (fo), because fuzzy versions are very expressive.
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Chapter VII

FSQL:
A Fuzzy SQL

for Fuzzy Databases

The SQL language was essentially developed by Chamberlin and Boyce
(1974) and Chamberlin et al. (1976). In 1986, the American National Standard
Institute (ANSI) and the International Standards Organization (ISO) published
the standard SQL-86 or SQL1 (ANSI, 1986). In 1989, an extension of the
SQL standard, called SQL-89, was published, and SQL2 or SQL-92 was
published in 1992 (ANSI, 1992).
SQL2 basically provided new types, constraints (such as checks or unique
predicates), it supported subqueries in UPDATE and DELETE operations,
and in the FROM clause, operator IN, ANY and ALL, CASE constructor,
JOIN, UNION, INTERSECT and EXCEPT operators and the modification
of base table through views.
In the latest version of SQL standard, SQL 2003, major improvements have
been made in a number of key areas. Firstly, it has additional object-relational
features, which were first introduced in SQL-1999. Secondly, SQL 2003
standard revolutionizes SQL with comprehensive OLAP features and data-
mining applications. Thirdly, SQL 2003 integrates popular XML standards into
SQL (SQL/XML). Finally, numerous improvements have been made through-
out the SQL 2003 standard to refine existing features.
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Nowadays, SQL may be considered one of the major reasons for the success
or relational databases in the commercial world, and the bibliography about
SQL language is very extensive (Date & Darwen, 1997; Elmasri & Navathe,
2000; Patrick, 2002). In all these sources, the basic commands of this language
are explained in its two dimensions:

• DML (Data Manipulation Language): The DML statements (or sen-
tences) enable the query (consultation) and the modification of the data
stored in the database. Examples of this kind of sentences are SELECT,
INSERT, DELETE, and UPDATE.

• DDL (Data Definition Language)1: The statements of this language enable
the creation and modification of the structures in which the data will be
stored. Examples of DDL statements are as follows: CREATE (to create
objects of the database, such as tables, views, etc.), DROP (to remove
objects), ALTER (to modify objects), and statements for security con-
trols and indexes and for the control of the physical storage of the data.

In this chapter we focus on revising the syntax of the most useful and important
commands, explaining the news that these commands incorporate into FSQL
to enable us to handle fuzzy information. We do not explain the detailed syntax
of each command but only the part that FSQL adds to SQL.
FSQL allows three types of comments to be incorporated into the statements
that will not be used when the statements are analyzed or executed. The first of
these comments (C style) starts with the character sequence /* and ends with
the sequence */. The second one uses a double hyphen -- and comments from
this point to the end of the line. These two comment types are also used in SQL
and PL/SQL. In the last type, the start of a comment is marked by the character
sequence /*, and the comment is terminated by the end of the file (end of
statement, end of string, etc.).
The FSQL user is able to prevent a statement by using the FSQL Server. In
order to do so, we can use symbol ! (admiration) as the first character of the
statement. This is useful if the FSQL Client program does not admit the
possibility of sending an SQL standard statement. With this system, we
accelerate the process for this type of statement, because the FSQL Server is
not executed completely. In other words, if the admiration symbol is the first
character, then the statement will be considered as an SQL statement.
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DML of FSQL: SELECT, INSERT,
DELETE, and UPDATE

Inside the DML, the most complex and usual statement is the data query
sentence SELECT, although INSERT, DELETE, and UPDATE are also
useful statements. In this section we define the format for these statements in
FSQL.

Novelties in the Fuzzy SELECT of FSQL

The SELECT statement is a very powerful, complex, and flexible sentence.
Although very easy to use in simple queries, it is not so easy to use in complex
queries due to its power and versatility. This statement is so powerful that
rarely is all its expressive power used to carry out a consultation. The normal
thing is to perform queries that are a great deal simpler than SELECT
permits.
In order to simplify the writing and understanding of complex queries, interme-
diate views are sometimes used that are created as subqueries in the database
(with the CREATE VIEW statement).
The SELECT statement has the following form, where only the two first clauses
are obligatory:

SELECT <select list>

FROM   <table list>

[WHERE  <condition>]

[GROUP BY <grouping attributes>]

[HAVING   <condition on groups>]

[ORDER BY <columns for order>];

The FSQL language is an authentic extension of SQL. This means that all the
valid statements in SQL are also valid in FSQL. In addition, FSQL incorpo-
rates some novelties to permit the inexact processing of information. Basically,
the following extensions are performed to this statement.
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Linguistic Labels

If an attribute is capable of fuzzy treatment, then linguistic labels can be defined
on it. These labels will be preceded by the symbol $ to distinguish them easily.
There are two types of labels, which will be used in different fuzzy attribute
types:

1. Labels for attributes with an ordered underlined domain: Every label of
this type has associated a trapezoidal possibility distribution in the FMB2.
This possibility distribution is generally trapezoidal, linear, and normalized,
as Figure 7.1 shows. Example 4.1 uses attributes Height and Age with this
kind of label: $Short, $Tall, $Young… (refer to Figure 4.2). These
labels are used in fuzzy attributes Type 1 and 2 (see Chapter IV).

2. Labels for attributes with a nonordered domain (scalars of Types 1, 3,
and 5 in Table 2.4). Here, a similarity relation may exist defined between
each two labels in the domain and stored in the FMB. The similarity degree
is in the interval [0, 1]. Consider, for example, attribute Color_hair in
Example 4.1, which has defined the labels $Blond, $Dark, and
$Ginger. These labels are used in fuzzy attributes Type 3 and 4 (refer
to Chapter IV).

Fuzzy Comparators

In addition to the typical comparators (=, >, > =...), FSQL includes the fuzzy
comparators in Table 7.1. As in SQL, fuzzy comparators compare one column
with one constant or two columns of the same (or compatible) type.

Figure 7.1. Trapezoidal, lineal, and normalized possibility distribution
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As possibility comparators are more general (less restrictive) than necessity
comparators, necessity comparators retrieve fewer tuples, and these tuples
necessarily comply with the conditions (whereas with possibility comparators,
the tuples only possibly comply with the condition, without any absolute
certainty). In the “Fuzzy Comparisons” section, later in this chapter, we provide
a definition for all the comparators, fuzzy or nonfuzzy (see the “Fuzzy Compara-
tors Restrictivity” section for more information about the restrictiveness of the
comparators): FEQ (or F=) uses the possibility measure (Equation 1.40), and
NFEQ (or NF=) uses the necessity measure (Equation 1.41).
In attributes with a nonordered underlying domain (Fuzzy Type 3 or 4), only the
fuzzy comparators FEQ, FDIF, INCL, and FINCL can be used, because
they lack order. These comparators are defined for these types of attributes in
the “Fuzzy Comparisons” section, later in this chapter.
Comparators INC and FINCL do not use possibility and necessity measures,
and INCL is more restrictive than FINCL (INCL retrieves fewer rows than
FINCL).
The fuzzy comparator of “inequality” or “possibly different” may be modeled
denying (with NOT) a comparison with FEQ or NFEQ, using the following
format: NOT <F_attribute> FEQ <attrib_or_const>.
However, as you see in the “Fuzzy Comparators” section, this method obtains
different results when FDIF and NFDIF are used, and in addition, the
behavior of the NOT operator may be changed (see the section on modifying
FSQL options, later in this chapter).
Crisp comparators may be used in comparisons with fuzzy attributes, and these
are defined later in this chapter.

Table 7.1. The 18 fuzzy comparators for FSQL (Fuzzy SQL): 16 in the
possibility/necessity family, and two in the inclusion family

Possibility Necessity Significance 
FEQ or F= NFEQ or NF= Possibly/Necessarily Fuzzy Equal than… 

FDIF, F!= or F<> NFDIF, NF!= or NF<> Possibly/Necessarily Fuzzy Different to… 
FGT or F> NFGT or NF> Possibly/Necessarily Fuzzy Greater Than… 

FGEQ or F>= NFGEQ or NF>= Possibly/Necessarily Fuzzy Greater or Equal than… 
FLT or F< NFLT or NF< Possibly/Necessarily Fuzzy Less Than… 

FLEQ or F<= NFLEQ or NF<= Possibly/Necessarily Fuzzy Less or Equal than… 
MGT or F>> NMGT or NF>> Possibly/Necessarily Much Greater Than… 
MLT or F<< NMLT or NF<< Possibly/Necessarily Much Less Than… 

FINCL INCL Fuzzy Included in… / Included in… 
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Sometimes, it is useful to change the default margin and much values. The
margin is used in approximate values, and the other value is used with the
comparators of type MGT/MLT in order to consider two time values as being
very separated. Either both or one of the values can be specified after one fuzzy
comparator in this order. For example, the following simple conditions change
one or both values:

Distance FEQ(35) #9

Distance MGT(35,88) #9

Distance MGT(,88) #9

This syntax permits us to use fuzzy comparators with nonfuzzy columns. In that
case, it is obligatory to specify the margin. The other value is only obligatory if
we use fuzzy comparators that need it. This option is very important, because
FSQL can be used in totally crisp systems. Of course, if we want to use labels,
we must declare them.

Fulfillment Thresholds and Qualifiers

For each simple condition, a fulfillment threshold τ may be established (default
is 1) with the following format:

<condition> THOLD τ

indicating that the condition must be satisfied with minimum degree τ ∈ [0, 1]
to be considered. The reserved word THOLD (threshold) is optional and may
be substituted by a traditional crisp comparator (=, <, >=, ...), modifying the
query meaning. The word THOLD is equivalent to using the crisp comparator
>=.
Rather than a number, τ may be a qualifier (see the section on qualifiers later
in this chapter), that is, an identifier or label that should be defined in the FMB.
Qualifiers are also preceded by the symbol $.

Example 7.1: “Give me all persons with fair hair (in minimum degree 0.5) that
are possibly taller than label $Tall (with a high degree)”:
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SELECT * FROM Person WHERE Hair  FEQ $Fair THOLD 0.5

                       AND Height FGT $Tall THOLD $High

If we are looking for persons that are necessarily taller than label $Tall,
then we must use the fuzzy comparator NFGT instead of FGT. The
expression $High is a qualifier of Height that must be defined in the
FMB.

*

On a practical level, a qualifier is a constant inside the context of the degrees
of an attribute. In addition to making the queries more understandable, another
useful feature is that certain queries can be tuned up by simply changing the
definition of the qualifier.
FSQL admits thresholds in compound conditions (with logical operators). In
general, it is preferable to use parentheses to clarify the influence of the
threshold. For example, we can set

(<condition1> AND <condition2>) THOLD τ
(<condition1> OR <condition2>) THOLD τ

(NOT <condition>) THOLD τ

Instead of specifying the fulfillment threshold, we can establish the number of
items that we desire to recover. This characteristic is also defined by the
language SQLf (see the “Other SQL-Based Fuzzy Languages” section, later in
this chapter), and here FSQL also establishes this number in square brackets
after the word SELECT. For example, if we want to select the best 11 rows,
we can use SELECT[11] . . .

Fuzzy Constants and Fuzzy Expressions

In FSQL, we can use the fuzzy constants as detailed and explained in Table 7.2.
It should be noted that the noncontinuous possibility distributions (the last four
constant types) are also disjunctive values (see Types 3, 4, 5, and 6 of the
GEFRED Model, Table 2.4).
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Table 7.3 shows these fuzzy constants and the fuzzy datatypes that can store
and use them (in queries, fuzzy conditions, etc.). FIRST-2 limits the number of
elements in the stored noncontinuous possibility distributions and in the
extended trapezoid.
Fuzzy expressions can be built starting with the syntax of fuzzy constants. For
example, if one table has a column PERCENTAGE, then some fuzzy expres-
sions are as follows:

#PERCENTAGE +- 10

Approximately the value of that column with a margin of 10.
#5 +- (PERCENTAGE *2)

Approximately 5 with a margin specified in column PERCENTAGE
multiplied by 2.

In other words, values of fuzzy constants can be substituted for expressions, in
which they can use constants, names of columns, and arithmetic operators.

Function CDEG() and Logic Operators
The function CDEG (compatibility degree) may be used with an attribute in the
argument. Thus, it computes the fulfillment degree of the condition of the query
for the specific attribute, which is expressed between brackets as the argument.
If logic operators appear in the condition, the calculation of this compatibility
degree is carried out following Table 7.4. By default, the minimum t-norm and
the maximum s-norm (or t-conorm) are used (see Chapter I), but the user may
change these values with the ALTER FSQL statement (see the “Modifying
FSQL Options: ALTER FSQL and ALTER SESSION” section, later in this
chapter). The user can set the function to be used for every logic operator
(NOT, AND, OR). Obviously, this function must be implemented in the FSQL
Server or may be implemented by users themselves; the function for the NOT
must have only a numerical argument, while the functions for the AND and for
the OR must have two numerical arguments. The logical operator precedence
is the habitual one, that is, from greater to smaller precedence are NOT, AND,
and OR.
In order to change these functions dynamically for a specific logic operation, the
FSQL user may use the following:
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Table 7.2. Fuzzy constants that may be used in FSQL statements

Table 7.3. Fuzzy constants and the fuzzy datatypes that can store and use them

Table 7.4. Default computation for function CDEG with logic operators in
FSQL

<Condition> (with logic operators) CDEG(<Condition>) 
<cond1> AND <cond2> min(CDEG(<cond1>),CDEG(<cond2>)) 
<cond1> OR <cond2> max(CDEG(<cond1>),CDEG(<cond2>)) 

NOT <cond1> 1  CDEG(<cond1>) 
 

Fuzzy Constant Significance 
UNKNOWN Unknown value but the attribute is applicable. 
UNDEFINED The attribute is not applicable or it is meaningless. 
NULL Total ignorance: we know nothing about it. 
$[ , , , ] Fuzzy trapezoid (with       ): example in Figure 7.1. 
$[ , , , , 
P1/N1,…,Pn/Nn] 

Extended fuzzy trapezoid (with some points Pi/Ni where all the Ni 
are between  and  or between  and ): example in Figure 1.10. 
Values  and  are both optional. If they do not exist, then this constant 
should be a fuzzy value without kernel. 

[n,m] Interval “Between n and m”. 
 n+-m Fuzzy value “Approximately n”: triangle n  m. 
#n Fuzzy value “Approximately n”: triangle n  margin (Figure 1.2), 

where margin is stored in the FMB for each attribute. 
$label Linguistic Label: it may be a trapezoid or a scalar (defined in FMB). 
{P1/L1, P2/L2, 
…, Pn/Ln} 

Non-continuous possibility distribution on labels, where P1, P2, …, 
Pn are the possibility values and L1, L2, …, Ln are the labels. 

{L1, L2,…, Ln} Non-continuous possibility distribution on labels, where L1, L2, …, 
Ln are the labels, with possibility degree 1 for all of them: {1/L1, 
…, 1/Ln}. 

{P1/N1, P2/N2, 
…, Pn/Nn} 

Non-continuous possibility distribution on numbers, where P1, P2, …, 
Pn are the possibility values and N1, N2, …, Nn are the numbers. 

{N1, N2,…, Nn} Non-continuous possibility distribution on numbers, where N1, N2, …, 
Nn are the numbers, with possibility 1 for all of them: {1/N1, …, 
1/Nn}. 

 Table 7.2. Fuzzy constants that may be used in FSQL statements 

α ≤ β ≤ γ ≤ δ

±
±

α, β, γ, δ
α, β, γ, δ

α β
β γ

γ δ

 
Fuzzy Constant Datatypes for storing Datatypes for using 
UNKNOWN 2, 3 and 4 2, 3 and 4 
UNDEFINED 2, 3 and 4 2, 3 and 4 
NULL All All 
$[ , , , ] 2 1 and 2 
$[ , , , , P1/N1,…,Pn/Nn] 2 1 and 2 
[n,m] 2 1 and 2 
 n+-m 2 1 and 2 
#n 2 1 and 2 
$label 2, 3 and 4 1, 2, 3 and 4 
{P1/L1, P2/L2, …, Pn/Ln} 3 and 4 3 and 4 
{L1, L2, …, Ln} 3 and 4 3 and 4 
{P1/N1, P2/N2, …, Pn/Nn} 2 1 and 2 
{N1, N2, …, Nn} 2 1 and 2 

 

α, β, γ, δ
α, β, γ, δ
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1. NOT (negation)

2. AND (t-norm)

3. OR (s-norm)

where negation, s-norm, and t-norm are alphanumeric values indi-
cating the function. Negation must be a negation function and the others use
Tables 1.1 and 1.2: “minimum,” “product,” “drastic product,” “bounded
product p,” “Einstein product,” “Hamacher product p,” “maximum,” “sum-
product,” “drastic sum,” “bounded sum p,” “Einstein sum,” and so forth. It
should be noted that for the sake of simplicity, if the norm needs some argument
p, it is included after the name.
If the argument of the CDEG function is an attribute, then it uses only the
conditions that include that attribute. If the attribute indicated as the
argument of CDEG does not appear in the condition, then this function is not
applicable, but instead of giving an error, it proceeds to return degree 1 for
all the rows.
We can use CDEG(*) to obtain the fulfillment degree of each tuple (with all
of its attributes, not just one of them) in the condition.
Function CDEG may be used in the select list (expressions after the reserved
word SELECT). This is useful in order to show, in a column, the fulfillment
degree for each row (or tuple).

Character %

Character % is similar to the character * of SQL, but it also includes the
columns for the fulfillment degrees of the attributes in which they are relevant.
In the result, you will also find the function CDEG applied to each and every one
of the fuzzy attributes that appear in the condition. This character may also, of
course, be used with the format [[scheme.]table.]%, as for the
following example: Person.%.
If a fuzzy attribute does not appear in the WHERE clause, then its CDEG is not
applicable, and its CDEG will not appear if the wild card % is used.
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Condition With IS

The format of another kind of condition that can be used is as follows:

<Fuzzy_Attribute> IS [NOT] 






NULL

UNDEFINED

UNKNOWN

Remarks concerning the condition with IS:

• This condition (without NOT) will be true if the left fuzzy attribute value
(<Fuzzy_Attribute>) is the fuzzy constant placed on the right.

• If the attribute is not fuzzy and the constant is NULL, then this constant will
be understood in the way given by the DBMS.

• If FEQ is used instead of IS, the compatibility degree between attribute
and constant is compared (Equation 1.40), and not only when the attribute
is equal to the constant.

Example 7.2: One query, which shows a compatibility degree, uses a trapezoi-
dal constant, and avoids the UNKNOWN values, could possibly be as follows:

SELECT City, Inhabitants, CDEG(*)

FROM   Population

WHERE  Country = ‘Spain’

  AND  Inhabitants FGEQ $[200,300,650,800] .75

  AND  Inhabitants IS NOT UNKNOWN

ORDER BY 3 DESC;

where Inhabitants is a fuzzy attribute Type 2 with margin = 100. For
example, Table 7.5 shows some possible results for this query. Some remarks
concerning the example include the following:



190   Galindo, Urrutia & Piattini

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• The minimum threshold is set at 0.75. The word THOLD does not appear
because it is optional. In the resulting table, the CDEG column will have
values in [0.75, 1].

• As we are using the comparator FGEQ, the last two values of the
trapezoid will not be used, that is, if the number of inhabitants equals or
exceeds 300, then the degree will be 1. Naturally, if the number of
inhabitants is equal to or less than 200, then the degree will be 0.

• If a Spanish city has the possibility distribution $[50,150,200,300]
in the Inhabitants attribute, then its fulfillment degree of the
condition is 0.5 and it does not appear in the final result, because the
minimum has been set at 0.75.

*

Fuzzy Quantifiers in Queries

Absolute and relative fuzzy quantifiers (refer to Chapter I) can be used in queries.
A survey of methods for evaluating quantified statements is shown in Delgado,
Sánchez, and Vila (1999, 2000), Sánchez (1999), and Yager (1983).
In FSQL, each quantifier must be preceded by the symbol &. FSQL associates
each quantifier to a column, to a table, or to the system. In one statement, FSQL
decides which quantifier to use: column quantifier, table quantifier, or system
quantifier. The user can however specify which quantifier to use, preceding the
quantifier with the owner object, using the dot notation. Take a look at some
examples:

1. Players.Height.&Most: This is the column quantifier &Most of
the attribute Players.Height.

Table 7.5. Example 7.2: Some results

City Inhabitants CDEG(*) 
Madrid #3000 1 
Córdoba #314 1 
Alicante #275 0.88 
La Coruña $[225,242,275,300] 0.8 
Granada [225,275] 0.75 
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2. Players.&Most: This is the table quantifier &Most of the table
Players.

3. SYSTEM.&Most: This is the system quantifier &Most.

If a statement needs a column quantifier and that quantifier is not defined, then
the statement uses the table quantifier. Similarly, if a table quantifier is not
defined, then the statement uses the system quantifier. Finally, if a statement
needs a quantifier and that quantifier is not defined, then the statements give an
error.
In addition, we can write a quantifier directly in FSQL by giving the four
trapezoidal arguments: &[α, β, γ, δ]. In this case, we must decide if the
quantifier is absolute or relative, preceding the definition with &A or &R. We
can use the fuzzy quantifier types expressed in Table 5.4, using the
FUZZY_TYPE value instead of A/R. Examples:

1. &A&[10,20,30,40]: This is the absolute quantifier “approximately
between 20 and 30” (with margin 10).

2. &R&[0.1,0.35,0.49,0.5]: This is the relative quantifier “al-
most half or more.”

3. &12&[10,20,9999,9999](x): This is the Type 12 absolute
quantifier “much greater than x,” where x is an argument. The final
quantifier is [10+x,20+x,9999+x,9999+x].

4. &16&[-100,0,0,100](x,y): This is the Type 16 absolute quan-
tifier “approximately between x and y” (with margin 100). The final
quantifier is [x-100,x,y,y+100].

FSQL allows fuzzy quantifiers in queries in the clauses HAVING and WHERE.
In the HAVING clause, FSQL distinguishes between statements with or
without group functions. In the WHERE clause, FSQL distinguishes between
explicit and implicit queries: Explicit queries are more flexible, but implicit
queries easily solve many typical queries. FSQL then distinguishes the following
four forms to use fuzzy quantifiers:

1. Fuzzy quantifiers in the HAVING clause.
2. Fuzzy absolute quantifiers in the HAVING clause with group functions.
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3. Fuzzy quantifiers in the WHERE clause using explicit queries.
4. Fuzzy quantifiers in the WHERE clause using implicit queries.

