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Preface

The 1960s were perhaps a decade of confusion, when scientists faced diffi-
culties in dealing with imprecise information and complex dynamics. A new
set theory and then an infinite-valued logic of Lotfi A. Zadeh were so con-
fusing that they were called fuzzy set theory and fuzzy logic; a deterministic
system found by E. N. Lorenz to have random behaviours was so unusual
that it was lately named a chaotic system. Just like irrational and imaginary
numbers, negative energy, anti-matter, etc., fuzzy logic and chaos were grad-
ually and eventually accepted by many, if not all, scientists and engineers as
fundamental concepts, theories, as well as technologies.

In particular, fuzzy systems technology has achieved its maturity with
widespread applications in many industrial, commercial, and technical fields,
ranging from control, automation, and artificial intelligence to image/signal
processing, pattern recognition, and electronic commerce. Chaos, on the other
hand, was considered one of the three monumental discoveries of the twentieth
century together with the theory of relativity and quantum mechanics. As a
very special nonlinear dynamical phenomenon, chaos has reached its current
outstanding status from being merely a scientific curiosity in the mid-1960s
to an applicable technology in the late 1990s.

Finding the intrinsic relation between fuzzy logic and chaos theory is
certainly of significant interest and of potential importance. The past 20 years
have indeed witnessed some serious explorations of the interactions between
fuzzy logic and chaos theory, leading to such research topics as fuzzy modeling
of chaotic systems using Takagi–Sugeno models, linguistic descriptions of
chaotic systems, fuzzy control of chaos, and a combination of fuzzy control
technology and chaos theory for various engineering practices.

A deep-seated reason to study the interactions between fuzzy logic and
chaos theory is that they are related at least within the context of human
reasoning and information processing. In fact, fuzzy logic resembles human
approximate reasoning using imprecise and incomplete information with in-
accurate and even self-conflicting data to generate reasonable decisions under
such uncertain environments, while chaotic dynamics play a key role in human
brains for processing massive amounts of information instantly. It is believed
that the capability of humans in controlling chaotic dynamics in their brains
is more than just an accidental by-product of the brain’s complexity, but
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rather, it could be the chief property that makes the human brain different
from any artificial-intelligence machines. It is also believed that to understand
the complex information processing within the human brain, fuzzy data and
fuzzy logical inference are essential, since precise mathematical descriptions
of such models and processes are clearly out of question with today’s limited
scientific knowledge.

With this book we attempt to present some current research progress and
results on the interplay of fuzzy logic and chaos theory. More specifically,
in this book we collect some state-of-the-art surveys, tutorials, and applica-
tion examples written by some experts working in the interdisciplinary fields
overlapping fuzzy logic and chaos theory. The content of the book covers
fuzzy definition of chaos, fuzzy modeling and control of chaotic systems us-
ing both Mamdani and Takagi–Sugeno models, fuzzy model identification
using genetic algorithms and neural network schemes, bifurcation phenom-
ena and self-referencing in fuzzy systems, complex fuzzy systems and their
collective behaviors, as well as some applications of combining fuzzy logic
and chaotic dynamics, such as fuzzy–chaos hybrid controllers for nonlinear
dynamic systems, and fuzzy model based chaotic cryptosystems.

It is our hope that this book can serve as a handy reference for researchers
working in the interdisciplines related, among others, to both fuzzy logic and
chaos theory.

We would like to thank all authors for their significant contributions,
without which the publication of this book would have not been possible. We
are very grateful to Prof. Janusz Kacprzyk for recommending this book to the
Springer series, Studies in Fuzziness and Soft Computing, with appreciation
going to the editorial and production staff of Springer-Verlag in Heidelberg
for their fine work and kind cooperation.

May 2005 Zhong Li
Wolfgang A. Halang

Guanrong Chen



Contents

Beyond the Li–Yorke Definition of Chaos
Peter Kloeden and Zhong Li . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chaotic Dynamics with Fuzzy Systems
Domenico M. Porto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Fuzzy Modeling and Control
of Chaotic Systems
Hua O. Wang and Kazuo Tanaka . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Fuzzy Model Identification Using a Hybrid mGA Scheme
with Application to Chaotic System Modeling
Ho Jae Lee, Jin Bae Park, and Young Hoon Joo . . . . . . . . . . . . . . . . . . . . 81

Fuzzy Control of Chaos
Oscar Calvo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Chaos Control Using Fuzzy Controllers (Mamdani Model)
Ahmad M. Harb and Issam Al-Smadi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Digital Fuzzy Set-Point Regulating Chaotic Systems:
Intelligent Digital Redesign Approach
Ho Jae Lee, Jin Bae Park, and Young Hoon Joo . . . . . . . . . . . . . . . . . . . . 157

Anticontrol of Chaos for Takagi–Sugeno Fuzzy Systems
Zhong Li, Guanrong Chen, and Wolfgang A. Halang . . . . . . . . . . . . . . . . . 185

Chaotification of the Fuzzy Hyperbolic Model
Huaguang Zhang, Zhiliang Wang, and Derong Liu . . . . . . . . . . . . . . . . . . . 229

Fuzzy Chaos Synchronization via Sampled Driving Signals
Juan Gonzalo Barajas-Ramı́rez . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

Bifurcation Phenomena
in Elementary Takagi–Sugeno Fuzzy Systems
Federico Cuesta, Enrique Ponce, and Javier Aracil . . . . . . . . . . . . . . . . . . 285



VIII Contents

Self-Reference, Chaos, and Fuzzy Logic
Patrick Grim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

Chaotic Behavior in Recurrent Takagi–Sugeno Models
Alexander Sokolov and Michael Wagenknecht . . . . . . . . . . . . . . . . . . . . . . . 361

Theory of Fuzzy Chaos for the Simulation and Control
of Nonlinear Dynamical Systems
Oscar Castillo and Patricia Melin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391

Complex Fuzzy Systems and Their Collective Behavior
Maide Bucolo, Luigi Fortuna, and Manuela La Rosa . . . . . . . . . . . . . . . . . 415

Real-Time Identification and Forecasting of Chaotic Time
Series Using Hybrid Systems of Computational Intelligence
Yevgeniy Bodyanskiy and Vitaliy Kolodyazhniy . . . . . . . . . . . . . . . . . . . . . . 439