1. Fuzzy Quantifiers in the HAVING Clause
The HAVING clause restricts the groups of returned rows to those groups
formed by the GROUP BY clause. This format sets fuzzy conditions over these
groups and is expressed in Figure 7.2. This format basically includes the
following two forms, which are an extension of those of Bosc and Pivert (1995):

1. &FQuantifier THOLD τ FUZZY[ρ] (<fuzzy_condition>)
2. &FQuantifier THOLD τ FUZZY[ρ] (<fuzzy_condition1>)

ARE (<fuzzy_condition2>)

where &FQuantifier is a fuzzy quantifier preceded by the symbol &.
Some quantifiers may have arguments (Refer to Chapters I and V), such as
&About_half_of(x) and &Much_Greater_Than(x). The clauses
FUZZY and THOLD are optional.
The usefulness of both forms is as follows:

• The first form restricts the groups to those groups for which the specified
fuzzy condition is satisfied by a number of rows, such that this number
satisfies the fuzzy quantifier &FQuantifie (with minimum degree τ). If
the quantifier is relative, then the value of reference (value b in Equation
1.64) is the number of rows in the group.

Figure 7.2. Structure for fuzzy quantifiers in FSQL in the HAVING clause

fuzzy condition ( ) 

ARE fuzzy condition ( ) 

&FQuantifier 
 

THOLD 
(or crisp 

comparator) 

FUZZY 

 [ ] 

τ
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• The second form restricts the groups to those groups for which the
quantifier is satisfied by the number of rows (or elements of each group),
which satisfy both conditions (1 and 2). If the quantifier is relative, then the
value of reference (value b in Equation 1.64) is the number of rows in the
group satisfying the condition 1. Of course, this second form should only
be used with relative quantifiers (most, about half of, etc.).

As in simple fuzzy comparisons, τ is an optional quantifier threshold (by
defect 1), normally in [0, 1], which should comply the quantifier so that the
condition is evaluated as certain. Here, as well, the word THOLD is optional
and can also be substituted for any crisp or traditional comparator, modifying
the meaning of the query. The word THOLD is equivalent to using the crisp
comparator >=.
This format uses the column quantifier of the first column in the GROUP BY
clause. If this quantifier does not exist, then it uses the table quantifier of the first
table in the FROM clause. If this table quantifier does not exist, then it uses the
system quantifier. However, with the dot notation, the user can always decide
which quantifier to use.
If the GROUP BY clause does not exist, then this statement uses the table
quantifier applied to all rows in only one group.
By means of some examples, we will show the power of the fuzzy quantifiers
in FSQL:

Example 7.3: Following Example 4.2, we can “select the basketball teams that
have many (with minimum degree 0.5) very good and tall players (with
thresholds 0.75), showing the degree with which each team complies the
quantifier”:

SELECT Team, CDEG(*)

FROM   Players

GROUP  BY Team

HAVING &Many THOLD 0.5

             (Height  FEQ $Tall      0.75  AND

              Quality FEQ $Very_Good 0.75);
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It should be observed that the condition (which the quantifier requires) can be
multiple, and the quantifier &Many should be defined in the FMB. The definition
of &Many is firstly associated to the attribute Team. If this attribute does not
have the quantifier &Many, then the statement uses the table quantifier
Players.&Many, and if this quantifier does not exist, then it uses the system
quantifier System.&Many. Of course, if the system quantifier is not defined
either, then the statement gives an error.

*

When there are group statements (with GROUP BY/HAVING), function
CDEG(*) references the condition on the groups (HAVING).

Example 7.4: “Select the basketball teams in which most (with minimum
degree 0.5) of their tall players are also very good players (with thresholds
0.75)”:

SELECT Team, CDEG(*)

FROM   Players

GROUP  BY Team

HAVING &Most 0.5

             (Height  FEQ $Tall      0.75)

         ARE (Quality FEQ $Very_Good 0.75);

*

The FUZZY clause is optional, and its argument ρ is also optional. If this clause
is used, then the evaluation of the quantifier is computed by adding the fulfillment
degree of these elements, rather than the elements complying with the condition.
We clarify this concept in the following examples.

Example 7.5: “Select the basketball teams with many more than 3 (with
minimum degree 0.5) tall players (with minimum degree 0.75)”:

SELECT Team, CDEG(*)

FROM   Players
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GROUP  BY Team

HAVING &Much_Greater_Than(3) 0.5

       (Height FEQ $Tall 0.75);

Suppose the quantifier &Much_Greater_Than(x) defined in Figure
1.27a. With x = 3, if φ ∈ [4, 12], then Q(φ) = (φ – 4) / 8. Thus, if a team has,
for example, four players complying with the condition, that is to say four
players that are tall with minimum degree 0.75, then this team complies with the
quantifier in degree Q(4) = 0. Therefore, that team will not appear in the result,
because a 0.5 minimum degree is required. Now suppose another team has
eight players that comply with the condition. This team then complies with the
quantifier in degree Q(8) = 0.5, so this team will appear in the result. Finally,
if a team has 12 players that comply with the condition, the team satisfies the
quantifier in degree Q(12) = 1.

*

In the previous example, if a team has n players that comply with the condition, its
fulfillment degree does not depend on the degree to which each of those n players
satisfies the condition. That is to say, a team with n tall players, all in degree 0.75,
has the same fulfillment degree as a team with n tall players, all in degree 1.
In short, in the previous example, the set of players complying with the condition
is considered to be crisp (a player either does or does not satisfy the condition
of being tall with a minimum degree of 0.75).
Nevertheless, there is another method (Zadeh, 1983) that considers the set of
the elements that comply with the fuzzy condition. FSQL computes by using this
method if we utilize the reserved word FUZZY after the quantifier. This method
does not count the number of elements that comply with the condition but adds
the fulfillment degrees of those elements.

Example 7.6: “Select the basketball teams that have many more than three
(with minimum degree 0.5) high players (with minimum degree 0.75), consid-
ering the set of the players that comply with the condition as fuzzy”:

SELECT Team

FROM   Players
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GROUP  BY Team

HAVING &Much_Greater_Than(3) 0.5 FUZZY

       (Height FEQ $Tall 0.75);

Consequently, for example, a team T1 with eight players, all of whom satisfy
the condition in degree 1, complies with the quantifier in degree Q(8) = 0.5.
Suppose another team T2 with eight players complying with the condition, but
two of them comply with it in degree 1, and four of them in degree 0.75. In this
last case, adding the fulfillment degrees, we obtain (2 * 1 + 4 * 0.75) = 5. The
team then complies with the quantifier in degree Q(5) = 0.125, and this team
will not be selected in the final result.
If the set of players that comply with the condition is considered as fuzzy
(FUZZY clause), then T1 is selected, and T2 is not selected. Otherwise, both
teams are selected with the same degree (0.5).

*

An argument ρ ∈ [0, 1] can be used so that FUZZY[ρ] indicates that in order
to evaluate the quantifier, both values are used (with and without the word
FUZZY), weighting the first of these (with FUZZY) with the importance that
ρ – 1 indicates and the second (without FUZZY) with the importance ρ. Then,
using FUZZY[0] is equivalent to using FUZZY (without ρ), and using
FUZZY[1] is equivalent to not using the FUZZY clause. If ρ has a small
value, then the query is more restrictive (it retrieves fewer tuples), and if ρ has
a large value, then the query is less restrictive (it retrieves more tuples).

2. Fuzzy Absolute Quantifiers in the HAVING Clause with Group
Functions
The HAVING clause may contain conditions with group or aggregate functions
such as MAX, MIN, COUNT, SUM, AVG, and so forth. The values returned by
these functions may be compared with absolute fuzzy quantifiers by using fuzzy
comparators.

Example 7.7: Suppose that each employee must belong to one department,
and so a 1:N relationship exists between departments and employees. This
constraint is implemented by using a foreign key attribute Department_Code
in the table Employee, which references the table Department. In this
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context, we can ask for the following query: “Give me the departments with
approximately 5 employees”:

SELECT Department_Code, Department_Name, CDEG(*)

FROM   Department, Employee

GROUP BY Department_Code, Department_Name

HAVING   COUNT(*) FEQ Employee&Approx_5;

*

Of course, we can use fuzzy conditions without fuzzy quantifiers in the
HAVING clause. For example, consider the following clause in the previous
example: HAVING AVG(Salary) FEQ $Big_Salary, where
Salary may be a fuzzy attribute Type 1, with the $Big_Salary label
defined in the FMB.

3. Fuzzy Quantifiers in the WHERE Clause Using Explicit Queries

In the WHERE clause, we can use a quantifier with the following format:

1. Absolute quantifiers:

&FQuantifier THOLD τ FUZZY[ρ] (<subquery>)

2. Relative quantifiers:

&FQuantifier THOLD τ FUZZY[ρ] (<subquery>):(<subquery2>)

where <subquery> and <subquery2> are SELECT statements (fuzzy
or not). With absolute quantifiers, these are applied to the number of rows of
<subquery>. With relative quantifiers, the value of reference (value b in
Equation 1.64) is the number of rows of <subquery2>.
It is important to know that <subquery2> is optional. If <subquery2>
does not appear, then the value of reference in relative quantifiers is the number
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of rows in the tables of <subquery>. In this case, this subquery should use
only one table. Furthermore, if the quantifier is a table quantifier, then the value
of reference is the number of rows in this table (the table of the quantifier). These
details simplify many queries, as shown in the following examples or the fuzzy
division (see the section on fuzzy division queries later in this chapter).
These quantifiers are especially useful with correlated nested subqueries, in
which the subquery is evaluated once per each row of the outer query.
By default, this format uses the system quantifiers. In any other case, it must be
indicated in the statement.
The FUZZY clause is optional, and its argument ρ is also optional. If the
FUZZY clause is used, then the evaluation of the quantifier is computed by
adding the CDEG(*) values of the subquery. This clause would only be used
with fuzzy queries. If the optional argument ρ ∈ [0, 1] appears, then in order
to evaluate the quantifier, both values (with and without the word FUZZY) will
be used, weighting the first of these (with FUZZY) with ρ – 1 and the second
value (without FUZZY) with ρ. Using FUZZY[0] is equivalent to using
FUZZY (without ρ), and using FUZZY[1] is equivalent to not using the
FUZZY clause. If ρ has a small value, then the query is more restrictive, and
if ρ has a large value, then the query is less restrictive.

Example 7.8: Following the context of Examples 4.3 and 4.11 (see Figures 4.5
and 4.13), “select the skilled employees (with minimum degree 0.75) that work
for many (with minimum degree 0.5) projects” (using the definition of &Many
associated to table Project):

SELECT Employee_Code, Employee_Name, CDEG(*)

FROM   Employee E

WHERE Project.&Many 0.5

        (SELECT * FROM Works_For W

         WHERE W.Employee_Code = E.Employee_Code)

  AND Ability FEQ $Skilled 0.75;

This statement explicitly references the table quantifier over a correlated nested
subquery. For each employee, the subquery searches for his or her projects.

*
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Example 7.9: “Select the employees that work for most (with minimum degree
0.5) of the projects” (using the definition of &Most associated to the system):

SELECT Employee_Code, Employee_Name, CDEG(*)

FROM   Employee E

WHERE &Most 0.5

        (SELECT * FROM Works_For W

         WHERE W.Employee_Code = E.Employee_Code):

        (SELECT * FROM Project)

  AND Ability FEQ $Skilled 0.75;

If we use the table Project quantifier, then the second query is useless:

SELECT Employee_Code, Employee_Name, CDEG(*)

FROM   Employee E

WHERE Project.&Most 0.5

        (SELECT * FROM Works_For W

         WHERE W.Employee_Code = E.Employee_Code)

  AND Ability FEQ $Skilled 0.75;

*

Example 7.10: “Select the employees that work for many (with minimum
degree 0.5) long-lasting projects (with long-lasting duration with degree 0.75),
considering the set of long-lasting projects as a fuzzy set”:

SELECT Employee_Code, Employee_Name, CDEG(*)

FROM   Employee E

WHERE Project.&Many 0.5 FUZZY

        (SELECT * FROM Works_For W,  Project P

         WHERE W.Project_Code = P.Project_Code

           AND W.Employee_Code = E.Employee_Code

           AND P.Duration FEQ $Long_Lasting 0.75);
*
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Example 7.11: Let us suppose that the relation MANAGERS(Employee_
Code,Manager) stores all the managers of one employee and all the
employees of one manager (a many-to-many relationship). The query “Give me
the employees with approximately two managers” is then solved as follows:

SELECT Employee_Code, CDEG(*)

FROM   MANAGERS M1

WHERE  &Approx_2 THOLD 0

       (SELECT *

        FROM   MANAGERS M2

        WHERE  M1.Employee_Code = M2.Employee_Code);

Note that we can use only fuzzy absolute quantifiers in this kind of query.
*

Example 7.12: “Give me the employees that earn less than the majority (that
is to say, those employees for which most of the employees earn more)”:

SELECT Employee_Code, Employee_Name, CDEG(*)

FROM   Employee E1

WHERE  &Most 0.5

       (SELECT * FROM Employee E2

        WHERE E2.Salary > E1.Salary);

Quantifier &Most is relative, and a second subquery does not exist. The value
of reference is then the number of rows in the subquery table, that is,
Employee (E2).

*

Example 7.13: With the scheme of Example 7.7, we can query the following:
“Give me the employees that work for departments with less budget than the
majority (that is to say, those employees for which most departments have a
greater budget than the budget of his or her department)”:
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SELECT Employee_Code, Employee_Name, CDEG(*)

FROM   Employee E, Department D1

WHERE  E1.Department_Code = D1.Department_Code

  AND  &Most 0.5

       (SELECT * FROM Department D2

        WHERE D2.Budget > D1.Budget);

The value of reference is the number of table Department (D2).
*

4. Fuzzy Quantifiers in the WHERE Clause Using Implicit Queries
The implicit queries format for fuzzy quantifiers solves many typical queries
simply. In the WHERE  clause, we can use a quantifier using the following
format for absolute and relative quantifiers:

<table1>.&FQuantifier THOLD τ <table2>

where the threshold and the second table are optional.
With absolute quantifiers, these are applied to the number of rows in an
intermediate table between the table of the quantifier <table1> and the table
in the FROM clause. An intermediate table is a table with two foreign keys: One
of them references the table <table1>, and the other references the table in
the FROM clause. If there are two or more tables in the FROM clause with an
intermediate table with <table1>, then the system chooses the first one.
With relative quantifiers, the value of reference (value b in Equation 1.64) is the
number of rows of <table1> (table of the quantifier).

Example 7.14: Example 7.8 would be solved by

SELECT Employee_Code, Employee_Name, CDEG(*)

FROM   Employee

WHERE  Project.&Many 0.5

  AND  Ability FEQ $Skilled 0.75;
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Note that it is important for the quantifier to be the quantifier of Project. It
is worth mentioning that although this query uses the table Works_for, it
does not appear. A different command is “Select the projects in which many
employees work”:

SELECT Project_Code, Project_Name, CDEG(*)

FROM   Project

WHERE  Employee.&Many 0.5;

The quantifier is now the quantifier of Employee, and table Works_for
is also needed. Obviously, the concept of “many” is different in “many projects
for one employee” and in “many employees for one project.”

*

Example 7.15: Another command is “Select the projects in which many
machines take part”:

SELECT Project_Code, Project_Name, CDEG(*)

FROM   Project

WHERE  Machine.&Many 0.5 Machines_for_Project;

The quantifier is now the quantifier of Machine , and table
Machines_for_Project is also needed. If this table is the only table
joining tables Project and Machine, then the specification is optional.

*

Example 7.16: Example 7.9 would be solved as follows:

SELECT Employee_Code, Employee_Name, CDEG(*)

FROM   Employee E

WHERE  Project.&Most 0.75

  AND  Ability FEQ $Skilled 0.75;

*
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If an intermediate table does not exist between the table of the quantifier and
the table in the FROM clause, then FSQL searches a foreign key in the table of
the quantifier, referencing the table in the FROM clause.

Example 7.17: Let us consider the tables of Example 7.7: Employee
and Department. “Give me the departments with approximately five
employees”:

SELECT Department_Code, Department_Name, CDEG(*)

FROM   Department

WHERE  Employee&Approx_5 0.5;

It should be noted that the following query is not valid:

SELECT Employee_Code, Employee_Name, CDEG(*)

FROM   Employee

WHERE  Department&Approx_5 0.5;

*

If FSQL does not find that foreign key, then it raises an error.

Example 7.18: “Give me the departments with about half of the employees”:

SELECT Department_Code, Department_Name, CDEG(*)

FROM   Department

WHERE  Employee&About_Half_of 0.5;

In this relative quantifier, the value of reference is the number of tuples of
Employee.

*
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Fuzzy Division Queries

The relational division operation can also be performed with FSQL. This
operation is not directly implemented in SQL, and its expression is not
immediate. In this section, we give the FSQL syntax for fuzzy division, but for
the sake of simplicity, we do not include how FSQL makes the division. This
is explained in Galindo, Medina, Cubero, and García (2001).
Let R and R’ be relations with headers (A, B, C) and (B, D), respectively, where
A, B, C, and D are simple attributes or sets of attributes denoted by A={A1, A2,
..., An} and B={B1, B2, ..., Bm}. The fuzzy division then has the following general
format in FSQL language:

SELECT A [, CDEG(*)]

FROM   R [, <table_clause>]

WHERE  [ONCEPERGROUP]

       &FQuantifier THOLD τ
       ( <subquery> )

where the items in square brackets are optional items, the items in angled
brackets are items to expand, and the meaning of each element is as
follows:

• Select list: A is a list with the R attributes that we are looking for.
CDEG(*) will show the compatibility or fulfillment degree of the A
elements.

• FROM: This clause is used to indicate the relevant relation R and other
possible relations in <table_clause>. These relations (as in SQL)
may be names of tables, views, snapshots, or subqueries. The optional
clause <table_clause> is useful to indicate a list of attributes X ⊆
{B ∪ D} by using a subquery such as (SELECT X FROM R’) and
whatever other relations. The normal division is defined with X = ∅. If X
is not empty, then the command will show the Cartesian product with these
attributes.

• &FQuantifier: The regular division uses the universal quantifier, but
fuzzy division allows us to use any other quantifier. &FQuantifier is
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a fuzzy quantifier. The fuzzy quantifier &FQuantifier must be
defined in the FMB, with the exception of the quantifier &ALL (∀) and the
quantifier &EXISTS (∃). The optional value τ indicates that the threshold
(default is 1) applied to the fulfillment degrees in the resulting relation
(column of CDEG function).

• <subquery>: This is a subquery with the following format:

SELECT *

FROM   R’
WHERE  R.B1 <FCOMP1> R’.B1 [[THOLD] γ

1
]

AND  ...

AND  R.Bm <FCOMP
m
> R’.Bm [[THOLD] γ

m
]

where

• R’ is the second relevant relation, the divisor, in the fuzzy division.
It may be a subquery or the DUAL table. DUAL is a table that is
automatically created by Oracle3 together with the data dictio-
nary. DUAL is in the schema of the user SYS but is accessible by
the name DUAL to all users. We will use DUAL when the relation
R’ does not exist, but we want to use a virtual relation using a
constants set in the WHERE clause. In some DBMSs, such as
MySQL4, the FROM clause is optional, and then the DUAL table
is not useful.

• Bi with i = 1, 2, ..., m are the set of attributes B of R and R’. These
are qualified with the name of their relation (R or R’) because they
would have the same name. If we use DUAL instead of R’, then we
must use constants instead of R’ attributes, distinguishing tuples with
the OR operator (see Example 7.19).

• <FCOMP
i
> with i = 1, 2, ..., m are the fuzzy comparators (Table 7.1)

used for each two attributes. In order to retrieve the standard division
results, we must obviously use the fuzzy comparators FEQ or NFEQ.
Fuzzy division selects tuples of the first relation that are related in
some way to &FQuantifier of tuples in the second relation.
This way is indicated by these fuzzy comparators.
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• γi with i = 1, 2, ..., m are thresholds for each B attribute. All these
thresholds must be 0 in the standard division.

• ONCEPERGROUP option: With classic relations, one single tuple in R
connects with zero or one tuple in R’, but with fuzzy relations, one single
tuple in R may connect with zero, one, some, or all of the tuples in R’.
When the reserved word ONCEPERGROUP is used, then every tuple in
R is used only once in each group (of one A element) according to where
it obtains the greatest possibility degree. If there are some items with the
same greatest value, then we must maximize all the degrees in that group
of A values. It should be noted that when solving this problem we may
prevent some possibly useful information being shown, and this substan-
tially increases the number of operations. This option may be especially
useful when fuzzy comparators that are different from FEQ or NFEQ are
used. In summary, using ONCEPERGROUP is more restrictive than not
using it, because it requires each A value of R to have at least as many
tuples as relation R’.

Example 7.19: Suppose we have a fuzzy relational database about basketball
players. A database relation PLAYERS (R) may have the attributes (PLAYER,
TEAM, HEIGHT, QUALITY, NUM_SHIRT...), with HEIGHT and QUALITY
being fuzzy attributes Type 2. In addition, TYPES (R’) is a relation with only
two attributes (HEIGHT, QUALITY), storing some players’ types. In this
context, we are going to find those basketball teams whose player types (in
HEIGHT and QUALITY) match or pair up with most of those in R’.

SELECT TEAM, CDEG(*)

FROM   PLAYERS

WHERE  &Most THOLD 0

       (SELECT *

FROM TYPES

WHERE PLAYERS.HEIGHT FEQ TYPES.HEIGHT THOLD 0

          AND PLAYERS.QUALITY FEQ TYPES.QUALITY THOLD 0);
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If relation TYPES does not exist, then we can use a subquery instead of that
relation. For example, in the following statement, relation TYPES is substituted
by the player types of the Málaga team:

SELECT TEAM, CDEG(*)

FROM   PLAYERS

WHERE  &Most THOLD 0

       (SELECT *

        FROM ( SELECT HEIGHT, QUALITY

FROM PLAYERS

WHERE TEAM = ‘Málaga’) TYPES

        WHERE PLAYERS.HEIGHT FEQ TYPES.HEIGHT THOLD 0

          AND PLAYERS.QUALITY FEQ TYPES.QUALITY THOLD 0);

Moreover, the same result may be obtained if we want to set the values of
TYPES (R’) directly. For example, suppose only two tuples in the divisor
relation:

SELECT TEAM, CDEG(*)

FROM   PLAYERS

WHERE  &Most THOLD 0

       ( SELECT *

FROM DUAL

WHERE PLAYERS.HEIGHT FEQ $Short THOLD 0

          AND PLAYERS.QUALITY FEQ $Very_Good THOLD 0

           OR PLAYERS.HEIGHT  FEQ $Very_Tall THOLD 0

          AND PLAYERS.QUALITY FEQ $Bad       THOLD 0);

*
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Fuzzy Set Operators

In SQL, you can combine multiple queries by using the set operators UNION,
UNION ALL, INTERSECT, and MINUS (or EXCEPT). In FSQL, if these
queries include some fuzzy degree associated to the whole tuple (or row), you
can use an extended version of these set operators, which are listed and
explained in Table 7.6 together with the default values. This degree is either the
fuzzy degree of a fuzzy entity or a fuzzy relationship (refer to Chapter IV), or
the compatibility degree, CDEG(*), of a fuzzy subquery.