Fuzzy–Chaos Hybrid Controllers
for Nonlinear Dynamic Systems
Keigo Watanabe, Lanka Udawatta, and Kiyotaka Izumi . . . . . . . . . . . . . . 481

Fuzzy Model Based Chaotic Cryptosystems
Chian-Song Chiu and Kuang-Yow Lian . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507

Evolution of Complexity
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Beyond the Li–Yorke Definition of Chaos

Peter Kloeden and Zhong Li

Abstract. Extensions of the well-known definition of chaos due to Li and Yorke
for difference equations in R

1 are reviewed for difference equations in R
n with either

a snap-back repeller or saddle point as well as for mappings in Banach spaces and
complete metric spaces. A further extension applicable to mappings in a space of
fuzzy sets, namely the metric space (ξn, D) of fuzzy sets on the base space R

n, is
then discussed and some illustrative examples are presented. The aim is to provide
a theoretical foundation for further studies on the interaction between fuzzy logic
and chaos theory.

1 Introduction

Chaos may well be considered together with relativity and quantum mechan-
ics as one of the three monumental discoveries of the twentieth century. Over
the past four decades chaos has matured as a science (though is still evolving)
and has given us deep insights into previously intractable and inherently non-
linear natural phenomena. The term chaos associated with an interval map
was first formally introduced into mathematics by Li and Yorke in 1975 [1],
where they established a simple criterion for chaos in one-dimensional differ-
ence equations, i.e., the well-known “period three implies chaos.”

There is, however, still no unified, universally accepted, and rigorous
mathematical definition of chaos in the scientific literature to provide a fun-
damental basis for studying such exotic phenomena. Various alternative, but
closely related definitions of chaos have been proposed, among which those
of Li–Yorke and Devaney seem to be the most popular.

Consider a one-dimensional discrete dynamical system [1, 2]:

xk+1 = f(xk), k = 0, 1, 2, . . . , (1)

where xk ∈ J (an interval) and f : J → J is a continuous mapping. For
x ∈ J , f0(x) denotes x, while fn+1(x) denotes f(fn(x)) for n = 0, 1, 2, . . ..
A point x∗ is called a period point with period n (or an n-period point) if
x∗ ∈ J and x∗ = fn(x∗) but x∗ �= fk(x∗) for 1 ≤ k < n and if n = 1,
then x∗ = f(x∗) is called a fixed point. A point x∗ is said to be periodic or

P. Kloeden and Z. Li: Beyond the Li–Yorke Definition of Chaos, StudFuzz 187, 1–23 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006



2 P. Kloeden and Z. Li

is called a periodic point if it is an n-periodic point for some n ≥ 1. With
this terminology, Li and Yorke introduced the first mathematical definition
of chaos and established a very simple criterion, i.e., “period three implies
chaos” for its existence. This criterion, which plays an key role in predicting
and analyzing one-dimensional chaotic dynamic systems, was described by
Li and Yorke as follows:

Theorem 1 (Li–Yorke Theorem) Let J be an interval and f : J → J be
continuous. Assume that there is one point a ∈ J , for which the points b =
f(a), c = f2(a), and d = f3(a) satisfy

d ≤ a < b < c (or d ≥ a > b > c) .
Then

(i) for every k = 1, 2, . . . , there is a k-periodic point in J .
(ii) there is an uncountable set S ⊂ J , containing no periodic points, which

satisfies the following conditions:
(a) For every ps, qs ∈ S with ps �= qs,

lim
n→∞ sup |fn(ps)− fn(qs)| > 0

and
lim

n→∞ inf |fn(ps)− fn(qs)| = 0 .

(b) For every ps ∈ S and periodic points qper ∈ J , with ps �= qper,

lim
n→∞ sup |fn(ps)− fn(qper)| > 0 .

The set S in part (a) of conclusion (ii) was called a a scrambled set by Li
and Yorke.

The first part of the Li–Yorke theorem is, in fact, a special case of
Sharkovsky’s theorem [3], which was proved by the Ukrainian mathematician
A.N. Sharkovsky in 1964. It is, however, the second part of the Li–Yorke the-
orem that thoroughly unveils the nature and characteristics of chaos, specifi-
cally, the sensitive dependence on initial conditions and the resulting unpre-
dictable nature of the long-term behavior of the dynamics.

In 1978 F.R. Marotto generalized the Li–Yorke theorem to higher dimen-
sional discrete dynamical systems [4]. He proved that if a difference equation
in R

n has a snap-back repeller, then it has a scrambled set similar to that
defined in the Li–Yorke theorem and thus exhibits chaotic behavior.

Consider the following n-dimensional system:

xk+1 = f(xk), k = 0, 1, 2, . . . , (2)

where xk ∈ R
n and f : R

n → R
n is a continuous mapping, which is usually

nonlinear. Denote by Br(x) the closed ball in R
n of radius r centered at point

x, and by B0
r (x) its interior. Also, let ‖x‖ be the usual Euclidean norm of x

in R
n. Then, assuming f to be differentiable in Br(x), Marotto claimed that

the logical relationship A⇒ B (⇒ means “implying”) holds, where
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(a) all eigenvalues of the Jacobian Df(z) of system (2) at the fixed point z
= f(z) are greater than 1 in norm.

(b) there exist some s > 1 and r > 0 such that ‖f(x) − f(y)‖ > s‖x − y‖
for all x, y ∈ Br(z).

In other words, if (a) is satisfied, then (b) also holds, i.e., f is expanding
in Br(z). Then, Marotto introduced the following concepts.

Definition 1. (Marotto Definitions)

(1) Expanding fixed point: Let f be differentiable in Br(z). The point z ∈ R
n

is an expanding fixed point of f in Br(z) if f(z) = z and all eigenvalues
of Df(x) exceed 1 in norm for all x ∈ Br(z).

(2) Snap-back repeller: Assume that z is an expanding fixed point of f in
Br(z) for some r > 0. Then z is said to be a snap-back repeller of f
if there exists a point x0 ∈ Br(z) with x0 �= z, fM (x0) = z and the
determinant |DfM (x0)| �= 0 for some positive integer M .

Marotto showed that the presence of a snap-back repeller is a sufficient
criterion for the existence of chaos [4].

Theorem 2 (Marotto Theorem) If f possesses a snap-back repeller, then
system (2) is chaotic in the following generalized sense of Li–Yorke:

(i) There is a positive integer N such that for each integer p ≥ N , f has a
point of period p.

(ii) There is a “scrambled set” of f , i.e., an uncountable set S containing
no periodic points of f , such that

(a) f(S) ⊂ S.
(b) for every xs, ys ∈ S with xs �= ys,

lim
k→∞

sup ‖fk(xs)− fk(ys)‖ > 0 .

(c) for every xs ∈ S and any periodic point yper of f ,

lim
k→∞

sup ‖fk(xs)− fk(yper)‖ > 0 .

(iii) There is an uncountable subset S0 of S such that for every x0, y0 ∈ S0:

lim
k→∞

inf ‖fk(x0)− fk(y0)‖ = 0 .

It is apparent that the existence of a snap-back repeller for the one-
dimensional mapping f is equivalent to the existence of a point of period-3
for the map fn for some positive integer n, see [4].

Unfortunately, two counterexamples have been given in [2, 5] to show that
A ⇒ B is not necessarily true. Since the Marotto theorem is based on the
concept of “snap-back repeller,” which was introduced from the assertion of
A ⇒ B, there exists an error in the proof given by Marotto. Recently, an
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improved and corrected version of Marotto’s theorem was given by Li and
Chen [2], where the essential meanings of the two concepts of an expanding
fixed point and a snap-back repeller of continuously differentiable maps in R

n

are clearly explained. For an earlier generalization of the Marroto theorem
see [6] and for an extension to maps in metric spaces see [7] as well as below.

More generally, Devaney [8] calls a continuous map f : X → X in a metric
space (X, d) chaotic on X, if

(i) f is transitive on X: for any pair of nonempty open sets U, V ⊂ X, there
exists an integer k > 0 such that fk(U) ∩ V is nonempty;

(ii) the periodic points of f are dense in X;
(iii) f has sensitive dependence on initial conditions: if there exists a δ > 0

such that for any x ∈ X and for any neighborhood D of x, there exists a
y ∈ D and an k ≥ 1 such that d(fk(x), fk(y)) > δ.

It has been observed that conditions (i) and (ii) in this definition imply
condition (iii) if X is not a finite set [9] and that condition (i) implies con-
ditions (ii) and (iii) if X is an interval [10]. Hence, condition (iii) is in fact
redundant in the above definition.

For continuous time nonlinear autonomous systems it is much more diffi-
cult to give a mathematically rigorous proof to the existence of chaos. Even
one of the classic icons of modern nonlinear dynamics, the Lorenz attractor,
now known for 40 years, was not proved rigorously to be chaotic until 1999.
Warwick Tucker of the University of Uppsala showed in his Ph.D. disserta-
tion [11, 12], using normal form theory and careful computer simulations,
that Lorenz equations do indeed possess a robust chaotic attractor. A com-
monly agreed analytic criterion for proving the existence of chaos in contin-
uous time systems is based on the fundamental work of Shil’nikov, known
as the Shil’nikov method or Shil’nikov criterion [13], whose role is in some
sense equivalent to that of the Li–Yorke definition in the discrete setting.
The Shil’nikov criterion guarantees that complex dynamics will occur near
homoclinicity or heteroclinicity when an inequality (Shil’nikov inequality) is
satisfied between the eigenvalues of the linearized flow around the saddle
point(s), i.e., if the real eigenvalue is larger in modulus than the real part
of the complex eigenvalue. Complex behavior always occurs when the saddle
set is a limit cycle.

In this chapter we focus on discrete-time systems and discuss generaliza-
tions of Marotto’s work, which are applicable to finite dimensional difference
equations with saddle points as well as to those with repellers and to map-
pings in Banach spaces and in complete metric spaces including mappings
from a metric space of fuzzy sets into itself.
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2 Background

Consider the successive iterates fk+1 = fk ◦ f of a mapping f from a topo-
logical space X into itself and sequences of points

xk+1 = f(xk), k = 0, 1, 2, . . . (3)

inX generated by such a mapping. Traditionally, research interest has focused
on the regular asymptotical behavior of the sequences x0, x1, x2, . . . , xk =
fk(x0), . . ., and in particular on conditions that ensure the existence of an
asymptotically stable equilibrium point x̄ = f(x̄) or of an asymptotically
stable cycle x̄2 = f(x̄1), . . . , x̄p = f(x̄p−1), x̄1 = f(x̄p) for some period p > 1.
(Such cyclic or periodic points x̄j are fixed points of fp.)

Over the years attention has turned to the investigation of the chaotic
behavior of such iterated sequences [14–18]. This is readily seen in the simple
logistic equation

xk+1 = 4xk(1− xk) for 0 ≤ x ≤ 1 , (4)

which describes the dynamics of a population with nonoverlapping genera-
tions, and in the Baker’s equation

xk+1 =

{
2xk for 0 ≤ xk ≤ 1

2

2(1− xk) for 1
2 < xk ≤ 1 ,

(5)

which models the mixing of a dye spot on a strip of dough that is repeatedly
stretched and folded over on itself. Both of the iterative schemes (4) and
(5) involve mappings of the unit interval I into itself and display the highly
irregular or chaotic behavior in the sense of Li and Yorke.

The logistic equation has the characteristic feature of all such chaotic
difference equations in that the graph of f has a hump in it or folds over on
itself. Actually, variations of the Li–Yorke result had appeared some years
before Li and Yorke [1], namely, Barna [19] and Sharkovsky [20, 21]. The
work of Sharkovsky is the most complete and far reaching in this regard. Of
particular significance is his cycle coexistence ordering, which says that if a
one-dimensional difference equation (3) has a cycle of period p then it also
has a cycle of period p′ when p ≺ p′ in the following Sharkovsky ordering:

3 ≺ 5 ≺ 7 · · · ≺ 2 · 3 ≺ 2 · 5 ≺ 2 · 7 ≺ · · · (6)

≺ 2k · 3 ≺ 2k · 5 ≺ 2k · 7 ≺ · · ·
≺ 2n ≺ 2n−1 ≺ · · · ≺ 2 ≺ 1 .