We can change the default functions of these fuzzy set operators by using the
ALTER FSQL statement (see the “Modifying FSQL Options: ALTER FSQL
and ALTER SESSION” section, later in this chapter). However, we can
change these functions dynamically for a specific operation by using

1. FUNION (s-norm)

2. FINTERSECT (t-norm)

3. FMINUS (s-norm)

where s-norm and t-norm are alphanumeric values according to Tables 1.1 and
1.2: “minimum,” “product,” “drastic product,” “bounded product p,” “Einstein
product,” “Hamacher product p,” “maximum,” “sum-product,” “drastic sum,”
“bounded sum p,” “Einstein sum,” and so forth. Note that for the sake of
simplicity, if the norm needs some argument p, it is included after the name.

Table 7.6. Fuzzy set operators in FSQL, applied to queries R and T

Operator Returns 
FUNION All rows selected by either query (R or T). 

If there are duplicated tuples (in R and T), it uses, by default, the 
maximum s-norm: max (R.CDEGROW, T.CDEGROW)  

FINTERSECT All rows selected by both queries (R and T). 
If there are duplicated tuples (in R and T), it uses, by default, the 
minimum t-norm: min (R.CDEGROW, T.CDEGROW) 

FMINUS All distinct rows selected by the first query (R) but not the second (T). 
If there are duplicated tuples (in R and T), it uses, by default, the 
function: max (0, R.CDEGROW  T.CDEGROW) 

 
–
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Fuzzy Time

In this section, we present some new fuzzy data types based on time concepts.
We extend the existing temporal data types in SQL2 and give a brief overview
of basic definitions in fuzzy temporal databases. In particular, we explain how
query operations in TSQL2 language need to be extended for fuzzy temporal
querying. TSQL2 language extends SQL for querying valid time, transaction
time, and bitemporal relational databases.
Many times databases require some aspect of time when their information is
organized. Temporal databases, in the broadest sense, encompass all data-
bases of this kind (Elmasri & Navathe, 2000; Jensen et al., 1994).
We extend the existing data types in SQL2. Time in databases is very useful,
because it allows us to store the date and time in which the fact was considered
to be true in the real world. However, sometimes this time is not exactly known
or is a vague time period (gradual events). We study this scenario here and give
a brief overview of basic definitions in fuzzy temporal RDB.
We also explain how query operations in TSQL2 language (Snodgrass, 1995)
need to be extended for fuzzy temporal querying. TSQL2 language extends
SQL for querying valid time, transaction time, and bitemporal RDB.
Dubois and Prade (1989) introduce a framework for modeling temporal
knowledge pervaded with imprecision or uncertainty in terms of possibility
distributions: ill-known dates, time intervals with fuzzy boundaries, fuzzy
durations, and uncertain precedence relations between events. In Quian
(1992), fuzzy time is used for problem solving in industrial dynamic systems. In
Virant and Zimic (1996), the time-dependent fuzzy set A(t) is defined as a fuzzy
set whose membership function may change with time. An inference processing
is also defined in order to obtain the fuzzy set A(t) when t is a time fuzzy set,
based on Dubois and Prade (1989). Some authors have applied these
definitions in time-dependent fuzzy rules.
Many authors (Dubois & Prade, 1989; Malik & Binford, 1983) have pointed
out that the problems of processing space or time information in reasoning are
similar. Time may be considered as a fuzzy attribute Type 2, where its
underlying domain (X axis in Figure 7.1) is the absolute time. This absolute time
is an ordered sequence of points in time. It is necessary to set a granularity in
this absolute time; that is, time is considered to be an ordered sequence of
points with a minimum and fixed distance between every two consecutive
points. Of course, granularity is determined by the application. This special
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underlying domain makes the definition of new fuzzy types necessary.
There are two types of temporal information according to the event duration:

1. Point events: These are events or facts without duration and are typically
associated with a single time point in some granularity. In SQL2, temporal
data types including this information are as follows: DATE (specifying year,
month, and day), TIME (specifying hour, minute, and second), and
TIMESTAMP (specifying a DATE and TIME combination). Fuzzy point
events allow fuzzy values to be used in this domain. We define new fuzzy time
types named FUZZY_DATE, FUZZY_TIME, and FUZZY_TIMESTAMP
(including their corresponding crisp values). Fuzzy point events are repre-
sented by using approximate values (triangular functions; refer to Figure 1.2b)
with a predetermined margin (according to the context). For example, in
healthcare applications, it may be interesting to store the fact that a patient
recovered approximately on January 6, 1994. Additionally, by using fuzzy
comparators (refer to Table 7.1), we can perform fuzzy queries. For example:
“Retrieve all patients who recovered approximately on October 17, 2001.”

2. Duration events: These events are associated with a specific time period
in the database. In SQL2, temporal data types including this information
are as follows: INTERVAL (a relative time duration, such as 2 days, 5
hours, or 30 seconds) and PERIOD (an anchored time duration with a
fixed starting point, such as from August 3, 1970, to October 29, 1970).
A new fuzzy INTERVAL type is unnecessary, because the underlying
domain is the real numbers (just like fuzzy attributes Type 2). However,
the measurement unit (years, hours, seconds, etc.) must be stored with
each value or attribute according to the application. The measurement
unit, of course, must be used in all computations.
A new fuzzy PERIOD type is also unnecessary, because there are two
alternative methods of representation. The first is to use fuzzy point
events, that is, the fuzzy types defined previously but with other values,
in particular the trapezoidal shape (refer to Figure 7.1). For example, a
fuzzy period value may be represented by α = (May 11, 2003), β =
(May 27, 2003), γ = (June 26, 2003), and δ = (June 29, 2003). The
second method uses two fuzzy point events, representing the start and
end time points. For example, we can store the fact that the most
seriously ill stage of a patient’s illness was from approximately April 14,
2005, until approximately July 25, 2005.
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Fuzzy Temporal Databases
In this section, we study how to incorporate fuzzy time in RDB (tuple
versioning). The extension for incorporating fuzzy time in object-oriented
databases (attribute versioning) is easy (Elmasri & Navathe, 2000).
Basically, time may be interpreted to mean two different things (time
dimensions):

• Valid time is the most natural interpretation and is the associated time
when the event occurred, or the period during which the fact was
considered to be true in the real world.

• Transaction time means that the associated time refers to the time when
the information was actually stored in the database, that is, the value of the
system time clock when the information was changed in the system.

Some applications need only one of the dimensions (valid time databases or
transaction time databases), others need both time dimensions (bitemporal
databases), and others need a user-defined interpretation (user-defined time
databases).
We study only valid time databases, because transaction time databases need
the exact system time. However, valid time databases need the time in which
the fact was considered to be true in the real world. Sometimes, this time is not
exactly known or is a vague time period.
In the same way as usual temporal RDB, valid time relations have two additional
attributes whose data type is one of the previously defined fuzzy time types:
VST (Valid Start Time) and VET (Valid End Time). These attributes in tuple
t represent the fact that its information is only valid in the real world during the
time period [t.VST, t.VET].
A special value “now” is included in the domain of VET attribute. Value “now”
in a tuple represents that this tuple is valid from VST till now; that is, this tuple
represents the current values of the entity represented in the relation.

Example 7.20: Suppose a healthcare database storing the most seriously ill
stage of certain illnesses. Some attributes of this relation would then be patient
name, disease, treatment, and so forth, and attributes VST and VET. So, two
valid tuples are
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Dominique Asthma … #(June 4) $[July 6, 
July 6, 
July 6, 
July 15] 

Dominique Asthma … #(September 1) now 

 

The first tuple represents the fact that Dominique suffered an asthma attack on
about June 4. The same symptoms continued until July 6. The patient then
slowly began to get better until July 15. It should be noted that the VET attribute
is a trapezoidal value with four values (like Figure 7.1). The second tuple
represents the fact that Dominique suffered a new asthma attack on about
September 1, and this is the current state.

*

It is worth mentioning that several tuples for the same entity may exist (like
Dominique in the previous example). In temporal databases, this is solved by
including VST (or VET) in the relation key. With fuzzy VST attributes, we must
suppose that two tuples with different values in VST are different, even though
they are very similar. The system must ensure that spurious or inconsistent
tuples do not exist.
Fuzzy valid time relations keep track of the history of changes as they become
effective in the real world, even if these changes occurred gradually or in an ill-
known time. However, because updates, insertions, and deletions may be
applied proactively (before the current time) or retroactively (after the
current time), there is no record of the actual database state at any point in time.
If it is needed, then we must use bitemporal relations. These include TST
(Transaction Start Time) and TET (Transaction End Time) attributes, whose
data type is typically crisp TIMESTAMP. In this case, we must include the
TST attribute in the relation key, instead of VST.

FSQL Extends TSQL2 Language
So far, we have discussed how data models may be extended with fuzzy time
by using temporal constructs. We now give a brief overview of how query
operations need to be extended for fuzzy temporal querying. We briefly discuss
an extension of TSQL2 language (Elmasri & Navathe, 2000; Snodgrass,
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1995), which extends SQL for querying valid time, transaction time, and
bitemporal relational databases.
Typical conditions for valid time databases are, for example, to select all tuple
versions that were valid at a certain time point T or that were valid during a
certain time period [T1,T2]. The values for the specified time point or time
period may be fuzzy or crisp and are compared with the valid time period of
each tuple version t: [t.VST, t.VET]. In Table 7.7 we extend the most
common operations with the prefix F_ (possibility versions) and NF_ (neces-
sity versions). Table 7.7 defines each one by using existing fuzzy comparators
(Table 7.1). The last eight comparators are totally new. The comparators of
type MUCH_BEFORE/MUCH_AFTER need a value M (according to the
context) in order to consider two time values as being very separated.
Comparator OVERLAPS has also been called INTERSECTS_WITH. We
can then use F_INTERSECTS_WITH or NF_INTERSECTS_WITH.
These new fuzzy temporal comparisons may be completed with the threshold
clause in order to retrieve only values with a certain minimum threshold.

Example 7.21: “Select all patients (tuple versions) that were in a seriously ill
stage (valid at any point) during around 1994 (in minimum degree 0.6)”:

Table 7.7. The 18 fuzzy comparators for fuzzy time in FSQL, extending
five TSQL2 comparators and eight new ones (possibility and necessity
versions): X means “eXclusively”

Expression with Temporal Fuzzy Comparator Equivalence 
[t.VST,t.VET] F_INCLUDES [T1,T2] T1 FGEQ t.VST AND T2 FLEQ t.VET 
[t.VST,t.VET] F_INCLUDED_IN [T1,T2] T1 FLEQ t.VST AND T2 FGEQ t.VET 
[t.VST,t.VET] F_OVERLAPS [T1,T2] T1 FLEQ t.VET AND T2 FGEQ t.VST 
[t.VST,t.VET] F_BEFORE [T1,T2] T1 FGEQ t.VET 
[t.VST,t.VET] F_AFTER [T1,T2] T2 FLEQ t.VST 
[t.VST,t.VET] NF_INCLUDES [T1,T2] T1 NFGEQ t.VST AND T2 NFLEQ t.VET 
[t.VST,t.VET] NF_INCLUDED_IN [T1,T2] T1 NFLEQ t.VST AND T2 NFGEQ t.VET 
[t.VST,t.VET] NF_OVERLAPS [T1,T2] T1 NFLEQ t.VET AND T2 NFGEQ t.VST 
[t.VST,t.VET] NF_BEFORE [T1,T2] T1 NFGEQ t.VET 
[t.VST,t.VET] NF_AFTER [T1,T2] T2 NFLEQ t.VST 

[t.VST,t.VET] F_XBEFORE [T1,T2] T1 FGT  t.VET 
[t.VST,t.VET] F_XAFTER [T1,T2] T2 FLT  t.VST 
[t.VST,t.VET] F_MUCH_BEFORE [T1,T2] T1 MGT  t.VET 
[t.VST,t.VET] F_MUCH_AFTER [T1,T2] T2 MLT  t.VST 

[t.VST,t.VET] NF_XBEFORE [T1,T2] T1 NFGT  t.VET 
[t.VST,t.VET] NF_XAFTER [T1,T2] T2 NFLT  t.VST 
[t.VST,t.VET] NF_MUCH_BEFORE [T1,T2] T1 NMGT  t.VET 
[t.VST,t.VET] NF_MUCH_AFTER [T1,T2] T2 NMLT  t.VST 

 



214   Galindo, Urrutia & Piattini

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

SELECT Name, CDEG(*)

FROM Patients

WHERE [VST, VET] F_OVERLAPS [#(1994,1,1), #(1994,12,31)]
0.6;

*

In these definitions, we extend the TSQL2 language by using the FSQL
comparators, in what may be called FTSQL2 language, for fuzzy temporal
databases.

Other DML Statements:
INSERT, DELETE, and UPDATE

The syntax of INSERT, DELETE, and UPDATE commands is very similar
to SQL, modifying the expressions, the subqueries, and the conditions, by fuzzy
expressions, fuzzy subqueries, and fuzzy conditions, respectively. In short, the
FSQL modifications for each one are as follows:

1. INSERT: We will be able to use fuzzy expressions as values for the
insertion as well as fuzzy subqueries, both in the values to insert and in the
tables in which data are inserted.

2. DELETE: In the WHERE clause of this command, the same fuzzy
conditions can be utilized as in the WHERE clause of the FSQL SELECT
statement, explained previously.

3. UPDATE: The values to update can be fuzzy expressions or fuzzy
subqueries. In addition, in the WHERE clause of this command, the same
fuzzy conditions can be utilized as in the WHERE clause of the FSQL
SELECT command, explained previously.

Example 7.22: According to Example 4.3 (Figure 4.5), the followings state-
ments are valid:

INSERT INTO Employee (Employee_ID, Job, Experience, Ability,

  FDEGREE(Experience, Ability))
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  VALUES (9999, “Chief”, {1/Expert, 0.5/Normal}, $Skilled,
0.4);

INSERT INTO Employee SELECT * FROM Temporal

  WHERE Ability FEQ $[5,7,8,10] 0.75;

DELETE FROM Employee WHERE Ability FLEQ $Clumsy 0.5;

UPDATE Employee SET Salary = Salary + 10,

  Experience = {1/Expert, 0.7/Normal, 0.1/ Clumsy}

  WHERE Ability NFGT $Normal 0.75;

*

Some Useful Functions for Fuzzy Attributes

Sometimes we need to use a specific value of a fuzzy attribute, or we may want
to change a fuzzy value. We can use the following functions, where
fuzzy_attribute  is the name of a fuzzy attribute, and
attribute_list is a list of attributes separated by commas:

• FTYPE(fuzzy_attribute): This function returns the type of the
value in that fuzzy attribute, according to Tables 5.1 and 5.2. We can set
this function as the default function in certain positions (see the “Modifying
FSQL Options: ALTER FSQL and ALTER SESSION” section, later in
this chapter). We can also, for example, discover how many approximate
values are in the fuzzy attribute Type 2 HEIGHT, with the following query:

SELECT COUNT(*) FROM PLAYERS

WHERE FTYPE(HEIGHT) = 6;

• TO_CHAR(fuzzy_attribute): This function returns the text
that represents each value in the fuzzy attribute (for example, an approxi-
mate value is represented with the text “7 ± 2”). We can use this function
in order to use this expression when the DBMS uses another value. We
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can set this function as the default function in certain positions (see the
“Modifying FSQL Options: ALTER FSQL and ALTER SESSION”
section, later in this chapter).

• FDEGREE(attribute_list): This function returns the fuzzy
degree associated to the attribute or attributes given in its arguments.
According to Example 4.2, the following query is possible:

SELECT * FROM PLAYERS

WHERE  QUALITY FEQ $Good AND FDEGREE(QUALITY) > .5;

• FDEGROW(table): This function returns the fuzzy degree associated
to the row (to the whole tuple). The argument of this function is the table
name. However, this may be used as a pseudocolumn (like ROWNUM or
ROWID in Oracle systems). This degree is the fuzzy degree of a fuzzy
entity or a fuzzy relationship (refer to Chapter IV). According to Example
4.8, the following query is possible, where $Very_High is a qualifier
defined in the FMB with the CREATE QUALIFIER statement (see the
section on qualifiers later in this chapter):

SELECT OWNER.Name, PET.FDEGROW

FROM   PET, OWNER

WHERE  PET.Owner_ID = OWNER.Owner_ID

  AND  PET.FDEGROW  > $Very_High;

• MARGIN(fuzzy_attribute) / MUCH(fuzzy_attribute):
These two functions return, respectively, the margin for approximate
values and the much value M (refer to Chapter V) associated to the
attribute given in its arguments (for fuzzy attributes Type 1 or 2). This may
also be used with the dot notation: fuzzy_attribute.MARGIN
and fuzzy_attribute.MUCH. These values may be used in
expressions.
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Some Useful Functions for Fuzzy Values

Sometimes we want to change a fuzzy value by modifying its membership
function in order to tune the results. We can use the following functions, where
fuzzy_value is a fuzzy value (including fuzzy attributes and fuzzy
constants):

• CARD(fuzzy_value): This function returns the cardinality of a
fuzzy value, following Equation 1.25. For example, in order to know the
rows with less fuzziness in an attribute than a fuzzy constant, a SELECT
statement may include the next condition: CARD(Quality) <
CARD(3+-2). It should be noted that CARD(3+-2)= 2 and gener-
alizing CARD(3+- m)= m.

• NORM(fuzzy_value): This function normalizes the fuzzy value,
dividing the original membership function by the height of the fuzzy value
(see Definitions 1.10 and 1.11). This function would be used with fuzzy
attributes Type 3 or 4. Fuzzy attributes Type 2 are always normalized.

• CONC_DILAT (fuzzy_value, p): If p > 1, then this function
returns a concentrated version of the fuzzy value. The membership
function of this version takes on relatively smaller values, being raised to
power p. Usually, p = 2. If p ∈ (0, 1), then this function returns a dilated
version of the fuzzy value. The membership function of this version takes
on relatively greater values, being raised to power p. Usually, p = 0.5 (the
square root).

• MORE_CONTRAST(fuzzy_value, p): This is the contrast
intensification function, and it returns the fuzzy value with the most
contrast. The membership values lower than 0.5 are diminished, while the
grades of membership above 0.5 are elevated. The operation is defined
by (usually p = 2):
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• FUZZIFICATION(fuzzy_value, p): This function has a
complementary effect to that of intensification. The operation is defined by
(usually p = 2):
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• UNION(fuzzy_values [, s_norm]): This function returns
the union (Definition 1.13) of the fuzzy values (separated with commas),
with the s-norm (or t-conorm) indicated in the last argument. This last
argument is optional, using by default the maximum s-norm. The s-norm
is an alphanumeric value according to Table 1.2: “maximum,” “sum-
product,” “drastic sum,” “bounded sum p,” “Einstein sum,” and so forth.
If the s-norm needs some argument p, then this is included after the name.
Example: UNION(Quality, $[4,5,6,7], “maximum”).

• INTERSECTION(fuzzy_values [, t_norm]): This func-
tion returns the intersection (Definition 1.14) of the fuzzy values, with the
t-norm indicated in the optional last argument. If this last argument does
not appear, then the intersection uses the minimum t-norm. The t-norm is
an alphanumeric value according to Table 1.1: “minimum,” “product,”
“drastic product,” “bounded product p,” “Einstein product,” “Hamacher
product p,” and so forth.

Functions CONC_DILAT, MORE_CONTRAST, and FUZZIFICATION
are useful for implementing linguistic hedges such as specially, very, slightly,
and more or less. Linguistic hedges may be regarded as operators that act on
the fuzzy set representing the meaning of its operand. Perhaps it would be useful
to express this just before a fuzzy expression. For example, the following fuzzy
condition uses a linguistic hedge: Salary FEQ $Very $Normal
THOLD 0.75.

Example 7.23: According to Example 4.2, the query “Select players who are
especially Good” (with a 0.5 threshold) may be solved with the following
FSQL statement:
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SELECT * FROM PLAYERS

WHERE  QUALITY FEQ CON_DILAT($Good,2) 0.5;

*

Functions UNION and INTERSECTION are useful, for example, for short-
ening certain queries and for choosing the t-norm and the s-norm easily:

Example 7.24: “Select players who are Bad or Very Good” (using the sum-
product s-norm, and a 0.5 threshold):

SELECT * FROM PLAYERS

WHERE  QUALITY FEQ UNION($Bad, $Very_Good, “sum-product”) 0.5;

*

Remarks on Fuzzy Queries

Fuzzy queries reduce the risk of obtaining empty answers, because they use a
finer scale of discrimination: the interval [0, 1] instead of the set {0, 1}. This
means that tuples can be selected in queries where no answer would be
obtained (or no tuple would be selected) in crisp mode. Sometimes, however,
it might be that no element satisfies or complies with a fuzzy query. In order to
solve this possible problem, the FSQL queries are especially flexible, and in
every simple condition, we can modify the following four already defined
important elements:

1. Fuzzy comparators (Table 7.1): Overcoat changing between possibility
and necessity.

2. Thresholds and qualifiers (refer to the “Fulfillment Thresholds and
Qualifiers” section, earlier in this chapter): In order to retrieve only the
most important items. Other classic comparators may be used instead of
the word THOLD to modify the query meaning, for example, to retrieve
the least important items (using < or <=). We can also recover only the
elements that comply with the condition to a specific degree using the
comparator =.



220   Galindo, Urrutia & Piattini

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

3. Fuzzy constants (Table 7.2): If the right part of a simple condition is a
fuzzy constant, this may be flexibly modified in order to better achieve the
target.