Consequently, if f has only finitely many periodic points, then they must
have all periods which are powers of two. Furthermore, if there is a peri-
odic point of period 3, then there are periodic points of all other periods.
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Sharkovsky’s theorem does not state that there are stable cycles of those
periods, just that there are cycles of those periods. For systems such as the
logistic map, bifurcation diagrams show a range of parameter values for which
apparently the only cycle has period 3. In fact, there must be cycles of all
periods there, but they are not stable and therefore usually not visible on the
computer-generated picture.

Interestingly, the above ordering of the positive integers also occurs in
a slightly different manner in connection with the logistic map: the stable
cycles appear in this order in the bifurcation diagram, starting with 1 and
ending with 3, as the parameter is increased.

Furthermore, from this ordering and from other results of Sharkovsky or
the Li and Yorke result it follows [22] that a scalar difference equation (3)
behaves chaotically if it has a cycle of period (2l + 1)2k for some l ≥ 1 and
k ≥ 0, for then the iterate f2k+1

has a cycle of period 3.
For the difference equation (2) defined in terms of a mapping f : X → X,

where X is a closed subset of R
n for n ≥ 2, the properties of the it-

erated sequences and cycles are not as well understood as for their one-
dimensional counterparts. However, it has been long known from the numeri-
cal calculations of Stein and Ulam [23] for 2-dimensional difference equations
defined in terms of piecewise linear mappings that higher dimensional dif-
ference equations can display quite complicated, seemingly chaotic behavior.
Moreover, on the theoretical level, difference equations defined in terms of
Smale’s horseshoe mapping [24] are known to have infinitely many cycles of
different periods and something similar to the scrambled set above.

What is of research interest is that to what extent the one-dimensional
results of Li and Yorke [1] and Sharkovsky [20, 21] carry over to higher
dimensional difference equations. The following example shows that they will
not without some modification or some restriction to the class of mappings
f . To see this, consider the difference equation defined in terms of the rigid
rotation mapping

f(x1, x2) =

(
f1(x1, x2)

f2(x1, x2)

)
=

⎛⎝− 1
2x1 −

√
3

2 x2

√
3

2 x1 − 1
2x2

⎞⎠ (7)

of the unit disc X = {(x1, x2) ∈ R
2 x2

1 +x2
2 ≤ 1} into itself. Then each point

(x1, x2) ∈ X \ (0, 0) belongs to a cycle of period 3, whereas (0, 0) belongs
to a cycle of period one. This is obvious in terms of the complex variable
z = x1 + ix2 in which case the mapping f can be written as f(z) = az,
where a = − 1

2 +i
√

3
2 . For this example neither Sharkovsky’s cycle coexistence

ordering (6) nor the “period three implies chaos” result of Li and Yorke is
valid.

However, it is possible to generate the one-dimensional results subject to
suitably restricting the mapping f . For example, Kloeden [25] has shown that
the Sharkovsky cycle coexistence ordering (6) holds for triangular difference
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equations (2) where the continuous mapping f is defined on a compact n-
dimensional rectangle X =

∏n
i=1[ai, bi] with the ith component of f de-

pending only on the first i components of the vector x = (x1, x2, . . . , xn),
i.e.,

fi(x) = fi(x1, x2, . . . , xi) , (8)

for i = 1, 2, . . . , n. These difference equations include the one-dimensional
equations considered by Sharkovsky and also some important higher dimen-
sional equations such as the twisted horseshoe difference equation of Guck-
enheimer et al. [14], for which X = [0, 1]2, the unit square, and the mapping
f has components

f1(x1) =

{
2x1 for 0 ≤ x1 ≤ 1

2

2− 2x1 for 1
2 < x1 ≤ 1

f2(x1, x2) = 1
2x1 + 1

10x2 + 1
4 for 0 ≤ x1, x2 ≤ 1

⎫⎪⎪⎬⎪⎪⎭ . (9)

To determine a suitable class of mappings for which the results of the Li
and Yorke type might hold in higher dimensions, it is noted that the one-
dimensional mappings for which the difference equation (3) have cycles of
period 3 all have graphs, which have a hump or fold over on themselves,
namely, are not one to one mappings. Note also that the two-dimensional
difference equation with the linear mapping (7), which is a one to one map-
ping, has cycles of period 3, but does not behave chaotically. This suggests
that attention might profitably be restricted to mappings which are not one
to one. (This is not the only possible approach as both the Smale horseshoe
mapping [21] and the Hénnon mapping [26] are diffeomeorphisms, but have
difference equations that behave chaotically). This was done by Marotto [4]
who showed that difference equations on R

n defined in terms of continuously
differentiable mappings with snap-back repellers, so consequently not one to
one, behave chaotically in the sense of Li and Yorke. His proof used the in-
verse function theorem for one to one local restrictions of the mappings and
the Brouwer fixed point theorem, but otherwise paralleled the proof of Li and
Yorke for one-dimensional mappings.

3 Chaos of Difference Equations in R
n

with a Saddle Point

The Marotto theorem says that a difference equations in R
n with a snap-

back repeller behaves chaotically, and is thus a generalization of the Li–Yorke
theorem for difference equations in R

1. It differs in that the mappings defining
the difference equations are required to be continuously differentiable rather
than only continuous. Thus, the inverse mapping theorem and the Brouwer
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fixed point theorem can be used to prove the existence of continuous inverse
functions and periodic points. Marotto’s result is however applicable only
to difference equations with repellers but not to those with saddle points.
Therefore, it cannot be used for difference equations involving the horseshoe
mappings of Smale [24] or the twisted-horseshoe mappings of Guckenheimer
et al. [14].

In this section, sufficient conditions for the chaotic behavior of difference
equations in R

n are given, which are applicable to difference equations with
saddle points as well as to those with repellers. These conditions are valid
for difference equations defined in terms of continuous mappings, and in the
special case of a difference equation with a snap-back repeller, they are easier
tested than those given by Marotto [4]. The proof is a modification of that
used by Marotto, but there are two important differences. Firstly the map-
pings in the difference equations are assumed to be continuous rather than
continuously differentiable. The existence of continuous inverse mapping fol-
lows from the fact that continuous one to one mappings have continuous
inverses on compact sets. Using this result rather than the inverse mapping
theorem considerably simplifies the proof. Secondly, the Brouwer fixed point
theorem is used on a homeomorph of an l-ball for some 1 ≤ l ≤ n rather
than on a homeomorph of an n-ball as in Marotto’s proof. Thus, this allows
saddle points to be considered as well as repellers.