4. Functions (refer to the preceding section): We can use functions to
modify the fuzzy values of an attribute or to modify any fuzzy constant.
For example, this allows us to represent linguistic hedges in FSQL
queries.

Additionally, if the query uses fuzzy quantifiers (refer to the “Fuzzy Quantifiers
in Queries” section), then we can use the FUZZY clause and the ρ argument
to increase or decrease the restrictivity of the query. We can also use the
ONCEPERGROUP option in fuzzy division queries (refer to the “Fuzzy
Division Queries” section).
The weakening of queries has been studied in many publications (Andreasen &
Pivert, 1994, 1995; Fuhr, 1990; Bosc, 1998). Another proposal in this sense
(Ozawa & Yamada, 1994) is based on the fuzzy clustering of data. That is to
say, when no data satisfy the query, the system shows the classes of data that
are present and provides the class closest to the query. This system applies the
algorithm of fuzzy clustering C-means (Bezdek, 1981) to classify data in
various fuzzy groups, represented by linguistic labels defined by membership
functions.

Fuzzy Comparisons

This section examines fuzzy comparisons and fuzzy comparators: definition,
equivalences, restrictivity, types of fuzzy conditions, and the fuzzy comparison
of crisp values.

Definition of Possibility and Necessity Comparators
for Fuzzy Attributes Type 1 or 2

The fuzzy comparators (refer to Table 7.1) can be used to compare one fuzzy
attribute with another attribute or with one constant (fuzzy or crisp).
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In fuzzy attributes Type 2, we can store crisp values (as in the Type 1), but in
addition, we can store fuzzy values such as the ones shown in Table 7.3. The
most general case is the fuzzy trapezoid; therefore, this type of value includes
all the others.
Here, we shall study the fuzzy comparators when two trapezoidal possibility
distributions are compared, which is the most general case. These possibility
distributions (refer to Figure 7.1) are denoted by A = $[α

A
, β

A
, γ

A
, δ

A
]

and B = $[α
B
, β

B
, γ

B
, δ

B
]. We also use the CDEG function to express

the compatibility degree of a fuzzy comparison, which is written as an argument.
It should be observed that in the necessity comparators, the possibility
distribution in the left part of the comparison is denied (just as it is in Equation
7.4).
We define these fuzzy comparators by using the possibility and necessity
measures (refer to Chapter I). Of course, fuzzy comparators may be defined
by using other techniques, such as neural networks (Carrasco, Galindo, & Vila,
2001).

Possibly/Necessarily Fuzzy Equal and Fuzzy Different:
FEQ/NFEQ and FDIF/NFDIF

The comparison of two possibility distributions A and B (trapezoidal) using
FEQ, obtains a compatibility degree, denoted by CDEG(A FEQ B):

( )[ ] )(),( min  sup
X

xx
x

BAB) FEQ CDEG(A
∈

= (7.3)

where X is the underlying domain of A and B. It should be noted that FEQ uses
the possibility measures (Equation 1.40). This fuzzy comparator is the only one
that satisfies the commutative property (Equation 7.17).
The necessity comparator NFEQ describes the degree to which A is included
in B. This degree is calculated for the following equation:
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The possibly/necessarily fuzzy different comparators are defined by denying
the previous definitions:

CDEG(A FDIF B)  =  1 - CDEG(A NFEQ B) (7.5)
CDEG(A NFDIF B)  =  1 - CDEG(A FEQ B) (7.6)

As the NFDIF comparator must be more restrictive than FDIF (see Table 7.8),
NFDIF denies the comparison with FEQ, and FDIF denies the comparison
with NFEQ. These equations are based on Equations 1.46 and 1.47.

Possibly/Necessarily Fuzzy Greater Than: FGT and NFGT

With other fuzzy comparators that are different from the fuzzy equality, the
comparison is as if the possibility distribution of the right part of the comparison
was modified and then Equation 7.3 or 7.4 was applied. With FGT/NFGT, the
right part B is changed to a gamma function (Figure 1.5 with a = γB and b = δB).
In other words, FGT/NFGT use the following equations:
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Possibly/Necessarily Fuzzy Greater or Equal: FGEQ and NFGEQ

With FGEQ/NFGEQ, the right part B is changed to a gamma function (Figure
1.5 with a = αB and b = βB) and then Equation 7.3 or 7.4 is applied. In other
words, these fuzzy comparators use the following equations:
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Example 7.2 shows a query using FGEQ and its results.

Possibly/Necessarily Fuzzy Less Than: FLT and NFLT

With these fuzzy comparators, the right part B is changed to an L fuzzy set
(Figure 1.4 with a = αB and b = βB) and then Equation 7.3 or 7.4 is applied.
In other words, FLT/NFLT use the following equations:
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Possibly/Necessarily Fuzzy Less or Equal: FLEQ and NFLEQ

With FLEQ/NFLEQ, the right part B is changed to an L fuzzy set (Figure 1.4
with a = γB and b = δB) and then Equation 7.3 or 7.4 is applied. In other words,
these fuzzy comparators use the following equations:
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Possibly/Necessarily Much Greater Than: MGT and NMGT

In comparators that use the expression “Much” (much greater/less than), the
distance M is used, which indicates the greatest minimum distance so that two
values of that attribute are considered very separated. Additionally, with these
comparators, the right part of the comparison is modified, adding M in MGT/
NMGT and subtracting M in MLT/NMLT.
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In order to obtain the compatibility degree with which A is possibly/
necessarily much greater than B, FSQL uses the fuzzy set $[α

B
+M, β

B
+M,

γ
B
+M, δ

B
+M] and then applies Equation 7.7 or 7.8; that is, the following

equations are used:
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Possibly/Necessarily Much Less Than: MLT and NMLT

With these fuzzy comparators, the right part B is changed to $[α
B
-M, β

B
-M,

γ
B
-M, δ

B
-M] and then Equation 7.11 or 7.12 is applied. In other words,

MLT/NMLT use the following equations:
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Equivalences Among Fuzzy Comparators
and Exceptions to Its Definitions

Some fuzzy comparators are equivalent to others simply by exchanging the
order of the compared values; that is, they obtain equal fulfillment degrees. For
example, in crisp mode, the comparison A > B is equivalent to B < A.
The fuzzy comparators defined previously display the following equivalences:

A FEQ B ≡ B FEQ A (7.19)
A NFDIF B ≡ B NFDIF A (7.20)
A FGT B ≡ B NFLEQ A (7.21)
A FLT B ≡ B NFGEQ A (7.22)
A FGEQ B ≡ B FLEQ A (7.23)
A NFGT B ≡ B NFLT A (7.24)
A NMGT B ≡ B NMLT A (7.25)

By definition, these equivalences are always satisfied. Nevertheless, some
exceptions must be kept in mind for the sake of clarity. These exceptions are
produced when a fuzzy constant UNKNOWN, UNDEFINED, or NULL is
compared, using a necessity comparator. In these cases, a compatibility degree
0 is always returned, although in some specific comparisons the value is 1,
following the comparator definition.

Example 7.25: In the following comparisons, the compatibility degree be-
tween both constants is 1, using the comparator definition:
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UNDEFINED  NFEQ  #8

$[1,2,3,4] NFEQ  UNKNOWN

[100,200]  NFLT  UNKNOWN

8          NFGT  NULL

Nevertheless, FSQL returns 0 in these comparisons, because it is the value that
we hope to obtain. For example, in the second case, the necessity of any fuzzy
value to be UNKNOWN is 1 (Equation 7.4), but intuitively the users hope that
such tuples will not be obtained. It should be noted that all fuzzy values are
included in the UNKNOWN fuzzy set, but if the query makes a join, then such
matches are not interesting.

*

These exceptions mean that the returned value is the intuitive value. In addition,
the necessity comparators clearly indicate that the query wants to recover a few
interesting tuples. Thus, the selection of tuples with UNKNOWN values does
not seem logical. On the other hand, if the query wishes to obtain all the tuples
that possibly comply with the condition, then it should use a possibility
comparator and not a necessity comparator.

Fuzzy Comparators Restrictivity

There are comparators whose results include others. For example, in crisp
mode, the result of the comparator >= includes the result of >. We can then say
that the comparator > is more restrictive than >=. This means that more
restrictive comparators will recover a smaller or equal number of tuples, and

Table 7.8. Fuzzy comparators restrictivity by families

Family Fuzzy Comparators, from greater to smaller restrictivity 
Fuzzy Equal NFEQ > FEQ 
Fuzzy Different NFDIF > FDIF 
Fuzzy Greater NFGT > FGT > NFGEQ > FGEQ 
Fuzzy Less NFLT > FLT > NFLEQ > FLEQ 
Much Greater NMGT > MGT 
Much Less NMLT > MLT 
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these recovered tuples will never have a greater fulfillment degree than with less
restrictive comparators.
In Table 7.8, the restrictivity order can be seen for fuzzy comparators by
families. It should be observed that any necessity comparator is more restrictive
than its corresponding possibility comparator.

Fuzzy Comparators FEQ and FDIF for Fuzzy Attributes
Type 3

Fuzzy attributes Type 3 and 4 use only FEQ and FDIF, because a relation of
order does not exist (refer to Chapter IV). For example, we are not able to say
whether the value “blond” is greater than the value “dark-haired,” but we can
measure their similarity.
When we compare two simple values of Type 3, the returned value is the value
stored in their similarity relation, supposing that both values are normalized
(Definition 1.11); that is, their possibility degree is 1.
The normal (and desirable) thing is that both the simple values and the possibility
distributions on fuzzy attributes Type 3 are normalized; that is, their possibility
degree is 1 in at least some of the components. Nevertheless, this is not
obligatory.
Let us suppose that we want to compare two possibility distributions, F and X,
on the linguistic labels of a fuzzy attribute Type 3:

F FEQ X
(7.26)

where

FLENFFPF ,...,2,1with}label/{ == iii (7.27)

XLENXXPX ,...,2,1with}label/{ == jjj (7.28)

labelFi and labelXj being linguistic labels, which belong to the same attribute and
therefore can be compared with its similarity relation. The values FPi and XPj
are the possibility degrees, in [0, 1], associated to these labels, respectively.
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LEN
F
 and LEN

X
 indicate the number of pairs {degree/label} of the possibility

distributions F and X, respectively, with LEN
F
 ≥ 1 and LEN

X
 ≥ 1.

The compatibility degree of F and X (the fulfillment degree of the condition in
7.26) is subsequently computed by

})label,label({max
,...,2,1
,...,2,1 jijiR

j
i

XPFPXFX) FEQ CDEG(F

XLEN
FLEN

∗∗=
=
=

µ
(7.29)

where µR(labelF
i
, labelX

j
) express the similarity degree between both labels

(refer to Chapter V).
The previous equation is simplified when the comparison is performed directly
on a label (label = labelX

1
 with XP

1 = 1) :

}),label({max
,...,2,1 iiRi

FPlabelF$label) FEQ CDEG(F
FLEN

∗=
=

µ

(7.30)

If for a couple of labels their similarity degree is not defined in the FMB, it is
supposed to be 0.
The “fuzzy different” comparator, FDIF, is defined by denying the comparator
FEQ in Equation 7.29:

CDEG(A FDIF B) = 1-CDEG(A FEQ B) (7.31)

Fuzzy Comparator FEQ for Fuzzy Attributes Type 4

Suppose that we want to compare two possibility distributions, F and X, on the
linguistic labels of a fuzzy attribute Type 4, F FEQ X, where F and X are
defined with Equations 7.27 and 7.28, respectively. The compatibility degree
of F and X is then computed by Equation 7.29, where µR(labelF

i
, labelX

j
) is

1 if labelFi = labelXj, and 0 if labelFi ≠ labelXj.
Similarly, FDIF uses Equation 7.31. In fuzzy attributes Type 3 or 4, FDIF has
a definition different than the FDIF of fuzzy attributes Type 1 or 2 (Equation
7.5).
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Types of Fuzzy Simple Conditions,
With and Without Arithmetic Expressions

We can conclude that there are 13 basic types of simple comparisons or fuzzy
simple conditions (without external arithmetic expressions). These conditions
can be used with other conditions (fuzzy or not) by means of the logical
operators (NOT, AND, and OR) to form more complex fuzzy conditions.
Let <fcol> and <fcol2> be two fuzzy columns (fuzzy attributes) in SQL
format (with or without scheme and table) and <FCOMP> be a fuzzy compara-
tor (refer to Table 7.1). The types of fuzzy simple conditions are then as follows:

1. Comparison of a fuzzy attribute Type 1 or 2 with the fuzzy constant
“approximately n” using the margin of the FMB (Table 7.2):

<fcol> <FCOMP> #n

2. Comparison of a fuzzy attribute Type 1 or 2 with the fuzzy value
“approximately n” with an explicit margin m (Table 7.2):

<fcol> <FCOMP> n+-m

3. Comparison of a fuzzy attribute Type 1 or 2 with an interval (Table
7.2):

<fcol> <FCOMP> [n,m]

4. Comparison of a fuzzy attribute Type 1 or 2 with a trapezoidal fuzzy
constant (Table 7.2):

<fcol> <FCOMP> $[α, β, γ, δ]

5. Comparison of a fuzzy attribute Type 1, 2, 3, or 4 with a linguistic label,
defined in the FMB (Table 7.2):
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<fcol> <FCOMP> $label

6. Comparison of a fuzzy attribute Type 3 or 4 with a possibility distribution
on labels (Table 7.2):

<fcol> <FCOMP> {P1/L1, P2/L2, …, Pn/Ln}

7. Comparison of a fuzzy attribute Type 3 or 4 with a possibility distribution
on labels with possibility degree 1 for all of them (Table 7.2):

<fcol> <FCOMP> {L1, L2, …, Ln}

8. Comparison of a fuzzy attribute Type 1 or 2 with a possibility distribution
on numbers (Table 7.2):

<fcol> <FCOMP> {P1/N1, P2/N2, …, Pn/Nn}

9. Comparison of a fuzzy attribute Type 1 or 2 with a possibility distribution
on numbers with possibility degree 1 for all of them (Table 7.2):

<fcol> <FCOMP> {N1, N2, …, Nn}

10. Comparison of a fuzzy attribute Type 1, 2, 3, or 4 with an expression:

<fcol> <FCOMP> (<expression>)

If the expression includes fuzzy values (or fuzzy columns), then the
included operations must be defined (refer to Chapter I). The expres-
sion should appear between parentheses. Otherwise, the operations will
be considered as external to the fuzzy comparison; that is, the operations
will use the compatibility degree of <fcol> <FCOMP> F, where F
is the first value in the expression. In other words, fuzzy comparators
have a greater precedence. The expression may use the functions in the
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“Some Useful Functions for Fuzzy Values” section, earlier in this
chapter.

11. Comparison of any type of fuzzy attribute with others, which must be
compatible with each other:

<fcol> <FCOMP> <fcol2>

Fuzzy attributes Type 1 and Type 2 can be compared with each other, but
none of them can be compared with a Type 3 or 4. Fuzzy attributes Type
3 and Type 4 can only be compared with other Type 3 and 4, respectively,
and both fuzzy columns must be explicitly declared as compatible (refer
to Chapter V).

12. Comparison of any type of fuzzy attribute with the fuzzy constant UN-
KNOWN, UNDEFINED, or NULL, using FEQ or NFDIF:

<fcol> 













NULL

UNDEFINED

UNKNOWN

NFDIF

FEQ

In this type of comparison, another fuzzy comparator different of FEQ
cannot be employed, and the column <fcol> cannot be crisp or fuzzy
Type 1.

13. Comparison of any type of fuzzy attribute with the fuzzy constant UN-
KNOWN, UNDEFINED, or NULL, using IS:

<fcol> IS [NOT] 





NULL

UNDEFINED

UNKNOWN

If <fcol> is Type 1, then only NULL can be used and will be considered
and treated as the NULL of the DBMS.
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At the end of all these fuzzy conditions, with the exception of the last one, a
threshold may be added (THOLD), so that the condition established will only
be true if its fulfillment degree surpasses this threshold.
The fuzzy comparisons (except IS) can be preceded or followed by arithmetic
expressions that operate with the fuzzy comparison, so that these are consid-
ered as external to the fuzzy comparison (except when parentheses are used).
It should be noted that in a fuzzy comparison, the left part must be a fuzzy
column, because the comparison operations need to know the context (margin
in approximate values, value M, similarity relation, linguistic labels, etc.).
If a fuzzy attribute Type 2, 3, or 4 appears in an expression (with the exception
of case 11), we will say that it is in an unusual or special position. In this case,
the default processing for this attribute can be configured for the user, as
explained in the “Modifying FSQL Options: ALTER FSQL and ALTER
SESSION” section, later in this chapter.
Next, we present a series of examples that show the enormous variety of types
of fuzzy comparisons with the arithmetic expressions that can be performed.

Example 7.26: Let Salary be a fuzzy attribute Type 1 or 2 and Commis-
sion a numeric crisp attribute or a fuzzy attribute Type 1. The following fuzzy
comparisons and their meanings can then be observed:

1. 0.5 * Salary FGT (SQRT(Commission)+3/4)  THOLD 0.25

This fuzzy comparison expresses that (0.5 * χ) ≥ 0.25, where χ is
CDEG(Salary FGT (SQRT(Commission)+3/4)).

2. 0.5 * Salary FGT SQRT(Commission)+3/4  THOLD 0.25

This fuzzy comparison expresses that (0.5 * χ + 3/4) ≥ 0.25, where χ is
CDEG(Salary FGT SQRT(Commission)).

3. 0.35 * SQRT(Commission) * Salary NFGEQ $[2,3,4,5] = 35
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This fuzzy comparison expresses that (0.35 * Commission * χ) = 35,
where χ is CDEG(Salary NFGEQ $[2,3,4,5]).

4. Salary NFEQ (#2 * Salary - $[2,3,4,5]) < .5

This fuzzy comparison expresses that χ < 0.5, where χ is CDEG(Salary
NFEQ ψ), and ψ is the fuzzy expression (#2 * Salary -
$[2,3,4,5]). This, of course, implies the definition of fuzzy arith-
metic operations (refer to Chapter I).

*

Comparison of Crisp Values Using Fuzzy Comparators

By using fuzzy comparators, FSQL enables two fuzzy attributes Type 1
(crisp) or a fuzzy attribute Type 1 with a crisp expression (including
nonfuzzy attributes) to be compared. This could be considered erroneous,
because from a certain point of view, it is pointless to diffusely compare two
crisp values. In this case, the crisp (or classical) comparators should be
used.
Nevertheless, FSQL permits the fuzzy comparison of crisp values, giving it a
shade that can prove very useful and that crisp comparators cannot manage.
Hence, when we compare a fuzzy attribute Type 1 with a crisp value by means
of a fuzzy comparator, this blurs (fuzzifies) the value situated in the right part
of the comparison, converting it to an approximate value (refer to Figure 1.2b),
with the margin belonging to the attribute situated to the left part of the
comparison. Consequently, there must always be a fuzzy attribute in the left part
of any fuzzy comparator. If the user does not want to blur that value, then a crisp
comparator should be utilized.

Example 7.27: If <fcol_T1> is a fuzzy attribute Type 1, then the following
two fuzzy comparisons are equivalent:

<fcol_T1> FGT 6

<fcol_T1> FGT #6
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*

Similarly, when a fuzzy attribute Type 1 is compared with an interval [n, m],
utilizing a fuzzy comparator, this interval is also blurred (fuzzified), becoming
the trapezoidal $[n-margin, n, m, m+margin] (refer to Figure
7.1). If the user does not desire it, then s/he must use a crisp comparator such
as BETWEEN n AND m.
Comparators MGT/NMGT and MLT/NMLT (“Much Greater/Less Than”)
also blur the crisp value situated in the left part of the comparison (with the same
margin). This is because these comparators are fuzzy per se, that is to say, the
word “Much” includes an extra fuzzy shade that other comparators do not have.
It should be noted that these comparators do not come from crisp comparators
but are fuzzy by themselves.
Hence, by blurring (or fuzzifying) both values, these comparators are able to
achieve a more gradual comparison; that is, values that would otherwise obtain
a 0 degree now obtain a degree in the interval (0,0.5). The value 0.5 is due to
the fact that both values are blurred (or fuzzified) with the same margin.

Crisp Comparators in Fuzzy Attributes

Crisp or classic comparators may be used in comparisons with fuzzy
attributes. These comparisons return classic values: true, false, or unknown-
maybe (see tri-valued logic in Table 2.1). The unknown or maybe value is
returned only when values UNKNOWN or NULL appear. If the UNDE-
FINED value appears, then the comparison returns false. In any other case,
FSQL uses the following equations, where A and B are two fuzzy values, and
µ
A
 and µ

B
 are the membership functions of A and B, respectively, in the

universe X:

• A = B returns
� True if ∀ x ∈ X, µ

A
(x) = µ

B
(x) (Definition 1.2), and

� False if ∃ x ∈ X, µ
A
(x) ≠ µ

B
(x).

• A > B returns
� True if max{Supp(A)} > max{Supp(B)} (Supp is defined in Defini-
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tion 1.4), and
� False if max{Supp(A)} ≤ max{Supp(B)}.

• A >= B returns
� True if max{Supp(A)} ≥ max{Supp(B)}, and
� False if max{Supp(A)} < max{Supp(B)}.

• A < B returns
� True if min{Supp(A)} < min{Supp(B)}, and
� False if min{Supp(A)} ≥ min{Supp(B)}.

• A <= B returns
� True if min{Supp(A)} ≤ min{Supp(B)}, and
� False if min{Supp(A)} > min{Supp(B)}.

It is important to check that these definitions do not satisfy some basic
properties. For example, if A > B is true, then this does not imply that A <=
B is false.

INCL and FINCL Comparators for
Fuzzy Attributes Types 1, 2, 3, and 4

The inclusion comparator INCL implements the ⊆ operator. In this way, A
INCL B examines if A ⊆ B (Definition 1.3). This comparison returns a crisp
value of the tri-valued logic:







∀≤=
otherwise

),()( if
  are or   if

xxx BA

NULLBA

FALSE

TRUE

NULL

B INCL A (7.32)

The fuzzy inclusion comparator FINCL defines a degree of subsethood. If
CDEG(A FINCL B) = 1, then A is totally included in B. In the other extreme,
if CDEG(A FINCL B) = 0, then A is not included in B at all. This degree
is computed by
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)(
)()(

A

BAA
B) FINCL CDEG(A

Card
CardCard �−= (7.33)

where Card is the cardinality function (Definition 1.12) of the membership
function. It should be noted that in fuzzy attributes Type 1 or 2, the cardinality
is the area of the membership function, and in fuzzy attributes Type 3 or 4, the
cardinality is expressed in Equation 1.25. Similarly, we can use other
expressions for this fuzzy inclusion, such as the approach presented in Kosko
(1992). For the sake of simplicity, the intersection of A and B may use the
minimum t-norm.

DDL of FSQL:
CREATE, ALTER, and DROP

The DDL (data definition language) of FSQL includes the modification of
certain statements and some new statements of three families: CREATE,
DROP, and ALTER. These statements are applied to the following objects of
an FRDB:

1. Object TABLE: Fuzzy relations or fuzzy tables (with fuzzy attributes).
The group of statements formed by CREATE TABLE, ALTER
TABLE, and DROP TABLE already exists in SQL standard. Here, we
have expanded their syntax so that they enable the needs of an FRDB to
be expressed.

2. Object FDATATYPE: This object allows the definition of specific fuzzy
data types identified with one name. These names may be used wherever
a fuzzy data type may be used.

3. Object VIEW or MATERIALIZED VIEW (SNAPSHOP): The
statements CREATE, ALTER, and DROP applied to these objects
already exist in SQL, but in FSQL fuzzy queries are allowed with the
SELECT of FSQL (refer to the “Novelties in the Fuzzy SELECT of
FSQL” section, earlier in this chapter)

4. Object LABEL (refer to the “Novelties in the Fuzzy SELECT of FSQL”
section, earlier in this chapter): This object includes fuzzy labels of
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attributes Types 1, 2, and 4. If it belongs to Type 1 or 2, then it is
associated to possibility distributions. This object is exclusive of FSQL.

5. Object NEARNESS (refer to the “Novelties in the Fuzzy SELECT of
FSQL” section, earlier in this chapter): This object represents the similar-
ity relationships of fuzzy attributes Type 3. The CREATE NEARNESS
statement implies the definition of labels for fuzzy attributes Type 3 and the
similarity relation between them. This object is exclusive of FSQL.

6. Object QUALIFIER (refer to the “Fulfillment Thresholds and Qualifi-
ers” section, earlier in this chapter): This object represents a constant
inside the context of the degrees of an attribute. This object is exclusive
of FSQL.

7. Object QUANTIFIER (refer to the “Fuzzy Quantifiers in Queries”
section, earlier in this chapter): This object represents fuzzy quantifiers
inside the context of attributes, tables, or the system. This object is
exclusive of FSQL.

8. Object MEANING (refer to Chapter IV): This object represents the
meanings or significances for some of the degrees with which the FRDB
works. This object is exclusive of FSQL.

FSQL includes statements on another two objects: FSQL and SESSION.
These statements specify or modify any of the conditions or parameters that
affect all their connections to the database (forever) or only the current session
(or connection). These statements are shown in the “Modifying FSQL Options:
ALTER FSQL and ALTER SESSION” section, later in this chapter.
Other clauses or statements for other objects have not been defined here, as
these definitions are the same as that of SQL, or very similar to it or to clauses
that have already been defined.
The CREATE and ALTER statements for the same object always have a
similar syntax, and the DROP statement has a similar syntax for all objects (see
Figure 7.3). In the following section, we focus on explaining the new clauses or

Figure 7.3. DROP statement syntax in SQL and FSQL

Figure 7.3.  statement syntax in SQL and FSQL 

; DROP object name object 
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new incorporations to the CREATE statements.

TABLE and FDATATYPE

The CREATE and ALTER TABLE are the DDL statements that include more
innovations. We discuss these new incorporations in the following subsections.

Fuzzy Data Types

New types of data have been added. For the sake of convenience in the
learning, each new data type has two names (two reserved words). Some of
them may have arguments. These are the new types and their format:

1. FTYPE1 or CRISP: This is used to declare a fuzzy attribute Type 1. It
has two arguments, placed between parentheses and separated by a
comma, which indicate the context values for the new fuzzy attribute:
values MARGEN and MUCH (M) of the table
FUZZY_APPROX_MUCH of the FMB (refer to Chapter V). Note that
if we change the margin value, then the DBMS must change all the
approximate values of type 6 (but not of type 8; refer to Table 5.1).
Subsequently, the base type of the attribute can be expressed optionally,
that is to say, the underlying domain, the real domain of the attribute Type
1. By default, this domain will be considered as the NUMBER data type
of Oracle. Of course, the underlying domain cannot be a fuzzy data type.
Optionally, the word DOMAIN followed by the name of another attribute
(which can be from the same table) can be added to the definition of this
type of attribute in order to indicate that the attribute being defined will be
compatible with the attribute indicated after DOMAIN and will therefore
be able to take its values, labels, and so forth and all the definitions of the
FMB. The clause DOMAIN  inserts a row into the table
FUZZY_COMPATIBLE_COL (refer to Chapter V).

2. FTYPE2 or POSSIBILISTIC: This is used to declare a fuzzy
attribute Type 2. It has the same two arguments and uses the same format
as FTYPE1.

3. FTYPE3 or SCALAR: This is used to declare a fuzzy attribute Type 3.
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It has an optional argument indicating the maximum number of data for the
values of this attribute, that is, the maximum number of elements in the
possibility distributions on scalars: value of LEN attribute in table
FUZZY_COL_LIST (refer to Chapter V). The minimum value is the
default value, 1.
Optionally, the word DOMAIN followed by the name of another attribute
(which can be from the same table) can be added to the definition of this
type of attribute in order to indicate that the attribute being defined will be
compatible with the attribute indicated after DOMAIN and will therefore
be able to take its values. The clause DOMAIN inserts a row into the table
FUZZY_COMPATIBLE_COL (refer to Chapter V).

4. FTYPE4 or NONSIMILAR: This is used to declare a fuzzy attribute
Type 4. The format of this fuzzy attribute is equal to the FTYPE3
attribute.

5. FUZZY or FUZZY DEGREE: This is used to declare a fuzzy degree with
its own meaning (refer to Chapter IV). The user should choose a good
name that indicates something about its meaning. Optionally, after this
data type, the user can specify the meaning of this fuzzy degree with a
number or some text (see the section on meaning later in this chapter). If
this meaning is included, then it must exist in the FMB. This kind of degree
does not have a default meaning, as the meaning should be expressed in
the name.

6. FUZZY_DATE, FUZZY_TIME, and FUZZY_TIMESTAMP: These
data types are used to store fuzzy time values (see the section on fuzzy time
earlier in this chapter). They are treated as Type 2 attributes, where the
underlying domain is the domain of DATE (specifying year, month, and
day), TIME (specifying hour, minute, and second), and TIMESTAMP
(specifying a DATE and TIME combination), respectively. Some DBMSs,
like Oracle, use only the TIMESTAMP data type (called DATE here).

The UM Clause

In the definition of an attribute of the previous data types, the UM clause may
be used to set the Unit of Measurement. This value is alphanumeric and should
end with the abbreviation in parentheses.
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Example 7.28: Let us see the declaration of a fuzzy attribute Type 2:

Height FTYPE2 (3,7) NUMBER(4,1)

  UM ‘Centimeters (cm.)’

  DEFAULT UNKNOWN

*

In fuzzy time data types, the unit of measurement is the unit of measurement of
the margin and MUCH (M) values. If this clause appears, then FSQL gives a
numeric data type to these attributes in the table FUZZY_APPROX_MUCH
(refer to Chapter V); otherwise, it gives a crisp date-and-time data type (in
another dual table).

Specific Fuzzy Data Types: The Object FDATATYPE

The FSQL user may create new and specific fuzzy data types by using the
following statement:

CREATE FDATATYPE FTYPE_Name AS <definition>;

where FTYPE_Name is the name of the new fuzzy data type and <defi-
nition> is its definition, following the syntax previously exposed. After the
specific fuzzy data type has been created, other objects (such as labels,
qualifiers, quantifiers, etc.) may be created and associated to the new specific
fuzzy data type.

Example 7.29: Let us create a specific fuzzy datatype for a fuzzy area:

CREATE FDATATYPE Fuzzy_Area AS

  FTYPE2 (3,7) NUMBER(4,1) UM ‘m^2’

  DEFAULT UNKNOWN;
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After this statement we can associate other objects to the new specific fuzzy
data type. For example, in order to associate a label to this new specific fuzzy
data type, one possible statement is as follows (see syntax in the “Label”
section, later in this chapter):

CREATE LABEL Fuzzy_Area.$Very_Big VALUES 60, 70, 80, 90;

*

Associated Fuzzy Degrees

In Chapter V, you see four types of fuzzy degrees. These degrees have default
names, but in the declaration of these attributes the user may call them anything.

Figure 7.4. Structure for defining a fuzzy degree associated to one
attribute

Figure 7.5. Structure for defining a fuzzy degree associated to one or some
attributes

data type column 

WITH FUZZY DEGREE 

[NOT] NULL name meaning 

, 

column ( ) 

WITH FUZZY DEGREE 

[NOT] NULL name meaning 
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FSQL language has functions in order to access these degrees (see the section
“Some Useful Functions for Fuzzy Attributes,” earlier in this chapter).

1. Fuzzy degree associated to each value of an attribute: In the
declaration of an attribute, after its data type we can use the words WITH
FUZZY DEGREE. This clause creates a fuzzy degree associated to the
attribute of the declaration. If F is the name of the attribute, then the name
of the degree is, by default, DegreeF, but this name can be set just after
the words WITH FUZZY DEGREE. Optionally, the user can specify
the meaning of this fuzzy degree with a number or some text (refer to
Chapter V). If this meaning is included, it must exist in the FMB. The
default meaning is “fulfillment.” In addition, the optional clause NOT
NULL prohibits this value in the fuzzy degree (default is the NULL clause).
The format is expressed in Figure 7.4. However, this type of degree can
also be declared by using the following format (see Figure 7.5).

2. Fuzzy degree associated to values of some attributes: As part of the
table definition, out of the definition of an individual column or attribute,
we can use the words WITH FUZZY DEGREE, followed by all the
columns in parentheses. Optionally, we can include the name, meaning,
and the clause NOT NULL, which prohibits this value in the fuzzy degree.
If this meaning is included, then it must exist in the FMB. The default name
is DegreeF, where F is the acronym of all the associated attributes. The
default meaning is “fulfillment.” The format is depicted in Figure 7.5.

3. Fuzzy degree associated to the whole tuple (or row): As part of the
table definition, out of the definition of an individual column or attribute,
we can use the words TABLE WITH FUZZY DEGREE in order to
define this degree. After this clause, we can optionally include the name,
meaning, and the clause NOT NULL. If this meaning is included, then it
must exist in the FMB. The default name is DegreeF, where F is the table
name. The default meaning is “fulfillment.”

Subqueries, Constants, Conditions, and Fuzzy Expressions

When these elements form part of a CREATE TABLE statement, the user can
utilize their fuzzy versions (just as they were presented in the “Novelties in the
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Fuzzy SELECT of FSQL” section, earlier in this chapter). For example, the
DEFAULT clause lets you specify a value to be assigned to the column if a
subsequent INSERT statement omits a value for the column. In the DE-
FAULT clause you can write a fuzzy expression (for example, using fuzzy
constants from Table 7.2).

Column Constraints

You can define constraints as part of the definition of an individual column or
attribute. The classic constraints are [NOT] NULL, UNIQUE, PRIMARY
KEY, CHECK, and REFERENCES. In addition, other constraints in FSQL
can be controlled:

1. NOT clause: This prohibits a database value from being a fuzzy value or
type of fuzzy value. These fuzzy constant types are the crisp type and those
expressed in Table 7.2. UNKNOWN, UNDEFINED, and NULL prohibit
these values in fuzzy attribute Types 2, 3, and 4. Word LABEL prohibits
values of linguistic label type. Similarly, CRISP, TRAPEZOID, IN-
TERVAL, APPROX (with margin in the FMB), and APPROXM (with an
explicit margin) prohibit this type of value. Finally, the word DISTRI-
BUTIONS prohibits noncontinuous possibility distributions in fuzzy
attributes Types 2, 3, or 4. If the word NOT does not appear, then these
values are allowed explicitly (this is the default option). The format is as
follows, and the relevant data types are expressed on the right:

Figure 7.6. Structure for the ONLY clause

ONLY fuzzy constant type 

OR 
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[NOT] 
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4) and 3 (2,
(2)
(2)
(2)
(2)
(2)

4) and 3 (2,
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4) and 3 (2,
4) and 3 (2,

ONSDISTRIBUTI

APPROXM

APPROX

INTERVAL

        TRAPEZOID

CRISP

LABEL

NULL

UNDEFINED

UNKNOWN

2. ONLY clause: This explicitly allows only a database value to be a certain
value or type of value. This clause uses the same reserved words as the
previous clause (the fuzzy constants types), but now these words may be
linked with the word OR: UNKNOWN, UNDEFINED, NULL, LABEL,
CRISP, TRAPEZOID, INTERVAL, APPROX, APPROXM, and
DISTRIBUTIONS. The format of this clause is shown in Figure 7.6.
Note that using ONLY CRISP OR NULL over a fuzzy attribute Type
2 is similar to using a fuzzy attribute Type 1.

3. CHECK clause: A check constraint in an FSQL statement lets you
specify a fuzzy condition that each row in the table must satisfy.

Example 7.30: Let us create the HOUSING relation for an estate agency:

CREATE TABLE HOUSING (

  CODE#    NUMBER(9) NOT NULL PRIMARY KEY,

  OWNER#   NUMBER(9) NOT NULL,

  ADDRESS  VARCHAR2(60),

  AREA     FTYPE1 (15,25) NUMBER(4)

             UM ‘Square metres (m2.)’
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  WITH FUZZY DEGREE UNCERTAINTY

  CONSTRAINT NOT_NULL_AREA  NOT NULL,

  PRICE    FTYPE2 (500,3000) NUMBER(6) DEFAULT UNKNOWN

  CONSTRAINT NOT_NULL_PRICE      NOT NULL

CONSTRAINT NOT_UNDEFINED_PRICE NOT UN-
DEFINED,

  DISTRICT FTYPE3 (3) DEFAULT UNKNOWN

     CONSTRAINT ONLY_DISTRIB_DISTRICT ONLY DISTRIBUTIONS

  CONSTRAINT NOT_NULL_DISTRICT     NOT NULL

 CONSTRAINT NOT_UNDEF_DISTRICT    NOT UNDEFINED,

  VALID    FUZZY_DATE(5,10)

             UM ‘Days (d.)’

  QUALITY  FUZZY DEGREE);

Note that the attribute AREA has an associated degree with the meaning of
uncertainty (refer to Chapter IV), and attribute QUALITY is a fuzzy degree
with its own meaning.

*

VIEW

The CREATE and ALTER VIEW statements permit us to use views with
fuzzy queries. The syntax is the same as in SQL but it admits fuzzy queries (see
the “Novelties in the Fuzzy SELECT of FSQL” section, earlier in this
chapter).

Example 7.31: The following statement creates a view with the data of those
properties situated in the center (with a minimum degree of 0.8) and lower in
price than Cheap (with a minimum degree of 0.5):

  CREATE VIEW Center_Cheap AS
    SELECT CODE#, PRICE, DISTRICT, CDEG(DISTRICT)

    FROM HOUSING
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    WHERE DISTRICT FEQ  $CENTER 0.8 AND

          PRICE    FLEQ $CHEAP  0.5

    READ ONLY;

The last attribute indicates the degree to which each property belongs to the
central zone. In the view, that degree will be understood in the interval [0.8, 1].

*

LABEL

This object is new and is exclusive to FSQL. The CREATE LABEL statement
supplies labels in the domain of a fuzzy attribute or a specific fuzzy data type.
The label name should be preceded with the symbol $, although this is optional
in DDL statements. The CREATE LABEL statement has different possible
syntaxes. In the following definitions we use one attribute (with its optional
schema and its table), but a specific fuzzy data type can also be used (refer to
the section on specific fuzzy data types earlier in this chapter).

1. To create a label for a fuzzy attribute Type 1 or 2 with a trapezoidal
possibility distribution:

CREATE LABEL [schema.]table.attribute.[$]Label_Name

       VALUES <fuzzy_constant>;

After the reserved word VALUES, the fuzzy constant must follow the
syntax exposed in Table 7.2. This statement will generate an error if the
attribute is not fuzzy Type 1 or 2 or if the attribute has already defined a
label with the same name. In the second case, the ALTER LABEL
statement should be used with the same syntax. FIRST-2 limits the fuzzy
constant type of these labels, but it is easy to change. Example 7.29 shows
the creation of one trapezoidal label for a specific fuzzy data type.

2. To create a label for a fuzzy attribute Type 4:

CREATE LABEL [schema.]table.attribute.[$]Label_Name;
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3. To copy one defined label for an attribute, attribute2, in another
attribute, attribute1. Both attributes should be fuzzy attributes
Types 1 or 2 indistinctly. Its syntax is as follows:

CREATE LABEL [schema.]table.attribute1.[$]Label_Name

       FROM  [schema.]table.attribute2;

4. To copy all labels, the character * should be used instead of the label
name. Both attributes should be fuzzy attributes Type 1 or 2 indistinctly,
both of Type 3, or both of Type 4.

CREATE LABEL [schema.]table.attribute1.*

       FROM  [schema.]table.attribute2;

If the first attribute has some labels, then these labels are not deleted.
FSQL gives an error and does not execute the CREATE LABEL
statement if the second attribute does not have any label. In fuzzy
attributes Type 3 or 4, it does not copy the labels from one to another but
establishes that both attributes are compatible. The effect is the same as
if we apply the DOMAIN clause in the CREATE LABEL statement (see
the section on fuzzy data types earlier in this chapter).

The DROP LABEL sentence must include the table, the attribute, and the label
using dot notation:

DROP LABEL <table>.<attribute>.[$]<Label_Name>;

Note that if the erased label belongs to a fuzzy attribute Type 3, then the
similarity degrees between this label and the other labels will be also erased. In
addition, we can drop all labels of an attribute using * instead of the label:

DROP LABEL <table>.<attribute>.*;
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Example 7.32: To create a label called CHEAP on the attribute PRICE of the
table HOUSING:

CREATE LABEL HOUSING.PRICE.$CHEAP

       VALUES $[50, 60, 70, 80];

To drop this label, the user must use the following statement (with or without
the $):

DROP LABEL HOUSING.PRICE.$CHEAP;

*

NEARNESS

This object is for creating labels and a similarity relation between them for a
fuzzy attribute Type 3 or for a specific fuzzy data type defined like Type 3. The
syntax is as follows:

CREATE NEARNESS ON Owner

       LABEL  Label_list

       VALUES Similarities_list;

• Owner is the owner of this definition. It may be of two classes:
[schema.]table.attribute for any fuzzy attribute Type 3
and the name of a specific fuzzy data type defined like Type 3.

• Label_list is the list of all labels for the fuzzy attribute separated by
commas.

• Similarities_list is the list of all similarity degrees between
each two labels. The number of elements in this list depends on the type
of similarity relation: symmetrical or non-symmetrical. The order of the
elements depends on the order of the Label_list. If L1, L2, ..., Ln,
are the n labels, and s(i,j) is the similarity degree between Li and Lj, then
the Similarities_list must be written in the following order:
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� For non-symmetrical similarity relations:

s(1,1), s(1,2), s(1,3), ... s(1,n), 
s(2,1), s(2,2), s(2,3), ... s(2,n), 
s(3,1), s(3,2), s(3,3), ... s(3,n), 

... ... ... ... ... 
s(n,1), s(n,2), s(n,3), ... s(n,n); 

� For symmetrical similarity relations:

s(1,2), s(1,3), s(1,4), ... s(1,n), 
 s(2,3), s(2,4), ... s(2,n), 
  s(3,4), ... s(3,n), 
   ...  
    s(n−1,n); 

For n labels, after the word VALUES, we must then write n2 numbers in
[0, 1] for non-symmetrical similarity relations. Note that, in general, s(i, i)
should be 1, ∀ i = 1, 2, ..., n. For symmetrical similarity relations, we must
write n2/2 - n/2 numbers in [0,1], where / is the integer division (truncat-
ing). For example, with 4 labels, the VALUES clause needs 6 numbers,
and with 5 labels, it needs 10 numbers.

This statement gives an error in the following cases:

1. The attribute is not a fuzzy attribute Type 3.
2. The attribute already has a similarity relation defined on it. In order to

modify the relationship, the ALTER NEARNESS statement should be
used.

3. The attribute is compatible with another fuzzy attribute Type 3. In this
case, we must modify the NEARNESS object in the owner attribute. We
can delete the object with the DROP NEARNESS statement.

4. The Similarities_list does not have the precise number of
elements, or some of them are not in [0, 1].
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Example 7.33: To create labels for the DISTRICT attribute in table
HOUSING (Example 7.30) with a symmetrical similarity relation, the syntax is
as follows:

CREATE NEARNESS ON HOUSING.DISTRICT

         LABEL CENTER, NORTH, SOUTH, EAST, WEST

         VALUES 0.8, 0.8, 0.8, 0.8,

                     0  , 0.5, 0.5,

                          0.5, 0.5,

                               0;

*

The ALTER NEARNESS statement has the same syntax in order to modify
all the labels and their similarity relation. It gives an error if the owner does
not have a similarity relation. Additionally, we can modify only the similarity
degree between two labels, Label_1 and Label_2, with the following
syntax:

ALTER NEARNESS ON Owner

      CDEG BETWEEN Label_1 AND Label_2 IS <New_Degree>;

This statement gives an error in the following cases:

1. The attribute is not a fuzzy attribute Type 3.
2. Labels Label_1 or Label_2 do not exist.
3. The attribute does not have a similarity relation defined on it or is

compatible with another fuzzy attribute Type 3. In this case, we must
modify the degree in the owner attribute.

4. The new degree is not in [0, 1].

In order to erase labels in a fuzzy attribute Type 3 or in a specific fuzzy data type,
we must use the DROP NEARNESS statement:
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DROP NEARNESS ON Owner;

However, if this statement is applied over a compatible fuzzy attribute Type 3,
then the statement does not drop the labels and the similarity relation but only
removes the compatibility.
It is worth remembering that we can drop only a label using the DROP LABEL
statement.