3.1 Sufficient Conditions for Chaos in R
n

In [15] a first-order difference equation

xk+1 = f(xk) , (10)

where f : R
n → R

n be a continuous mapping, was said to be chaotic if it is
chaotic in the sense of the Marotto theorem, i.e., if there exist

(i) a positive integer N such that (10) has a periodic point of period p for
each p ≥ N ;

(ii) a scrambled set of (10) that is an uncountable set S containing no pe-
riodic points of (10) such that

(a) f(S) ⊂ S,
(b) for every x0, y0 ∈ S with x0 �= y0

lim sup
x→∞

‖fk(x0)− fk(y0)‖ > 0 ,

(c) for every x0 ∈ S and any periodic point yper of (10)

lim sup
x→∞

‖fk(x0)− fk(yper)‖ > 0 ;

(iii) an uncountable subset S0 of S such that for every x0, y0 ∈ S0:

lim inf
x→∞ ‖fk(x0)− fk(y0)‖ = 0 .
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An l-ball is defined as a closed ball of finite radius in R
l in terms of the

Euclidean distance on R
l. Such a ball of radius r centred on a point z0 ∈ R

l

is denoted by Bl(z0; r). A mapping f : R
n → R

n is called expanding on a set
A ⊂ R

n if there exists a constant λ > 1 such that

λ‖x− y‖ ≤ ‖f(x)− f(y)‖ (11)

for all x, y ∈ A. Note that such a mapping is one to one on A.
The following two lemmas will be used in the proof of the theorem below.

The proof of the first one is straightforward and is thus omitted, while a proof
of the second lemma can be found in [27].

Lemma 1. Let f : R
n → R

n be a continuous mapping, which is one to
one on a compact subset K ⊂ R

n. Then there exists a continuous mapping
g : f(K) → K such that g(f(x)) = x for all x ∈ K.

The mapping g in Lemma 1 is a continuous inverse of mapping f on the
compact set K. It is denoted by f−1

K in the sequel.

Lemma 2. Let f : R
n → R

n be a continuous mapping and let {Ki}∞i=0 be a
sequence of compact sets in R

n such that Ki+1 ⊆ f(Ki) for i = 0, 1, 2, . . ..
Then there exists a nonempty compact set K ⊆ K0 such that f i(x0) ∈ Ki for
all x0 ∈ K and all i ≥ 0.

The principal result in this section is the following generalization of the
Marroto theorem due to Kloeden [15].

Theorem 3 (Kloeden) Let f : R
n → R

n be a continuous mapping and sup-
pose that there exist nonempty compact sets A and B, and integers 1 ≤ l ≤ n
and n1, n2 ≥ 1 such that

(a) A is homeomorphic to an l-ball;
(b) A ⊆ f(A);
(c) f is expanding on A;
(d) B ⊆ A;
(e) fn1(B) ∩A = ∅;
(f) A ⊆ fn1+n2(B);
(g) fn1+n2 is one to one on B.

Then difference equation (10) defined in terms of the mapping f is chaotic
in the sense of the Marotto theorem.

Proof. The proof is similar to that used by Marotto in [4], except that
Lemma 1 is used instead of the inverse mapping theorem and the Brouwer
fixed point theorem is used on homeomorphisms of l-balls rather than n-
balls. The Brouwer fixed point theorem says that a smooth mapping from an
n-dimensional closed ball into itself must have fixed point.
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From the continuity of f and assumption (f) there exists a nonempty,
compact subset C ⊆ B such that A = fn1+n2(C). By (g) fn1+n2 is one to
one on C, and by Lemma 1 there exists a continuous function g : A → C
such that g(fn1+n2(x)) = x for all x ∈ C. Note that fn1(C) ∩A = ∅ by (e).

Now f is one to one on A by (c), so by Lemma 1 f has a continuous
inverse f−1

A : f(A) → A. By (b) C ⊂ A ⊆ f(A), so f−k
A (C) ⊂ A holds for all

k ≥ 0.
For each k ≥ 0, the mapping f−k

A ◦ g : A → A is a continuous mapping
from a homeomorph of an l-ball into itself, so by the Brouwer fixed point
theorem there exists a point yk ∈ A such that f−k

A (g(yk)) = yk. In fact
yk ∈ f−k(C) and so fn1+k(yk) = fn1+k(f−k

A (g(yk))) = fn1(g(yk)) ∈ fn1(C)
as g(yk) ∈ C. Hence fn1+nk(yk) �∈ A as fn1(C)∩A = ∅. Also fn1+n2+k(yk) =
fn1+n2(g(yk)) = yk.

Now for k ≥ n1 + n2 the point yk is a periodic point of period p =
n1 +n2 +k. To see this note that p cannot be less than or equal to k because
f j(yk) ∈ f−k+j

A (C) ⊂ A for 1 ≤ j ≤ k and then the whole cycle would
belong to A in contradiction to the fact that fn1+k(yk) �∈ A. Also p cannot
lie between k and n1 + n2 + k when k ≥ n1 + n2 because fn1+n2+k(yk) = yk

and so p would have to divide n1 + n2 + k exactly, which is impossible when
k ≥ n1 +n2. Hence the difference equation (10) has a periodic point of period
p for each p ≥ N = 2(n1 + n2).

Write D = fn1(C) and h = fN . Then A ∩D = ∅ and

h(D) = fN (D) = f2n1+n2(fn2(D)) = f2n1+n2(A) ⊇ A (12)

in view of (b) and the definition of C. Also

h(A) = fN (A) ⊇ A (13)

by (b) and

h(A) = fN (A) ⊇ f2(n1+n2)(f−n1−2n2
A (C)) = fn1(C) = D (14)

as f−n1−2n2
A (C) ⊂ A. Moreover as A and D are nonempty, disjoint compact

sets it follows that

inf{‖x− y‖;x ∈ A, y ∈ D} > 0 . (15)

The existence of a scrambled set S then follows exactly as in Marotto’s
proof [4] or in Li and Yorke [1]. It will be briefly outlined here for complete-
ness.