QUALIFIER

This object is new and is exclusive to FSQL. The CREATE QUALIFIER
statement supplies qualifiers in the [0, 1] interval for a fuzzy attribute or for a
specific fuzzy data type. It has the following syntax:

CREATE QUALIFIER Owner.[$]Qualifier_Name

       IS <value>;

Figure 7.7. Structure for CREATE QUANTIFIER statement

CREATE QUANTIFIER name 

FOR 

TABLE table 

COLUMN column 

SYSTEM 

2 

1 
ARGUMENTS WITH 
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IS α β δ γ 
RELATIVE 

ABSOLUTE 

; 
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Owner  is the owner of this definition, that is,
[schema.]table.attribute for any fuzzy attribute and the name of
a specific fuzzy data type. The qualifier name may be preceded by the optional
symbol $. After the reserved word IS, the value must be in the [0, 1] interval.
This statement will generate an error if the attribute is not fuzzy (from Type 1 to
8) or if it has already defined a qualifier with the same name. In the second case,
the ALTER QUALIFIER statement should be used with the same syntax.

QUANTIFIER

This object is new and is exclusive to FSQL. The CREATE QUANTIFIER
statement defines fuzzy quantifiers for attributes, tables, and the system. The
name may be preceded by the optional symbol &. This statement has the syntax
expressed in Figure 7.7 with the following clauses:

• FOR clause: This optional clause specifies the owner of the quantifier (a
table, a column, or the system). By default, the owner is the system. If the
owner is a column, then we can write the name of that column, that is,
[schema.]table.attribute, or we can write the name of a
specific fuzzy data type (see the section on specific fuzzy data types earlier
in this chapter).

• RELATIVE or ABSOLUTE words set the type of the quantifier.
• Values α, β, γ, and δ define the trapezoidal function (refer to Figure 7.1).
• WITH clause: This optional clause specifies the number of arguments of

the quantifier: 1 or 2. By default, the number of arguments is zero. If the
number of arguments is one or two, then we must indicate the equation
type for constructing the final quantifier according to its arguments:
� Quantifiers with one argument x:

� SUM: [α + x, β + x, γ + x, δ + x].
� PRODUCT: [α * x, β * x, γ * x, δ * x].

� Quantifiers with two arguments x and y:
� SUM: [α + x, β + x, γ + y, δ + y].
� PRODUCT: [α * x, β * x, γ * y, δ * y].
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MEANING

This object is new and is exclusive to FSQL. The CREATE MEANING
statement supplies a new meaning or significance, which can be used in the
definition of degrees (see the “Associated Fuzzy Degrees” section, earlier in
this chapter). The syntax is as follows:

CREATE MEANING Meaning_Name IS <number>;

The Meaning_Name is the name (for example, importance, possibility,
uncertainty, etc.) and the <number> is an associated number that can be used
without distinction. This statement will generate an error if the meaning or number
already exists in the FMB. In such cases, the ALTER MEANING or DROP
MEANING statements should be used. The ALTER MEANING statement
allows only the number to be modified, whereas the DROP MEANING statement
allows any meaning to be dropped, giving the name or its number.

Modifying FSQL Options:
ALTER FSQL and ALTER SESSION

These statements specify or modify certain parameters that affect the behavior
of some aspects in FSQL statements. ALTER FSQL affects all personal
connections to the database (definitively), whereas ALTER SESSION
affects only the current session (or connection). Both statements have the same

Figure 7.8. ALTER FSQL statement

ALTER FSQL LOGIC Logic_Operator ; IS Function_ts_norm 

FSETS   Fuzzy_Set_Op ; IS Function_ts_norm 

ATTRIBUTE   Fuzzy_Type ; IS Function_Fattribute 
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syntax, and the ALTER FSQL statement syntax is represented in Figure 7.8.
This statement has three clauses:

1. LOGIC clause: This clause specifies the function to use (in the CDEG
function) when logic operators are used.
� Logic_Operator may be one of the following words: {NOT, AND,

OR, ALL}. The word ALL refers to all the three basic logic
operators (NOT, AND, and OR).

� Function_ts_norm is the function to use in the previously specified
logic operator. Of course, the function must be defined in the DBMS,
and the user must be permitted to execute it. Besides, the NOT
function must have only one argument, and the AND/OR functions
must have two arguments, and they represent a particular t-norm and
s-norm, respectively (refer to Tables 1.1 and 1.2). If we use the word
DEFAULT, then the statement sets the default functions shown in
Table 7.4 (GREATEST function for the OR operator, LEAST
function for the AND operator, and negation 1-X function for the
NOT operator).

2. ATTRIBUTE clause: This clause specifies what FSQL does by default
when it finds fuzzy attributes in unusual or special positions (see the “Types
of Fuzzy Simple Conditions, With and Without Arithmetic Expressions”
section, earlier in this chapter). For example, imagine that a fuzzy attribute
appears in an ORDER BY clause, or like an argument in a function
(different than CDEG).
� Fuzzy_Type may be one of the following words: {FTYPE2,

FTYPE3, FTYPE4, ALL}. The word ALL refers to all three fuzzy
attributes Types 2, 3, and 4.

� Function_Fattribute is the function to use when the previously
specified fuzzy attribute type appears in a special position. The
function, of course, must be defined in the DBMS, and the user must
be permitted to execute it. In addition, we can use the following
predefined options:
� ERROR: FSQL gives an error.
� FTYPE: FSQL uses the type of the value in that fuzzy attribute,

according to Tables 5.1 and 5.2.
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� TO_CHAR: FSQL uses the text that represents each value in the
fuzzy attribute (for example, an approximate value is represented
with 7 ± 2).

� With fuzzy attributes Type 2 we can use the name of one function
for the comparison of any fuzzy values in order to decide which
of them is greater.

3. FSET clause: This clause is useful for specifying the function to use when
fuzzy set operators are used (see the section on fuzzy set operators earlier
in this chapter).
� Logic_Set_Op may be one of the following words (Table 7.6):

{FUNION, FINTERSECT, FMINUS, ALL}. The word ALL
refers to all three fuzzy set operators.

� Function_ts_norm is the function to use in the previously specified
fuzzy set operator. The function, of course, must be defined in the
DBMS, and the user must be permitted to execute it. In addition,
this function must have two arguments. If we use the word DE-
FAULT, then the statement sets the default functions (see Table
7.6).

Other SQL-Based Fuzzy Languages

SQLf language (Bosc & Pivert, 1995) represents a synthesis of the character-
istics and functionalities suggested in other previous proposals of flexible query
in classical databases, such as Tahani (1977), Bosc, Galibourg, and Hamon
(1988), Wong (1990), and Nakajima, Sogoh, and Arao (1993). These works
study only the SELECT statement and ignore other implementation aspects
that are very important (refer to Chapter V).
An SQLf query basically follows this format:

                SELECT [N|T|N,T] <select list>
                FROM   <table list>

                WHERE  <fuzzy condition>
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The statement applies the fuzzy condition to the Cartesian product of the FROM
clause. This statement returns only the N best rows and/or those with a
fulfillment degree greater than T. Values N and T are optional, and the user can
write one or both of them. On the other hand, the FSQL presented in this
chapter allows thresholds (the T value) to be used in any simple or compound
condition, and the number of elements N may be limited by using the ORDER
BY clause and the standard pseudocolumn ROWNUM, with the following
condition: ROWNUM <= N.
In the fuzzy condition of SQLf, besides classical conditions, the only fuzzy
conditions that can be employed are the comparison between crisp values
(columns) with linguistic labels and the use of the “approximately equal” fuzzy
comparator between crisp values. For example, if “well-paid” is a defined
fuzzy predicate, then an SQLf fuzzy condition may be as follows: … WHERE
Salary = well-paid.
SQLf allows fuzzy quantifiers in the HAVING clause (see the “Fuzzy Quanti-
fiers in Queries” section, earlier in this chapter) without using group functions.
However, SQLf does not relate the definition of fuzzy quantifiers to any fuzzy
database object. This question is important because, as you see in Example
7.14, the concept of some fuzzy quantifiers — for example, “many” — is
different in different contexts. The number of projects in the expression “many
projects for one employee” is different than the number of employees in “many
employees for one project.”
The “Remarks on Fuzzy Queries” section, earlier in this chapter, sets five
important aspects in fuzzy queries: fuzzy comparators, thresholds, fuzzy
constants, functions for fuzzy treatment, and fuzzy quantifiers. SQLf is more
limited than FSQL in all these aspects.
There are some extensions to SQLf (Goncalves & Tineo, 2001a, 2001b), and
a version called SQLfi has been implemented (http://www.bd.cesma.usb.ve/
~sqlfi).
In addition, dmFSQL was proposed by Carrasco (2003) as an extension of
FSQL for data-mining processes. This extension for data mining includes
statements for

1. Clustering
2. Classification
3. Obtaining fuzzy global dependencies, or FGD (Carrasco, Vila, Galindo,

& Cubero, 2000a, 2000b)
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FSQL has also been used as a base for a fuzzy deductive language for fuzzy
deductive relational databases (Blanco, Cubero, Cuenca, & Pons, 1999,
2000; Blanco, 2001).

Endnotes

1 Some authors extract other sublanguages from the DDL: the DCL (Data
Control Language) for control purposes (security, etc.), the SDL (Stor-
age Definition Language) to define the internal schema of the database and
the physical storage, and the VDL (View Definition Language), to specify
user views, but in most DBMSs the DDL is used to define both conceptual
and external schemas (Elmasri & Navathe, 2000).

2 The Fuzzy Metaknowledge Base (FMB) is the catalog of the fuzzy system
with information about the fuzzy attributes. The FMB is explained in
Chapter V.

3 Oracle is a commercial object-relational database-management system.
Web page of Oracle: http://www.oracle.com

4 The MySQL database server is the world’s most popular open-source
database. Web page of MySQL: http://www.mysql.com
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Chapter VIII

Some Applications
of Fuzzy Databases

With FSQL

The applications of databases are immense. In almost all of them, the advan-
tages of the fuzzy databases can be applied, exploiting their innovative features
and possibilities without losing usefulness. Even the model presented here
permits an easy use of those advantages in already existing traditional data-
bases. The Type 1 fuzzy attributes are traditional attributes that admit fuzzy
queries on them (by using labels, approximate values, fuzzy comparators, etc.).
Imprecise information is a common phenomenon in any context, so it is not
unusual to receive information in an incomplete or inexact way. In traditional
databases, if information other than precise information exists, the value NULL
is stored, preventing the storage of any known information, because the facts
are not precise.
Fuzzy databases and the FSQL language have many applications, and the
deductive power is very important. For example, in a hospital one could make
queries such as the following: “Give me a list of young patients suffering from
hepatitis who were admitted approximately more than 5 weeks ago.” In a
supermarket, it would be useful to know the answer to a request such as the
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following: “Give me a listing of the products that have sold very well, but on
which we have spent little for publicity.”
The list of management applications and useful queries that can be done in this
way is endless. We have studied some applications such as the management of
a travel agency (Galindo & Aranda, 1999) and the management of a rural
accommodation (Galindo, Aranda, Guevara, Caro, & Aguayo, 2002). An-
other management application is summarized in this chapter: the management
of a real estate agency (Galindo, Medina, Cubero, & Pons, 1999; Urrutia &
Galindo, 2002; Barranco, Campaña, Cubero, & Medina, 2004; Barranco,
Campaña, Medina, & Pons, 2005).
However, the applications of FSQL are not limited to management applica-
tions. FSQL can be used for deductive processes in the so-called Fuzzy
Deductive Relational Databases (Blanco, Cubero, Cuenca, & Pons, 1999;
Blanco, Cubero, Pons, & Vila, 2000; Blanco, 2001) and for data-mining
applications (Carrasco, Vila, & Galindo, 2002; Carrasco, 2003).
FSQL is a good tool for data-mining applications because it is flexible and
powerful and fulfills a series of requirements for data-mining systems (Chen,
Han, & Yu, 1996; Frawley, Piatetsky-Shapiro, & Matheus, 1991):

• High-Level Language: For knowledge discovery and also for outputting
the results of the user’s request for information (i.e., queries).

• Efficiency: The process should be efficient, that is, the running time should
be acceptable.

• Certainty: The discovered knowledge should accurately reflect the con-
tent of the database.

• Handling of Different Types of Data.
• Interactive Knowledge Mining: Allows the user to refine a data-mining

request online.

In this way, the “Clustering and Fuzzy Classification With FSQL” section in this
chapter includes one concrete and easy application of the data-mining sphere:
the classification of elements after a clustering process. FSQL in real time
makes this operation very easy and, in addition, we are able to treat the different
clusters as fuzzy even if they have been obtained by a crisp algorithm (Carrasco,
Galindo, Aranda, Medina, & Vila, 1998; Carrasco, Galindo, Vila, & Medina,
1999). Another application for data-mining purposes, briefly explained in the
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“FSQL: A Tool for Obtaining Fuzzy Dependencies” section, is to use FSQL as
a tool for obtaining fuzzy dependencies.
Another example in the classification area is the classification of images and the
fuzzy retrieval of images by using fuzzy attributes of these images (Aranda &
Galindo, 1998; Galindo, 1999; Aranda, Galindo, & Urrutia, 2002; Eloy-
García, 2003). This application is summarized in the “Fuzzy Classification and
Image Retrieval in a Fuzzy Database” section.
The advantages of FRDB are easily evaluated with FSQL because this
language is powerful. It has a great quantity of fuzzy comparators (most of them
already implemented), the flexibility to establish fulfillment thresholds, the
possibility to be installed and used on traditional DBMSs, as well as other
characteristics. Therefore, the transfer of research results to the business world
has taken an important step.

Management of a Real Estate Agency

In this section we study the case of an estate agency devoted to the sale and rent
of apartments, flats, houses, chalets, semidetached houses, building sites,
coach houses, and industrial plants. In the management system for a real estate
agency some attributes of the landed properties may be fuzzy, that is, we can
store imprecise information about it. Besides, this system allows the user to
make flexible or fuzzy queries in order to retrieve the most relevant properties
of our database, starting with the customer information. The goal is to retrieve
the most interesting landed properties according to the initial customer prefer-
ences. Of course, we can obtain a membership degree for each landed property
in the fuzzy query result.
The database schema for an estate agency must include classic attributes (in
addition to fuzzy ones), such as the customers’ names, telephone numbers, and
addresses. In general, to give a greater versatility to the system, you can define
as many Type 2 fuzzy attributes as you consider, instead of Type 1. However,
it is important to take into account that the Type 2 fuzzy attributes require in
general more storage space and more processing time. So we must choose
between flexibility (in the representation and fuzzy treatment) and efficiency
(in storage space and CPU time). However, the storage space and the
processing time for fuzzy attributes is not very significant.
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Examples of Type 1 fuzzy attributes include the following: number of rooms,
number of toilets, price of the community, altitude of the floor, and so forth. It
can be observed that in general, the values of the previous attributes are usually
well known and clear.
In this particular case, most of the attributes are Type 2. Thus, the database is
as flexible as possible. Among these attributes are the sizes of the coach house,
the garden or the land (where it proceeds), highlighting the following ones:

• Price: Many times, the price is not fixed, and the salesman (owner)
establishes an approximate value.

• Area (m2): Sometimes, it is difficult to quickly access the title deed of the
property or to do an exact measurement of its surface. The possibility to
store approximate values was very interesting for the consulted estate
agents.

• Age: Perhaps it is difficult and in general unnecessary to know the exact
age of the property, although it is tremendously useful to know its
approximate age. So, we can store that a house is new, nearly new, old,
or approximately eight years old, for example.

The Type 3 fuzzy attributes include the following, each having its corresponding
similarity relationship: lightness (sun), noise, sights, quality of the furniture (if a
furnished apartment), and so on.

• District: This attribute has been implemented with length 3, indicating that
a landed property may be situated among three areas, with different
degree. For example, {0.5/Center, 1/North, 0.7/Northwest} indicates
that the property is situated in the north district, nearer to the northwest
district than to the town center. The similarity relation depends on the
distance between the different districts and on its extension. This similarity
relation may be seen as a fuzzy relationship. Refer to Example 4.9 for a
FuzzyEER representation of this fuzzy relationship.

• Kind of landed property: This attribute distinguishes among apartments,
flats, chalets, houses, semidetached houses, building sites, industrial
plants, and so forth. In general, the similarity relation will be 0 between
most of them, but between some of them it will be different. For example,
we can establish that a chalet is similar to a semidetached house in degree
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0.8. A customer that looks for a chalet is a potential customer of
semidetached houses. This point is taken into account in order to show a
customer all the relevant properties.

With a database schema like the preceding one, the type of different queries
that can be carried out are immense, and the database highlights the comparison
among the relation of available properties and the relation of demands for
properties. The first relation stores the available properties we can operate with
(to sell, to rent, and so forth), and the relation of demands stores the general
characteristics of the properties that customers are looking for. Later, the
relation of demands is matched with the other relation by using fuzzy necessity
comparators (refer to Table 7.1) and thresholds strictly bigger than 0, ranking
the results in decreasing order by the compatibility degree of every property.
If the query retrieves too many properties, then we can increase the fulfillment
threshold, and if the query retrieves too few properties, then we can use
possibility comparators rather than those of necessity, because the latter is
more restrictive.
Another possibility is to consult the FRDB online at the same time as the
customer indicates his or her preferences.

Example 8.1: Suppose that a customer says, “I am looking for a big chalet with
about seven rooms and in the northern area.” The following FSQL query
retrieves the properties that comply with those conditions, ranking by the first
attribute, which is the compatibility degree:

SELECT CDEG(*), Sales.* FROM Sales

  WHERE Kind     FEQ  $Chalet .5

    AND Surface  FGEQ $Big    .5

    AND Rooms    FGEQ #7      .5

    AND District FEQ  $North  .5

  ORDER BY 1 DESC;

In order to select a greater quantity of properties, we have chosen possibility
comparators because several elemental conditions are included. In the previ-
ous query, the semidetached houses will also be retrieved if this Kind of
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property has a similarity degree greater or equal to 0.5 with regard to chalet.
If we look exclusively for chalets, then we must establish the threshold to 1.

*

It is easy to note that the number of possible queries and the usefulness of their
answers is considerable. Thus, we will first show to each customer the property
that has a greater compatibility degree. In the case that none of the retrieved
properties satisfy the customer, we can make a more flexible query, putting
down the thresholds (until reaching 0), changing the fuzzy constants on the right
of the simple conditions, changing fuzzy comparators, eliminating some unim-
portant conditions, or exchanging some logical comparator AND for OR (using
parentheses to establish the precedence).
Naturally, the flexible query system does not ensure the accomplishment of
operations, but it does ensure that we find the property most accordant with the
customer’s needs and preferences. It is necessary to take into account that when
somebody looks for any type of property, he rarely has a fixed idea but rather
looks for something with some initial basic characteristics. Frequently, what the
customer finally acquires is not very similar to what he or she initially looked for.
Besides, this system allows the real estate agency to maintain a large database
without having to remember the characteristics of the properties. This situation
makes it impossible to handle many properties effectively, and therefore has to
be solved by our proposed system.
In some conditions, other characteristics may be used. For example, for a real
estate agency, it is sometimes useful to set an urgency degree to each landed
property. To do so we use a fuzzy degree for the whole instance (refer to the
“Fuzzy Entity as a Fuzzy Degree in the Whole Instance of an Entity” section in
Chapter IV), that is, a Type 7 degree (refer to the corresponding section in
Chapter V).

Clustering and Fuzzy
Classification With FSQL

Usually, real data-mining applications make use of several techniques (statis-
tics, management of databases, artificial intelligence, etc.) to obtain their goals,
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that is, discovering implicit and unknown knowledge from a database, which is
potentially useful, in a nontrivial way. Fuzzy clustering techniques are useful for
classifying without rules, and the FSQL language may be used as a data-mining
language.
We propose the use of the FSQL language as a technique of data mining, which
can be applied to classify and to obtain the clustering and classification results
in real time. This enables us to evaluate the process of extraction of information
(data mining) at both a practical and a theoretical level.
After the different clusters are defined, the process of classification can be
made with FSQL in real time, and we are able to treat the different clusters as
fuzzy, even if they have been obtained with a crisp algorithm. Hence, we can
obtain a membership degree for each element to its cluster or clusters. Using
FSQL we do not have to use classification algorithms, and the results of the
clustering can be used directly in the FSQL queries. We can also treat a crisp
cluster (obtained with a nonfuzzy algorithm) as fuzzy. With FSQL we retrieve
tuples in real time, in the same way as we do with standard SQL.
The clustering process assigns each individual in the population to a certain
cluster (Bezdek, 1981; Michalski and Stepp, 1984; Delgado, Gómez-Skarmeta,
& Vila, 1996; Weber, 1996). The clustering is often carried out on a set of
examples from the database and not on the entire database. After clustering, the
process of computing a cluster, the central values, so-called centroids or
centers, obtain the tuple that identifies each cluster or group, that is, the values
of the attributes that represent each cluster:

• Numeric attributes (including fuzzy degrees): For each numeric attribute
we obtain the average with the tuples that belong to the cluster. Note that
the variance should be small, because all tuples belong to the same cluster.
However, we can choose an interval instead of a single value.

• Scalar and binary attributes: Every possible value of the scalar attributes
is identified with a linguistic label. Thus, a probability distribution is
obtained for each scalar attribute in a certain cluster with all tuples in this
cluster. A scalar value that is a kind of “average” of the probability
distribution using a convex combination of the linguistic labels is obtained
(Delgado, Verdegay, & Vila, 1993). Binary attributes are considered as
a particular case of scalar attributes that have two possible values.

• Fuzzy attributes Type 1 or 2: In this case, we get a fuzzy value with the
approximate average.
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• Fuzzy attributes Type 3 or 4: The centered value is a probability distribu-
tion obtained with all the values of all tuples in the same cluster.

These centers describe the clusters. The problem is the assignment of the rest
of the database and the newly inserted tuples to a particular cluster. Usually a
solution is to use a classification algorithm to obtain the rules (e.g., decision
trees), which describe each group. Our approach is to use the centurions in an
FSQL query. In this manner, the descriptions of the clustering can be made with
FSQL in a user-friendly way in real time.
Starting from the centers (C1, ..., Cn) for n attributes (A1, ..., An) of a specific
cluster C, we create an FSQL query with the following format:

SELECT table.*, CDEG(*)

FROM   table

WHERE  A
1
 FEQ #C

1
 THOLD τ

  AND  A
2
 FEQ #C

2
 THOLD τ

  AND  …

  AND  A
n
 FEQ #C

n
 THOLD τ;

With this type of query, we retrieve the objects belonging to the cluster C with
a minimum membership degree of τ. The value #C

i
 means “approximately

C
i
”, represented by a triangular possibility distribution (refer to Table 7.2).