Let E be the set of sequences ξ = {Ek}∞k=1, where Ek is either A or D,
and Ek+1 = Ek+2 = A if Ek = D. Let r(ξ, k) be the number of sets Ej equal
to D for 1 ≤ j ≤ k and for each η ∈ (0, 1) choose ξη = {Eη

k}∞k=1 to be a
sequence in E satisfying

lim
k→∞

r(ξη, k2)
k

= η .
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Let F = {ξη ; η ∈ (0, 1)} ⊂ E . Then F is uncountable. Also from
(12)–(14), h(Eη

k ) ⊇ Eη
k+1 and so by Lemma 2 for each ξη ∈ F there is a

point xη ∈ A ∪D with hk(xη) ∈ Eη
k for all k ≥ 1. Let Sh = {hk(xη) ; k ≥

0 and ξη ∈ F}. Then h(Sh) ⊂ Sh, Sh contains no periodic points of h, and
there exists an infinite number of k’s such that hk(x) ∈ A and hk(y) ∈ D for
any x, y ∈ Sh with x �= y. Hence from (15) for any x, y ∈ Sh with x �= y

L1 = lim sup
k→∞

‖hk(x)− hk(y)‖ > 0 .

Thus letting S = {fk(x);x ∈ Sh and k ≥ 0} it follows that f(S) ⊂ S, S
contains no periodic points of f and for any x, y ∈ S with x �= y

lim sup
k→∞

‖fk(x)− fk(y)‖ ≥ L1 > 0 .

This proves that the set S has properties (iia) and (iib) of a scrambled
set. The remaining property (iic) can be proven similarly. For further details
see [1].

It remains now to establish the existence of an uncountable subset S0 of
the scrambled set S with the properties listed in part (iii) of the definition
of chaotic behavior. In contrast with Marotto’s proof this is the first place
where assumption (c) that f is expanding on A is required. Until now all
that has been required is that f is one to one on A. From this, (b) and
Lemma 1 follows the existence of a continuous inverse f−1

A : A → A. Hence
by the Brouwer fixed point theorem there exists a point a ∈ A such that
f−1

A (a) = a, or equivalently f(a) = a.
Now because f is expanding on A it follows that f−1

A is contracting A,
i.e.,

‖f−1
A (x)− f−1

A (y)‖ ≤ λ−1‖x− y‖
for all x, y ∈ A, where λ > 1 is the coefficient of expansion of f on A. Hence
for any k ≥ 1 and all x, y ∈ A

‖f−k
A (x)− f−k

A (y)‖ ≤ λ−k‖x− y‖ ,

and in particular for any x ∈ C ⊂ A and for y = a

‖f−k
A (x)− a‖ ≤ λ−k‖x− a‖ , (16)

so f−k
A (x) → a as k → ∞ for all x ∈ C. Consequently for any ε > 0 there

exists an integer j = j(x, ε) such that f−j
A (x) ∈ A ∩ Bn(a; ε). Then by con-

tinuity there exists a δ = δ(x, ε) > 0 such that f−1
A (A ∩ intBn(x; δ)) ⊂

A ∩ Bn(a; ε). Now the collection ς = {int Bn(x; δ);x ∈ C} constitutes
an open cover of the compact set C, so there exists a finite subcollection
ς0 = {int Bn(xi; δi); i = 1, 2, . . . , L} which also covers C. Let T = T (ε) =
max{j(xi; ε); i = 1, 2, . . . , L}. Then f−T

A (x) ∈ Bn(a; ε) ∩A for all x ∈ C and
so by (16) f−k

A (C) ⊂ Bn(a; ε) ∩A for all k ≥ T (ε).
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Let Hk = h−k
A (C) for all k ≥ 0, where h−1

A is a continuous inverse of h =
fN on A. Then for any ε > 0 there exists a J = J(ε) such that ‖x−a‖ < ε/2
for all x ∈ Hk and all k > J .

The remainder of the proof parallels that in Marotto [4] and in Li and
Yorke [1]. The sequences ξn = {En

k }∞k=1 ∈ E will be further restricted as
follows: if En

k = D then k = m2 for some integer m, and if Eη
k = D for

both k = m2 and k = (m + 1)2 then Eη
k = H2m−j , for k = m2 + j and for

j = 1, 2, . . . , 2m. Finally for the remaining k’s, Eη
k = A. Now these sequences

still satisfy h(Eη
k ) ⊃ Eη

k+1, so by Lemma 2 there exists a point xη with
hk(xη) ∈ Eη

k for all k ≥ 0. Let S0 = {xη : η ∈ ( 4
5 , 1)}. Then S0 is uncountable,

S0 ⊂ Sh ⊂ S and for any s, t ∈ ( 4
5 , 1) there exist infinitely many m’s such

that hk(xs) ∈ Es
k = H2m−1 and hk(xt) ∈ Et

k = H2ml−1, where k = m2 + 1.
But from above, given any ε > 0, ‖x− a‖ < ε/2 for all x ∈ H2m−1 provided
m is sufficiently large. Hence for any ε > 0 there exists an integer m such
that ‖hk(xs)−hk(xt)‖ < ε, where k = m2 +1. As ε > 0 is arbitrary it follows
that

L2 = lim inf
k→∞

‖hk(xs)− hk(xt)‖ = 0 .

Thus for any x, y ∈ S0

lim inf
k→∞

‖hk(xs)− hk(xt)‖ ≤ L2 = 0 .

This completes the proof of Theorem 3.

3.2 Examples

Two examples are given here to illustrate the application of Theorem 3.
The first example is a one-dimensional difference equation with a snap-back
repeller involving the tent or Baker’s mapping. It forms one of the compo-
nents of the second example, the two-dimensional twisted-horseshoe differ-
ence equation of Guckenheimer et al. [14], which has a saddle point.

Example 1 Consider the difference equation on the unit interval I = [0, 1],
which is defined in terms of the Baker’s mapping

f(x) =

{
2x for 0 ≤ x ≤ 1

2 ,

2− 2x for 1
2 < x ≤ 1 .

This mapping f maps I into itself and has two fixed points 0 and 2
3 , both

of which are easily seen to be snap-back repellers.
The conditions of Theorem 3 are satisfied by A = [ 9

16 ,
7
8 ], B = [34 ,

7
8 ],

n = l = 1, and, n1 = n2 = 1. To see this note that

f(A) =
[
1
4
,
7
8

]
, f(b) =

[
1
4
,
1
2

]
, f2(B) =

[
1
2
, 1

]
,
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so
f(A) ⊃ A, f(B) ∩A = ∅, f2(B) ⊃ A .

Also f is expanding on A because for x, y ∈ A

|f(x)− f(y)| = |(2− 2x)− (2− 2y)| = 2|x− y|

and f2 is one to one on B because for all x ∈ B

f2(x) = 2(2− 2x) = 4− 4x .

Hence this difference equation exhibits chaotic behavior.

Example 2 Consider the difference equation on the unit square I2 in R
2,

which is defined in terms of the continuous mapping f = (f1, f2), where

f1(x, y) =

{
2x for 0 ≤ x ≤ 1

2 ,

2− 2x for 1
2 < x ≤ 1 ,

f2(x, y) =
x

2
+
y

10
+

1
4
.

This mapping describes a twisted horseshoe on I2 and has been inves-
tigated in detail by Guckenheimer et al. [14]. It has a fixed point (x̄, ȳ) =
(2
3 ,

35
54 ), which is a saddle point with eigenvalues −2 and 1

10 . Consequently
Marotto’s snap-back repeller theorem cannot be used here, but Theorem 3
can.

Let L1 be the line 90x+ 378y = 305 and L2 the line 90x− 378y = −125.
Then (x̄, ȳ) ∈ L1. Also let

A =
{

(x, y) ∈ L1 ;
9
16
≤ x ≤ 7

8

}
, B =

{
(x, y) ∈ L1 ;

3
4
≤ x ≤ 7

8

}
.

Then

f(A) =
{

(x, y) ∈ L1 ;
1
4
≤ x ≤ 7

8

}
, f(B) =

{
(x, y) ∈ L1 ;

1
4
≤ x ≤ 1

2

}
,

f2(B) =
{

(x, y) ∈ L2 ;
1
2
≤ x ≤ 1

}
,

and f3(B) ⊃ L1 ∩ I2.
Hence f(A) ⊃ A, f(B) ∩ A = ∅, and f3(B) ⊃ A, so conditions (b), (d),

(e), and (f) of Theorem 3 are satisfied with n1 = 1 and n2 = 2. Also A is
homeomorphic to a 1-ball and f is expanding on A because for (x, y) ∈ A

f1(x, y) = 2− 2x, f2(x, y) =
35
18
− 2y ,

so for any two points (x′, y′), (x′′, y′′) ∈ A

‖f(x′, y′)− f(x′′, y′′)‖ = 2‖(x′, y′)− (x′′, y′′)‖ .
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Finally for all (x, y) ∈ B

f3
1 (x, y) = 2 · 2 · (2− 2x)) = 8− 8x

and
f3
2 (x, y) =

381
200

x+
1

1000
y − 249

400
,

which gives the nonsingular Jacobian matrix[
−8 0
381
200

1
1000

]
.

Hence f3 is one to one on B.
All the conditions of Theorem 3 are thus satisfied, so this twisted-

horseshoe difference equation behaves chaotically.

4 Chaotic Mappings in Banach Spaces

The proof of Theorem 3 above can be easily modified by using the Schauder
fixed point theorem, in which case X can be a Banach space, rather than
the finite dimensional Euclidean space R

n [28]. The Schauder fixed point
theorem states that a compact mapping f from a closed bounded convex set
K in a Banach space X into itself has a fixed point. In this setting Theorem
3 becomes

Theorem 4 (Kloeden [16]) Let f : X → X be a continuous mapping of a
Banach space X into itself and suppose that there exist non-empty compact
subsets A and B of X, and integers n1, n2 ≥ 1 such that

(i) A is homeomorphic to a convex subset of X,
(ii) A ⊆ f(A),
(iii) f is expanding on A, i.e., there exists a constant λ > 1 such that

λ‖x− y‖ ≤ ‖f(x)− f(y)‖

for all x, y ∈ A,
(iv) B ⊂ A,
(v) fn1(B) ∩A = ∅,
(vi) A ⊆ fn1+n2(B), and
(vii) fn1+n2 is one to one on B.

Then the mapping f is chaotic in the generalized sense of Li and Yorke given
in Theorem 3.
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The proof is essentially a repetition of that given above for X = R
n,

but requires the Schauder fixed point theorem rather than the Brouwer fixed
point theorem. For difference equations on R

1 conditions (iii) and (vii) of
the theorem are superfluous as the intermediate value theorem can be used
instead of the Schauder fixed theorem to establish the existence of cyclic
points. Without these conditions the theorem then contains the sufficient
conditions for chaotic behavior of Barna [19] and Sharkovsky [20] as special
cases.

This theorem applies to the Baker’s mapping and to the twisted horseshoe
mapping with the same sets A and B as in the previous section, noting that
intervals and connected segments of straight lines are convex sets.

However, the above theorem is not applicable to diffeomorphisms such as
the Hénnon mapping and the Smale horseshoe mapping, and hence in general
not to the Poincaré mappings for ordinary differential equations.

5 Chaos of Discrete Systems
in Complete Metric Spaces

Even more generally, some criteria for chaos of difference equations in gen-
eral complete metric spaces will be given in this section. In contrast to the
Euclidean spaces and Banach spaces these metric spaces may not have a linear
structure which allows one to, say, take the difference of two points. Recall
that the n-dimensional Euclidean space R

n is complete and any bounded
and closed subset therein is compact. Furthermore, a compact subset of a
general metric space is complete as a subspace. Therefore, difference equa-
tions defined in terms of continuous mappings in compact subsets of metric
spaces and the corresponding criteria of chaos will be discussed. Thus, the
existing relevant results of chaos in R

n and Banach spaces are extended and
improved [7]. Here, we just list the main results of [7] without giving proofs.
Readers interested in the details can refer to [7].

The criteria of chaos obtained in this section are related to Cantor sets
in metric spaces and a symbolic dynamical system, which has rich dynamical
structures.