Instead of those approximate values, we can also use previously defined
linguistic labels or possibility trapezoids expressed with the format $[C

i 
-

κ, C
i 
- λ, C

i 
+ λ, C

i 
+ κ], choosing some appropriate positive values

for κ and λ with κ > λ.
In addition, we can also use another fuzzy comparator, such as NFEQ, to obtain
more precise results. In order to avoid the unknown values in an attribute Ai,
we can add conditions with the following format: A

i
 IS NOT UNKNOWN.

In fuzzy and crisp attributes, we can also use conditions with the following
format in order to avoid null values: A

i
 IS NOT NULL.

It is easy to see that in this way, we can use different clusters as fuzzy clusters
even if they have been obtained with a crisp algorithm. As a result, we can make
fuzzy queries to the database, for example: “Give me the objects that belong to
cluster C with a minimum ownership degree of τ.”
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FSQL is a high-level language, and a final user can make a transparent use of
it through an FSQL client program (see Appendix B).

Example 8.2: This system has been applied to the problem of the segmentation
of bank customers in a real-life situation. The relevant attributes identified by the
banking expert have been payroll, credit card use level, and average account
balance. Payroll is a binary attribute that indicates whether the client receives
payroll through the financial company (value Y) or not (value N). The
Credit_Card_Use attribute measures the level of use of the credit card
using the Low, Medium, and High labels, obtained through an analytic study in the
company data warehouse system together with the similarity degree among them.
By means of a sample of 1,000 tuples, a clustering process obtained six clusters
as the optimum number in the population. Central values of cluster 1 are (‘N’,
$Medium, -307,667). In order to retrieve, for instance, the customers
(in the entire database) who belong to cluster 1 with a minimum degree of 0.7,
the FSQL query will be as follows:

SELECT Customer#, CDEG(*)

FROM Customers

WHERE Payroll = ‘N’

  AND Credit_Card_Use FEQ $Medium THOLD 0.7

  AND Balance FEQ #-307667 THOLD 0.7

ORDER BY 2 DESC;

where Customer# attribute is the code for every customer in table
Customers.

*

Note that the user can easily weight the importance of the attributes. Conse-
quently, it is possible to give more or less importance to the fulfillment of the
condition for the Balance attribute, raising or lowering its corresponding
threshold. This may be useful in order to improve the focus of the customer’s
selection according to the concrete application.
Summarizing, with the FSQL language we are able to extract the elements of
a specific cluster or group with a certain minimum membership degree. The
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particular membership degree for an element can also be extracted and
shown (using the CDEG function of FSQL). Of course, the FSQL queries
may be implemented in a program in such a way that the user does not need
to know the FSQL syntax. Perhaps the main advantage is that the algorithm
of classification (which is often applied later than the clustering algorithm) is
unnecessary, because this “classification” is done in real time by using
FSQL.

FSQL: A Tool for Obtaining
Fuzzy Dependencies

Interest in Functional Dependencies (FDs) has been motivated by the fact that
FDs can capture some forms of redundancy. The use of FDs has come about
as a result of their usefulness in database design. Fuzzy Functional Dependen-
cies (FFDs) arise in the framework of fuzzy relational databases. Various
definitions of FFDs have been proposed, but they have not often been closely
connected with database design. However, FFDs seem very appropriate to
discover properties, which exist in the current manifestation of the data. This is
another form of a data-mining process. We can make the same observation
about Gradual Functional Dependencies (GFDs), which are a special type of
fuzzy dependencies that reflect monotonicity in the data.

Fuzzy and Gradual Functional Dependencies:
FFDs and GFDs

There have been several approaches to the problem of defining the concept of
FFD, but a single approach has not dominated. We begin by briefly describing
the concept of classical FD, then we give a general definition of FFD and GFD
based on fuzzy functions, and lastly we introduce more relaxed definitions of
FFD and GFD in order to manage exceptions.

Definition 8.1: The relation R with attribute sets X = (x1, …, xn), and Y = (y1,
…, ym) in its scheme verifies the Functional Dependency, FD X →→→→→ Y if and
only if for every instance r of R it is verified that
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∀t1, t2 ∈ r, t1[X] = t2[X] ⇒ t1[Y] = t2[Y] (8.1)
*

Definition 8.2: The concept of Fuzzy Functional Dependency (Cubero &
Vila, 1994; Cubero, Medina, Pons, & Vila, 1998) consists in replacing the
equality used in the FD definition by fuzzy resemblance relations. The relation
R verifies an ααααα – ß FFD X →→→→→ FTY if and only if for every instance r of R it is
verified that

∀ t1, t2 ∈ r, F(t1[X] ,t2[X])  ≥ α ⇒ T(t1[Y],t2[Y]) ≥ ß(8.2)

where F and T are fuzzy resemblance relations.
*

If F is a weak resemblance measure and T is a strong one, we get interesting
properties for database design (decomposition of relations).
Often, just a few tuples in a database can prevent the FFD from being
completed. To avoid this, we can relax the FFD definition in such a way that
all the tuples of the relationship are not forced to fulfill the above condition, and
therefore we define the confidence of a FFD:

Definition 8.3: The relation R verifies an α α α α α – ß FFD X →→→→→ FTY in an instance
r of R with confidence c, where c is defined as follows:

{ }
{ }   [X])t, [X]F(tr / t  t)t,t(

  [Y])t[Y],T(t     [X])t, [X]F(tr / t  t)t,t(
0

21 21,21

2121 21,21







≥∈
≥∧≥∈=

α
βα

Card
Cardc

{ }
                                                          Otherwise

0   [X])t, [X]F(tr / t  t)t,t( if 21 21,21 =≥∈ αCard

(8.3)
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where ∧ is the logical operator and. The basic idea consists in computing the
percentage of tuples that fulfill the antecedent and consequent together with
respect to those that fulfill only the consequent.

*

Another way of considering the connections among data in databases is to specify
a relationship between objects in a data set and reflect monotonicity in the data
by means that we have called GFDs. This is closely related to the basic idea of
gradual rules introduced by Dubois and Prade (1992). An intuitive example of a
GFD is “the bigger business are, the higher earnings they have,” and we assume
that the concept of GFD can be considered, in this way, as similar to the FFD one.

Definition 8.4: The relation R verifies an α α α α α – ß Gradual Functional
Dependency, denoted by ααααα – ß GFD X∫∫∫∫∫FTY, if and only if for every instance
r of R it is verified that

∀ t1, t2 ∈ r, F’(t1[X] ,t2[X]) ≥ α ⇒ T’(t1[Y],t2[Y]) ≥ ß (8.4)

where F’ and T’ are fuzzy relations different of the equality: fuzzy greater than,
fuzzy less than, fuzzy not equal, and so forth.

*

We can define the confidence c of an ααααα – ß GFD X∫∫∫∫∫F’T’Y in the same way that
we have made it for FFD (see Definition 8.3).

Applying FSQL to Obtain Global Dependencies

Now, it is necessary to relate the FSQL environment to the previous definitions.
First, we introduce a general definition of fuzzy global dependencies (GDs)
based on FSQL operators and the CDEG function, and later we show how
GDs can be calculated with FSQL.

Definition 8.5: The relation R with attribute sets X = (x1, …, xn), and Y = (y1,
…, ym) whose attributes may be fuzzy attributes, verifies an ααααα – ß Global
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Dependency, denoted by ααααα – ß GD X�F*T*Y with α = (α1, α2, …, αn) / αi
∈ [0, 1] ∀ i = 1, …, n, and ß = (ß1, ß2, …, ßm) / ßj ∈ [0, 1] ∀ j = 1, …, m, if
and only if every instance r of R verifies that

∀ t1, t2 ∈ r,  ∧∧∧∧∧i=1,2…,n[CDEG(t1[xi]  F
*
i  t2[xi]) ≥ αi]  ⇒⇒⇒⇒⇒  ∧∧∧∧∧j=1,2…,m[CDEG(t1[yj] T

*
j  t2[yj]) ≥ ßj]

(8.5)

where

• F*
i ∀ i = 1, …, n are fuzzy comparators (Table 7.1) in FSQL, denoting

fuzzy comparators in the antecedent of the Global Dependency.
• T*

j ∀ j = 1, …, m, are fuzzy comparators (Table 7.1) in FSQL, denoting
fuzzy comparators in the consequent of the Global Dependency.

• The CDEG function expresses the compatibility degree in the comparison.
*

Now, we can make a new definition of FFDs and GFDs as a particular case of
GDs.

Definition 8.6: Let r be an instance of R with an ααααα – ß Global Dependency,
ααααα – ß GD X�F*T*Y, with F*

i, T
*

j ∈ {FEQ, NFEQ} ∀ j = 1, …, m, ∀ i = 1, …,
n. Then we say that R verifies an ααααα – ß FFD X →→→→→ F*T*Y.

*

Definition 8.7: Let r be an instance of R with an ααααα – ß Global Dependency,
ααααα – ß GD X�F*T*Y, with at least one i or one j with F*

i, T
*

j ∉ {FEQ, NFEQ}.
Then we say that R verifies an ααααα – ß GFD X∫∫∫∫∫F*T*Y.

*

Of course, we can define the confidence c of an ααααα – ß GD X�F*T*Y in the same
sense that we have made it for FFD (see Definition 8.3).
Let R be a relation with attribute sets X = (x1, …, xn), Y = (y1, …, ym) and PK
= (pk1, …, pkS) included in its scheme, where PK is the primary key of R. To
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determine whether R verifies an ααααα – ß GD X�F*T*Y for an instance r, we create
an FSQL query with the following general format:

SELECT count(*) FROM r A1, r A2

WHERE A1.PK <> A2.PK
  AND A1.x

1
 F*

1
 A2.x

1
 THOLD ααααα1

  AND ...

  AND A1.x
n
 F*

n
 A2.x

n
 THOLD αααααn

  AND NOT (A1.y
1
 T*

1
 A2.y

1
 THOLD ß

1

           AND …

           AND A1.y
m
 T*

m
 A2.y

m
 THOLD ß

m
);

The basic idea consists in computing the tuples that fulfill the antecedent and do
not fulfill the consequent in Equation 8.5. If the result of the query is 0, then we
can say that R verifies GD for the instance r. If the result of previous counting
is not 0, then we can determine whether R verifies an α – ß GD X�F*T*Y with
confidence c by means of a simple procedure as follows:

• Step 1: To obtain the value a as the number of tuples that fulfill both the
antecedent and consequent:

SELECT count(*) FROM r A1, r A2

WHERE A1.PK <> A2.PK
  AND A1.x

1
 F*

1
 A2.x

1
 THOLD ααααα1

  AND …

  AND A1.x
n
 F*

n
 A2.x

n
 THOLD αααααn

  AND A1.y
1
 T*

1
 A2.y

1
 THOLD ß

1

  AND …

  AND A1.y
m
 T*

m
 A2.y

m
 THOLD ß

m
;

• Step 2: To obtain the value b as the number of tuples that fulfill only the
antecedent:
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SELECT count(*) FROM r A1, r A2

WHERE A1.PK <> A2.PK
  AND A1.x

1
 F*

1
 A2.x

1
 THOLD ααααα1

  AND …

  AND A1.x
n
 F*

n
 A2.x

n
 THOLD αααααn

;

• Step 3: To obtain the degree of confidence c as c = a/b.
• Step 4: To determine whether the computed degree indicates that the GD

is good enough, we can compare the value c with some fuzzy quantifier
defined in the FMB (for example, most).

If the purpose is to search for FFDs in order to discover intentional properties
(constraints that exist in every possible manifestation of the database frame) it
seems more appropriate to use a weak resemblance measure in the antecedent
(FEQ, based on possibility) and a strong one in the consequent (NFEQ, based
on necessity). In this way, we get interesting properties that can help us with the
decomposition of relations (Frawley, Piatetsky-Shapiro, & Matheus, 1991).
Searching for FFDs or GFDs to discover extensional properties (those existing
in the current manifestation of the data) is a task for data-mining purposes. In
this case, the specific problem should indicate the choice of the fuzzy compara-
tors and the parameters (α and ß).
Fuzzy comparators of FSQL have been applied to the definition of fuzzy global
dependencies (GD), which are presented as the common framework for fuzzy
functional dependencies and gradual functional dependencies. Note that the
FSQL language is the natural way to obtain such GDs. We consider that this
model satisfies the requirements of data-mining systems.

Fuzzy Classification and Image
Retrieval in a Fuzzy Database

A common target in image processing is the image classification or retrieval
according to the image’s content. In various contexts, fuzzy databases may
help by getting fuzzy characteristics of the image objects. Later on, these
characteristics will be stored and consulted by using FSQL. We will assume
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2-D images in which the object is clearly distinguishable on a homogeneous
background.
The object will be represented by using a set of characteristics obtained from
the curvature curve of the object’s shape, or contour. These characteristics,
which are stored in a database, may be treated as fuzzy or crisp.
In order to carry out this classification, we use an object representation based
exclusively on the shape (contour) information of such an object, that is, on its
external form, which is one of the main characteristics of every object. The final
characterization is achieved by defining a set of attributes that can take fuzzy
values and extracting the specific characteristics for each shape. By “fuzzy
characteristics,” we mean those that denote imprecision and that may have
inaccurate meanings for humans — for example, the size of an object may be
large, medium, or small. Also, should a flexible classification be allowed, the
proposed representation reduces the dimensionality of the characterization, so
the method may be useful in time-restricted applications.
We briefly explain the process in the following sections. First, we provide a
general idea of the method to represent the shape of an object. Then, we obtain
characteristics based on that shape, which may be represented as fuzzy attributes
of the FRDB; thus, the final classification will be carried out by utilizing such
attributes (Aranda & Galindo, 1998; Galindo, 1999; Eloy-García, 2003).

Representing the Shape of an Object

The first important step is to isolate the object to be characterized within a
generic 2-D image (if the image contains only gray levels, meaning it is colorless,
the process is simpler). The segmentation process, which allows us to subdivide
the image into its constituting parts, becomes a complex task in image
processing (Jain, 1989). In general, the method selection depends on the nature
of the images to be worked on. We will assume that the entry image already has
only one object to be represented. For example, images of objects moving
along an assembly line (on a flat background) or images that are to be classified
and are stored in a database .
In order to represent the object that is present in the image, we assume that all
the necessary information is part of the curve defining its contour. Initially, the
shape will be characterized by utilizing a function or a curvature curve
calculated over the object digital contour. The digital contour is a sequence of
consecutive adjacent points that do not intersect but define the object border.
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We calculate the contour by connecting the border points obtained with a
border extracting algorithm: gradient-based methods (Jain, 1989) or methods
based on local energy (Morrone & Owens, 1987).
An object contour is represented by C = {(xi , yi) | i = 1, ..., N}, where i
indicates the point location within the contour. Thus, (xi , yi) is the i-th point
along the curve from the initial point (1) to the final one (N).
Let K = {ki | i = 1, ..., N} be the graph of the curvature values computed from
the digital contour C, and let ki be the curvature value of (xi , yi). The values of
the K curvature determine a one-dimensional representation of a flat curve. This
one-dimensional signal constitutes a useful descriptor for the contour shape
extraction, so the curvature is null in the points of a contour straight section, and
on a curve section the smaller the curve radius, the greater the curvature (in
absolute value). The curvature value sign indicates the curve direction (concave
or convex). More details on the curvature estimation can be seen in Mokhtarian
and Mackworth (1986), Aranda and Galindo (1998), and Eloy-García (2003).
Figure 8.1a shows the contour of an object, in this case, the contour of a
nematode. Figure 8.1b shows the curvature curve smoothed out to the most
significant scale. The most significant scale for a curvature is the smoothing
“level” with which a lower level of quantization noise is obtained. This noise
derives from the fact that a digital image contour cannot be continuous; it is a
digital contour because the angle between neighboring pixels can only vary in
45-degree increments. That is why the curvature graph is so undulating,
although the noise is greatly reduced with the significant scale.

Figure 8.1. a) 2-D curve representing the contour of a nematode worm
and b) its curvature
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Obtaining the Characteristics of the Shape

The curvature curve will be used to detect the shape characteristics in order to
get the final representation. These characteristics represent the shape, which
can later be either identified or classified within a given set.
In order to achieve this, some important contour points, called characteristic
points, are selected; these characteristic points are those points having
curvature values, both positive and negative, which stick out of the other ones.
The sign tells whether the point belongs to a concave or convex part of the
contour, and it depends on how this has been calculated. In this case, the
contour is always calculated by starting from the highest point in the shape on
the 2-D image and following the contour counterclockwise. The curvature is
also calculated by following this order for each of the contour points.
We assume that the curvature values follow a normal distribution having an average
of 0 and a σ2 variance, N(0, σ2). The sample variance is calculated like this:

∑
=

−=
N

i
mi kk

N 1

22 )(1σ (8.6)

where km is the average of the curvature values, and N is the number of contour
points.
The points to be considered important for the shape characterization, that is,
the characteristic points, will be outliers from the previous distribution. In other
words, a point pi is considered a characteristic point of its contour if the value
of its curvature ki verifies that

ki ∉ [-ησ, +ησ] (8.7)

where η will be used to define the curvature degree of a given point. That is to
say, the important thing is not the precise curvature value of those points but its
comparison with the rest of the points. Then, η measures how big the curvature
is, and that information may be coded on different fuzzy linguistic labels. For
example, High, Medium, or Low curvature degree. These labels are associated
to possibility distributions, as shown in Figure 7.1. Only three possible labels have
been considered, but this number may vary according to particular applications.
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These labels are important for further treatment because they make classification
flexibility possible, so they must be carefully defined.
Points being part of the scope of a characteristic point usually also have a high
curvature value. Only the local maximum of each outliers points subgroup of
the distribution is considered a characteristic point.
The distribution of these points will identify the shape type. The relative distance
between every two consecutive characteristic points is also taken into account
and is calculated as the number of contour points existing between two such
characteristic points with respect to the total number N of contour points. For
example, square shapes can be differentiated from rectangular shapes.
Summarizing, the object shape is represented as a set of characteristic points.
Each one of them keeps information on the curvature sign, the curvature degree
(relative to the curvature absolute value, as described earlier in this chapter),
and the distance from the previous characteristic point. For the first character-
istic point, the distance will be measured with respect to the last one (objects
always have closed contours).

Classification and Image Retrieval

After the set of characteristic points has been extracted from the digital contour
of an object image, we proceed to the classification process. To do that, as seen
above, the following basic attributes of the contour are considered:

1. Number of characteristic points: Naturally, the number of vertexes
(corners) of a contour is a basic characteristic of such a contour.

2. Curvature value sign on each characteristic point: This sign makes it
possible to see whether the contour follows a concave or convex
trajectory. As a matter of fact, the importance of this sign lies in the sign
distribution among the found characteristic points.

3. Number of contour points: N value.
4. Distance between characteristic points: The distance is calculated as

relative distance with respect to total distance (N) and allows the
distinction between different shapes having an equal number of character-
istic points and an equal sign distribution on its curvature, for example,
between a square and a rectangle. These distances prevent us from
distinguishing between identical objects of different size or at different
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distances from the camera. If that were interesting in any given context, the
global size N of the contour would have to be used.

5. Curvature degree of each characteristic point: The curvature degree is
calculated by using the curvature absolute value on each characteristic
point and allows the distinction between highly pointed (sharp) character-
istic points and less pointed ones. Each point is associated with a linguistic
label in order to facilitate classification, because, as stated previously, the
exact value is of no interest to us, except with respect to the rest of the
values.

Example 8.3: Let us assume we have an Objects table containing the
characteristics of a multitude of objects extracted from various images of such
objects. The query to select objects that are isosceles triangles or similar ones
would have the following format:

SELECT Image#, CDEG(*)

FROM   Objects

WHERE  NumVertices = 3

  AND  Sign1=’P’ AND Dist1 FEQ $Big 0.8 AND DegreeK1 FEQ $Big 0.7

  AND  Sign2=’P’ AND Dist2 FEQ $Big 0.8 AND DegreeK2 FEQ $Normal 0.7

  AND  Sign3=’P’ AND Dist3 FEQ $Small 0.8 AND DegreeK3 FEQ $Normal 0.7;

*

In certain environments, the model may be expanded in order to take into
account other characteristics (crisp or fuzzy), such as color or size (size is not
used here).
Even though the second type includes the ones in the first type, this classification
may be done in two different ways, according to the type of figure (or shape)
that needs to be classified: a) geometrical shapes classification and b) complex
shapes classification. Eloy-García (2003) applies this method to compare
plane figures, and the results obtained are very promising. Both the program
and the results may be obtained on the Internet FSQL1 Web page.
Depending on the context, the shape may be rotated some degrees. In order
to explore this possibility, more comparisons will have to be made between two
correlated characteristic points, making sure the same order is kept.
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On the other hand, if the number of characteristic points is variable, the
database scheme should be different. It should have a table for the general
attributes of each object without indicating the values of its characteristic points
and another table to store the attributes of the characteristic points of all the
shapes.

Endnote

1 http://www.lcc.uma.es/~ppgg/FSQL



280   Galindo, Urrutia & Piattini

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter IX

Brief Summary
and Future Trends

Fuzzy logic (Chapter I) allows us to bring the operation of information systems
closer to the working methods of humans. People frequently deal with fuzzy
concepts (for example, terms such as “almost all,” “the majority,” “approxi-
mately 8,” “high,” or “low”), which include a certain vagueness or uncertainty
and which traditional information systems do not understand and therefore
cannot use.
Fuzzy databases (Chapter II) have also been widely studied with the following
main objectives: firstly, to allow imprecise or fuzzy data to be stored, and
secondly, to allow the possibility of imprecise or fuzzy queries by using existing
data (whether imprecise or not). Traditionally, the application of fuzzy logic to
databases has paid little attention to the problem of conceptual modeling.
The extension of the ER model for dealing with fuzzy data has been studied in
various publications, as we describe in Chapter III, but the FuzzyEER Model
in Chapter IV is the most exhaustive version (for more information, see the
“Comparison of Some Fuzzy Models” section in Chapter IV). Besides the
future lines shown in the concluding section of Chapter IV, it is important to note
that fuzzy logic and fuzzy databases are fields of very scientific interest. Thus,
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this book is obsolete before seeing the light, because every year thousands of
papers and books addressing these themes are published.
The definitions of fuzzy databases and fuzzy database models are not useful if
we do not have a DBMS in which we could create these databases. Chapter
V describes how to represent fuzzy knowledge in relational databases (FIRST-
2). Chapter VI gives the steps of an algorithm for FuzzyEER-to-FIRST-2
mapping. Of course, FIRST-2 has several limitations that can be improved.
Nevertheless, we believe that FIRST-2 is sufficiently complete for the immense
majority of the applications. Each application has its details, which can cause
us to see deficiencies in FIRST-2. In the future, these deficiencies will have to
be solved in the general model as well as in each specific application.
Perhaps the more interesting part of this book is the definition of a fuzzy query
language, which we have named as Fuzzy SQL or FSQL. Chapter VII
describes this language, accentuating its differences with the popular language
SQL. We assume that the reader has an understanding of relational database
theory and SQL. If the reader does not have this knowledge, he or she will still
understand the basic target of FSQL, because Chapter VII includes many
examples.
Of course, the FSQL characteristics shown may be improved and extended.
However, we think that those definitions are sufficiently good for the majority
of the applications. On the other hand, two lines of investigation and develop-
ment are very important. One of them consists of developing efficient interface
programs. These programs should permit the user to perform a multitude of
different fuzzy queries, from comfortable and intuitive form. This depends a lot
of the concrete application, but the development of generic interfaces could be
very interesting and useful. In this line, some studied applications exist, and
some of them are briefly shown in Chapter VIII. A DBMS should improve its
natural language interfaces so that they incorporate fuzzy characteristics.
Another very important research line consists of studying the use of FSQL as
data-mining language. In many cases, the data-mining operations or the data-
mining targets are inherently fuzzy. In this field, the development of a complete
and efficient interface for data mining is also important. Throughout this book,
many research lines are opened, and we think that this book may be useful for
postgraduate courses in computer science and for doctoral programs.
At the end of our commentary, we purport that fuzzy databases will be
fundamental in the future of databases. In the future, all the DBMSs will permit
the use of incomplete information and the possibility to perform fuzzy queries.
We hope that this book contributes to that objective, at least a little.
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Appendices

Appendix A:
Summary of FuzzyEER Model

The FuzzyEER model can be summarized in a total of 18 graphic representa-
tions. Chapter IV includes 24 definitions, 4 types of fuzzy attributes, 4 types of
fuzzy degrees, 22 formal examples, and the comparison of FuzzyEER with
some other fuzzy models (Table 4.3).

1. Fuzzy values in fuzzy attributes (Definitions 4.1 and 4.2):

 

Tn: Name: {L1, L2...}e)
(1,m)

Tn: Name: {L1, L2...}c) d

T1: Name: {L1, L2...}a)

Tn: Name: {L1, L2...}b)

f)  Name_composite

Tn: Name1: {L1, L2...}

 Namei

...

Tn: Name: {L1, L2...}d) (0,m)

Fuzzy attribute Type 1 (simple)

Fuzzy attribute Type n, with n ∈ {2,3,4} (simple)

Derived fuzzy attribute

Optional multivalued fuzzy attribute

Multivalued fuzzy attribute with a minimum
compulsory value

Generic example of a composite attribute with a
fuzzy component.
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2. Fuzzy degree associated to each value of an attribute (Definitions
4.3 and 4.4): Fuzzy degree Name with meaning n, in Gn

a. Derived fuzzy degree with function Q:

 

Gn  Name
Q(X)

Entity
Name

b. Nonderived fuzzy degree:

 

Gn  Name
Entity

Tn: Name: {L1,L2,...}

3. Fuzzy degree associated to some attributes (Definition 4.5): Fuzzy
degree Name with meaning n, in Gn, associated to i attributes with i ≥ 2:

 

Gn {Name1,..., Namei}

Entity

Tn: Name1: {L1,L2,...}

Tn: Namei: {L1,L2,...}

d

...

4. Fuzzy degree with its own meaning (Definition 4.6): Fuzzy degree
Name (with optional meaning n, in Gn):

 

[G  ]n  Name
Entity

G



Appendices   301

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

5. Fuzzy degree to the model of an entity, relationship, or attribute
(Definition 4.7): Fuzzy degree to the model, with meaning n, in Gn, and
degree α:

 

Relationship
Gn = α

Entity Gn = α
Attribute Gn = α

6. Fuzzy aggregations (Definition 4.8):
a. Fuzzy aggregation of entities:

E1

E2 E3 E4

Gn =<degree> Gn =<degree>
Gn =<degree>

 

b. Fuzzy aggregation of attributes:

 
Entity

Name1 attribute G n =<degree>

Namei attribute G n =<degree>

...
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7. Fuzzy entity as a fuzzy degree in the whole instance of an entity, with
meaning n (Definition 4.9):

 

Entity Gn  Formula and/or attribute

8. Fuzzy weak entities (Definition 4.10):
a. Fuzzy weak entity due to dependency on existence:

 

G n Name attribute
Entity

(1,m)

R

E
Tn: Name (partial  key)

b. Fuzzy weak entity due to dependency on identification:

 

Gn Name attribute
R

ID

Entity
Name (partial key)

9. Fuzzy relationships (Definition 4.11): Degree in the relationships:

Entity 1 R Entity 2

Gn: Name attribute

(min,max) (min,max)
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10. Fuzzy degrees in specializations (Definition 4.12): a) Degree in the
specialization (left)  and b) Degree in some subclasses (right):

 
Superclass

d/o/
fo/fd

Subclass
...

Subclass

[Classification
attribute]

Gn =<degree>

⊃ ⊃

Superclass

d/o/
fo/fd

Subclass
...

Subclass

[classification
attribute]

Gn =<degree> Gn =<degree>⊃ ⊃

11. Fuzzy participation constraint using one fuzzy quantifier with two
thresholds (Definition 4.13):

REntity

Quantifier [γ,δ ]

12. Fuzzy cardinality constraint using two fuzzy quantifiers (Definition
4.14):

 

Quantifier 1: Quantifier 2

Entity 1 R Entity 2
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13. Fuzzy (min, max) notation on relationships using fuzzy quantifiers
(Definition 4.15):

 (Quantifier 1, Quantifier 2)

Entity 1 R Entity 2
(Quantifier 1, Quantifier 2)

14. Fuzzy completeness constraint on specializations with one quan-
tifier (Definition 4.16):

 Superclass

d/o

Subclass
...

Subclass

[Classification
Attribute]

Quantifier

⊃ ⊃

15. Fuzzy cardinality constraint using the fuzzy (min, max) notation on
overlapping   specializations (Definition 4.17):

 Superclass

o

Subclass
...

Subclass

[Classification
Attribute]

⊃ ⊃
(Qmin,Qmax)
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16. Fuzzy disjoint and fuzzy overlapping constraint on specializations,
with fuzzy subclasses (Definitions 4.18 and 4.19):

 Superclass

Subclass
...

Subclass

[Classification
attribute]

fo/fd

⊃ ⊃

17. Fuzzy attribute-defined specializations (Definition 4.20): a) with
partial participation constraint and b) with total participation constraint:

 
Superclass

E

Subclass
Sm...

Subclass
S1

Superclass
E

Subclass
Sm...

Subclass
S1

Tn : Name attribute

d, o, fo, fd

a) b)

Tn : Name attribute

⊃
⊃⊃ ⊃
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18. Fuzzy participation and completeness constraints in a) Union  types
or categories (Definitions 4.21 and 4.22) (left) and b) Intersection types
or shared subclasses (Definitions 4.23 and 4.24) (right):

 Superclass
E1

Superclass
E2

Superclass
E3

Subclass or
Category

Quantifier2

Quantifier1

(min, max)

...
Superclass

E1
Superclass

E2
Superclass

E3

Shared
Subclass

Quantifier2

Quantifier1

(min, max)

.

a) b)
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Appendix B:
FRDB Architecture: The FSQL Server

The FSQL Server is a program that allows users to employ the FSQL language
(see Chapter VII). The FRDB and the FSQL Server have been implemented
partially by using an already existing DBMS1.
Actually, the FSQL Server does not include all the statements and clauses
defined in the FSQL language. However, it is useful for the most usual
operations and queries. Basically, using an existing DBMS involves three
consequences:

1. The system will be slower than if it were programmed at a lower level.
2. The task is made much simpler (we do not have to build the DBMS).
3. We obtain all the advantages of the host DBMS (security, efficiency, etc.)

without the server having to take them into account.

The DBMS chosen was Oracle because of its adaptability, its large extension,
and its ability to program packages (with functions and procedures) internal to
the system in its own language, PL/SQL, which turns out to be quite efficient.
Of course, this architecture can be implemented in other DBMSs, and we are
now working in an implementation using PostgreSQL2.
The tests that we carried out prove that the FSQL Server is very fast due to its
ability to function as a real-time server. Obviously, if the query is very
complicated and the database is very large, even if the translation is fast, the
information recovery may be a little slow; if the condition were long, then the
DBMS would carry out many operations.
The usefulness of this server is clear (see Chapter VIII), because it is even
useful in traditional databases, which use only fuzzy attributes Type 1. How-
ever, we would like to underline the possibilities the server could offer when
used in combination with data-mining techniques (such as classification).

Data, FSQL Server, and FSQL Client

Basically, the architecture of the FRDB with the FSQL Server is as
follows:
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1. Data: Traditional database and fuzzy metaknowledge base (see
Chapter V).

2. FSQL Server.
3. FSQL Client.

FSQL Server

The Oracle version of the FSQL Server has been programmed entirely in PL/
SQL and includes three kinds of functions:

1. Translation Function (FSQL2SQL): This function carries out a lexical,
syntactic, and semantic analysis of the FSQL query. If errors of any kind
are found, it will generate a table with all those errors. If the query has no
errors, it is translated into a standard SQL sentence, which includes
reference to the following two kinds of functions.

2. Representation Function: This function is used to show the fuzzy attributes
in a comprehensible way for the user and not in the internal format.

3. Fuzzy Comparison Function: This function is utilized to compare the fuzzy
values and to calculate the compatibility degrees (CDEG function).

Summarizing, the translation function replaces the fuzzy attributes of the
SELECT by calls to representation functions, the fuzzy conditions by calls to
the fuzzy comparison functions, and the CDEG functions by calls to the fuzzy
comparison functions and other functions if some logic operators exist (default
functions are shown in Table 7.4).
The current version of the FSQL Server stores and controls some aspects about
it and its processing: version, installation date, last utilization date, number of error
for the last utilization and for all of them, number of access without errors, time
employed for the last utilization and for all of them, and so forth.

FSQL Client

The FSQL Client is an independent program that serves as an interface
between the user and the FSQL Server. The user introduces the FSQL query,
and the client program communicates with the server and with the database in
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order to obtain the final results. The translation function of the FSQL Server is
the only function that the client directly executes. We have developed a FSQL
Client for Windows, called FQ, Fuzzy Queries (Galindo, 1999). On the other
hand, there exists another FSQL Client, called Visual FSQL, which allows the
user to construct an FSQL query through mouse clicks, without the need to
write much (Oliva, 2003; Galindo et al., 2004d).

Calling to the FSQL Server

We summarize the process of using the FSQL Server for queries in Figure B.1.
In short, an FSQL query involves the following steps:

1. The FSQL Client program sends the FSQL query to the FSQL Server.
2. The FSQL Server analyzes the query and, if it is correct, generates an

SQL sentence starting from the original query. In this step, the FSQL
Server uses the information of the FMB.

3. After the query has been generated in SQL, the client program reads it.
4. The client program sends the SQL query to any database that is coherent

with the FMB. In the execution of this query, functions of the FSQL
Server are used (representation and fuzzy comparison functions).

5. Finally, the client receives the resulting data, which shows them.

Figure B.1. Basic architecture for the FRDB with the FSQL Server

FSQL Client 

FSQL Server FMB 
 

Fuzzy 
database 

1. FSQL statement 

2. Fuzzy 
metaknowledge 

3. SQL statement 

4. SQL statement         5. Results 

Database 
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Steps 3 and 4 could have been eliminated to increase the efficiency, but the
method we have presented achieves independence between the translation
phase (Steps 1, 2, and 3) and the consultation phase (Steps 4 and 5). As such,
if we make use of a local database with FSQL Server and FMB, we will be able
to translate our sentences locally and send the translated queries to a remote
database, avoiding network overload with error messages, translated queries,
and so forth. This way, the remote database would not have to have the
translation function installed.
If the statement is not a query, the process is similar. That statement is analyzed,
and the FSQL Server generates modifications in the FMB and/or in the storage
structures (including the Data Dictionary of the DBMS).
The presented architecture is not ideal for a final product, but it allows us to
evaluate the possibilities of an FRDB on a practical level rather than only on a
theoretical one. Let us hope that the DBMS soon incorporates new types of
internal data (see Chapter IV) that allow the storing of fuzzy values and the fuzzy
processing of these values.

Endnotes

1 The actual version of the FSQL Server can be downloaded free from
http://www.lcc.uma.es/~ppgg/FSQL

2 PostgreSQL is Open Source database software: http://www.postgresql.org
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Appendix C:
Acronyms and the Greek Alphabet

DBMS DataBase Management System 

DCL Data Control Language 

DDL Data Definition Language 

DM Data Mining 

DML Data Manipulation Language 

EER Enhanced (or Extended) Entity-Relationship (model) 

ER Entity-Relationship (model) 

ERD Entity-Relationship Diagram 

ExIFO Extended IFO 

FDNER Fuzzy Diagrams Nested Entity Relationship 

FEER Fuzzy EER 

FIRST Fuzzy Interface for Relational SysTems 

FMB Fuzzy Metaknowledge Base 

FOOD 
Fuzzy Object-Oriented Diagrams 

Fuzzy Object-Oriented Data (model) 

FOODB Fuzzy Object-Oriented DataBase 

FQ Fuzzy Queries 

FRDB Fuzzy Relational DataBase 

FRDBMS Fuzzy Relational DataBase Management System 

FRSL  Fuzzy Requirement Specification Language 

FSQL Fuzzy SQL 

FT Fuzzy Type 

FTSQL2 Fuzzy Temporal SQL2 

FUPME Fuzzy Update Protocol Model Expressions 

GEFRED GEneralized model for Fuzzy RElational Databases 

OMT Object Modeling Technique 

OSQL Object SQL 

RDB Relational DataBase 

RDBMS Relational DataBase Management System 

SDL Storage Definition Language 

SQL Structured Query Language 

UML Unified Modeling Language 
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Letter 
(uppercase/lowercase) Name  

Α    α Alpha 
Β    β Beta 
Γ    γ Gamma 
∆    δ Delta 
Ε    ε, ∈ Epsilon 
Ζ    ζ Zeta 
Η    η Eta 
Θ    θ Theta 
Ι      ι Iota 
Κ    κ Kappa 
Λ    λ Lambda 
Μ    µ Mu 
Ν    ν Nu 
Ξ    ξ Xi 
Ο    ο Omicron 
Π    π Pi 
Ρ    ρ Rho 
Σ    σ, ς Sigma 
Τ    τ Tau 
Υ    υ Upsilon 
Φ    ϕ, φ Phi 
Χ    χ Chi 
Ψ    ψ Psi 
Ω    ω Omega 

Appendix C: (cont.)
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Index

Symbols

α-cuts  11
(min, max) notation  108,  173

A

A-mark  47
absolute quantifiers  40, 159,  197
aggregation  93,  105
aggregation of attributes  93
aggregation of entities  93
ALTER FSQL  253
ALTER SESSION  253
ambiguity  61
APPROXIMATE VALUE  147
associated degrees  79
associated fuzzy degrees  241
ATTRIBUTE clause  254
attribute names  58
attribute-defined specialization  67
attributes  93

B

binary attributes  264
boundary conditions  19
Buckles-Petry model  50

C

cardinality constraint  107
cardinality of a fuzzy set  16
CASE support tool  140
CDEG (compatibility degree)  186
CDEG function  308
certainty  54
Character %  188
characteristic points  276
Chaudhry, Moyne, and Rundensteiner

approach  69
CHECK clause  244
Chen and Kerre approach  64
class names  58
classification  257, 263
clustering  257, 263
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Codd approach  46
comparison operations  22
compatibility degree  186
compatibility measures  28
compatible columns  155
completeness constraint  107
composite attribute  83
concave fuzzy set  15
condition with IS  189
conjugated  18
conjunction  23
conjunctive fuzzy attribute type  71
conjunctive imprecise attribute type  71
constraints  179
continuity  19
contour points  276
control processes  70
convex fuzzy set  14
CREATE, DROP, and ALTER  236
crisp  147,  175, 277
crisp and fuzzy classes  58
crisp and vague types  58
crisp comparators  183
crisp entity  69
crisp values  220
curvature curve  273
curvature degree  277

D

data control language (DCL)  257
data definition language (DDL)  180,

236
data dictionary  146
data manipulation language  109,  180
data-mining  259
DBMS  109, 281, 307
DCL (data control language)  257
DDL (data definition language)  180,

236
default values  47
DELETE  214
dependence strength level  49
derived attributes  82,  173
derived fuzzy degree  87, 300
discrete underlying domain  127
overlapping constraints  107

disjoint specializations (d)  71,  178
disjunctive fuzzy attribute type  71
disjunctive imprecise attribute type  71
distance measure  22
DML (data manipulation language)  109,

180
DUAL  205
dual  18
duration events  210

E

EER model  75, 145
EER schema  172
EER-to-relational mapping algorithm

171
efficiency  260
entities  93
entity-relationship model  75
equality indexes  23
ER Model  61,  76,  280
Euclidean distance  22
ExIFO conceptual model  64
existence  98
extended difference  38
extended division  38
extended product  38
extended sum  38
extended trapezoid function  9

F

FDEGREE  153, 215
FDEGROW  216
FDIF  183, 221
FEQ  183, 272
FINCL  183
FINTERSECT  208
FIRST-2  146, 153, 171, 186, 281
flexibility  260
FMB (fuzzy metaknowledge base)

154, 175,  182,  230,  309
FMINUS  208
foreign key  174
FRDB  260
FRDB architecture  307
FROM clause  201
FSET clause  255
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FSQL (Fuzzy SQL)  171,  258,  281
FSQL language (Fuzzy SQL)  146
FTYPE  215
fulfillment degree  49,  79
fulfillment thresholds  184
functional dependencies (FDs)  267
functions  219
FUNION  208
FUZZIFICATION  217
fuzzy  60
fuzzy (min,max) notation  94,  304
fuzzy aggregation  71, 75
fuzzy aggregation of attributes  301
fuzzy aggregation of entities  301
fuzzy arithmetic  38
fuzzy attribute  71,  155
fuzzy attribute-defined participation

specialization  305
fuzzy attribute-defined specialization

131
fuzzy attributes  75, 80,  147,  174,

183, 215,  258, 299
fuzzy cardinality constraint  113,

303, 304
fuzzy category  71
fuzzy class hierarchies  58
fuzzy classes  58
FUZZY clause  198
fuzzy clustering  13
fuzzy comparators  182,  219
fuzzy comparators restrictivity  227
fuzzy comparison function  308
fuzzy comparisons  220
fuzzy completeness constraint  304
fuzzy concept  28
fuzzy conditions  186
fuzzy constants  185,  219
fuzzy constraints  75,  105, 176
fuzzy data types  238
fuzzy databases  45,  61,  141,

179, 258,  272,  280
fuzzy degree  75,  147,  152,  175,  241,

264,  300
fuzzy disjoint (fd)  132
fuzzy disjoint and fuzzy overlapping

constraint  305

fuzzy disjoint specializations (fd)  178
fuzzy division queries  204
fuzzy domain  78, 100
Fuzzy Enhanced Entity-Relationship

model  62
fuzzy entities  69,  75,  95,  164,  302
fuzzy ER model  66
fuzzy expressions  185
Fuzzy Extended Entity-Relationship

model (FEER model)  71
fuzzy functional dependencies (FFDs)

267
fuzzy global dependencies  257
fuzzy INTERVAL type  210
fuzzy logic  1,  61,  280
Fuzzy Metaknowledge Base (FMB)

146
fuzzy multiple superclasses  71
fuzzy number set  50
fuzzy numbers  34
Fuzzy Object-Oriented Data Model

(FOOD)  57,  64
Fuzzy Object-Oriented Database

Management System  57
Fuzzy Object-Oriented Database

scheme (FOODB)  71
fuzzy overlapping (fo)  132,  178
fuzzy participation and completeness

constraints  306
fuzzy participation constraint  111,  303
fuzzy PERIOD type  210
fuzzy processing  154
fuzzy qualifiers  155
fuzzy quantifier  40,  108,  139, 155,

190,  201,  303
fuzzy queries  77, 133,  219
fuzzy relation  32
Fuzzy Relational Database models  145
Fuzzy Relational Databases (FRDB)  69
fuzzy relations  269
fuzzy relationship  75, 102,  302
fuzzy retrieval of images  260
fuzzy SELECT of FSQL  181
fuzzy set  1,  66,  127
fuzzy set operations  16
fuzzy set operators  208
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fuzzy set theory  5, 46,  61
fuzzy simple conditions  229
fuzzy SQL  179
fuzzy temporal databases  210
fuzzy time  208
fuzzy tuple (or value)  69
fuzzy value  28,  76,  81,  147,  174,

216,  299
fuzzy weak entities  97,  164,  302
FuzzyEER  62
FuzzyEER Model  75, 145,  171,  299
FuzzyEER tools  140
FuzzyEER-to-FIRST-2  146,  281
FuzzyEER-to-Relational mapping

algorithm  171

G

gamma function  7,  222
Gaussian Function  9
GEFRED Model  46,  54, 149, 185
generalization  105
generalized fuzzy domains  54
Generalized Object-Oriented Database

Model  57
generic models  17
grade of membership  71
gradual functional dependencies (GFDs)

267
Greek alphabet  311

H

Hamming Distance  22
HAVING clause  191
height attribute  50
height of a fuzzy set  15
horizontal method  11

I

I-mark  47
identification  98
identifying attribute  82
IFO conceptual model  64
image retrieval  276
importance degree  50,  80
imprecise attributes  71

imprecision  45, 60, 100
INCL  183
inconsistency  61
inheritance relation  58
INSERT  214
INSERT, DELETE, and UPDATE  109,

214
intersection  17,  218
intersection types  306
INTERVAL  147
involution  19

K

kernel  15

L

L Function  6
LABEL  147, 237, 246
linear  182
linguistic label  4,  154,  182
linguistic terms  67
linguistic variable  67
Lipski’s proposal  48
LOGIC clause  254
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