Definition 2. Let X be a topological space and Λ be a subset in X. Then Λ
is called a Cantor set if it is compact, totally disconnected, and perfect. A set
in X is totally disconnected if its each connected component is a single point;
a set is perfect if it is closed and every point in it is an accumulation point
or a limit point of other points in the set.

Consider the space of sequences

Σ+
2 := {s = (s0, s1, s2, . . .) : sj = 0 or 1}

and define a distance between two points s = (s0, s1, s2, . . .) and t =
(t0, t1, t2, . . .) by
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ρ(s, t) =
∞∑

i=0

2i|si − ti| .

For any s, t ∈ Σ+
2 , ρ(s, t) ≤ 2−n if si = ti for 0 ≤ i ≤ n. Conversely, if

ρ(s, t) < 2−n, then si = ti for 0 ≤ i ≤ n.

Lemma 3. (Σ+
2 , ρ) is a complete, compact, totally disconnected, and perfect

metric space.

Definition 3. The shift map σ : Σ+
2 → Σ+

2 defined by σ(s0, s1, s2, . . .) =
(s1, s2, . . .) is continuous. The dynamical system governed by σ is called a
symbolic dynamical system on Σ+

2 .

The shift map σ has the following properties:

1. Card Pern(σ) = 2n,
2. Per(σ) is dense in Σ+

2 , and
3. there exists a dense orbit of σ in Σ+

2 ,

where Card Pern(σ) denotes the number of periodic points of period n for σ.

Theorem 5 Let (X, d) be a complete metric space and V0, V1 be nonempty,
closed, and bounded subsets of X with d(V0, V1) > 0. If a continuous map
f : V0 ∪ V1 → X satisfies

1. f(Vj) ⊃ V0 ∪ V1 for j = 0, 1;
2. f is expanding in V0 and V1, respectively, i.e., there exists a constant
λ0 > 1 such that

d(f(x), f(y)) ≥ λ0d(x, y) ∀x, y ∈ V0 and ∀x, y ∈ V1;

3. there exists a constant µ0 > 0 such that

d(f(x), f(y)) ≤ µ0d(x, y) ∀x, y ∈ V0 and ∀x, y ∈ V1;

then there exist a Cantor set Λ ⊂ V0∪V1 such that f : Λ → Λ is topologically
conjugate to the symbolic dynamical system σ : Σ+

2 → Σ+
2 . Consequently, f

is chaotic on Λ in the sense of Devaney.

Recall from the fundamental theory of topology that a compact subset
of a metric space is closed, bounded, and complete as a subspace; a closed
subset of a compact space is compact; and the distance between two disjoint
compact subsets of a metric space is positive. Therefore, if V0 and V1 are
compact subsets of a metric space (X, d), assumption (3) in Theorem 5 can
be dropped.

The following is the corresponding result for chaos of difference equations
defined in terms of continuous mappings in two compact subsets of a metric
space.
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Theorem 6 Let (X, d) be a metric space and V0, V1 be two disjoint compact
subset of X. If the continuous map f : V0 ∪ V1 → X satisfies

1. f(Vj) ⊃ V0 ∪ V1 for j = 0, 1 and
2. there exists a constant λ0 > 1 such that

d(f(x), f(y)) ≥ λ0d(x, y) ∀x, y ∈ V0 and ∀x, y ∈ V1 ,

then there exists a Cantor set Λ ∈ V0∪V1 such that f : Λ → Λ is topologically
conjugate to the symbolic dynamical system σ : Σ+

2 → Σ+
2 . Consequently, f

is chaotic on Λ in the sense of Devaney.

It should be noticed that by Theorems 5 and 6 the appearance of chaos of
f is only relevant to the properties of f on V0 and V1, but has no relationship
with the properties of f at any other points. The following example is used
to illustrate the application of the Theorems.

Example 3 Consider the discrete dynamical system

xn+1 = µxn(1− xn)

governed by the logistic mapping f(x) = µx(1 − x), where µ > 0 is the
parameter.

This mapping has exactly two fixed points: x∗1 = 0 and x∗2 = 1− µ−1. It
is clear that f is continuously differentiable on R and if µ > 2 +

√
5 then

|f ′(x)| > 1 for x ∈ [0, x1] ∪ [x2, 1] ,

where x1 = 2−1 −
√

4−1 − µ−1 > 0 and x2 = 2−1 +
√

4−1 − µ−1 < x∗2. This
implies that

|f(x)− f(y)| ≥ λ0|x− y| ∀x, y ∈ [0, x1] and ∀x, y ∈ [x2, 1] ,

where λ0 =
√
µ2 − 4µ > 1. On the other hand, we have

f([0, x1]) = [0, 1] ⊃ [0, x1] ∪ [x2, 1] ,

f([x2, 1]) = [0, 1] ⊃ [0, x1] ∪ [x2, 1] ,

Clearly, [0, x1] and [x2, 1] are compact, so that all assumptions in The-
orem 6 are satisfied, and for µ > 2 +

√
5, there exists a Cantor set

Λ ∈ [0, x1] ∪ [x2, 1] such that f : Λ → Λ is topologically conjugate to the
symbolic dynamical system σ : Σ+

2 → Σ+
2 .

Now, consider the following mapping:

g(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
µx(1− x), x ∈ [0, x1],

h(x), x ∈ (x1, x2),

µx(1− x), x ∈ [x2, 1] ,
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where h(x) can be any function on (x1, x2). It is noted that g may not even be
continuous on [x1, x2]. By the above discussion on the logistic mapping and
by Theorem 6, one can conclude that for µ > 2 +

√
5, there exists a Cantor

set Λ′ ⊂ [0, x1] ∪ [x2, 1] such that g : Λ′ → Λ′ is topologically conjugate to
the symbolic dynamical system σ : Σ+

2 → Σ+
2 and, consequently, g is chaotic

on Λ′. We notice that the Cantor set Λ′ may be taken to be the set Λ.
Furthermore, by means of snap-back repeller arguments, two criteria of

chaos for difference equations defined in terms of continuous mappings in
complete metric spaces and compact subsets of metric spaces will be estab-
lished in the following.

Theorem 7 Let (X, d) be a complete metric space and f : X → X be a
mapping. Assume that

1. f has a regular nondegenerate snap-back repeller z ∈ X, i.e., there exist
positive constants r1 and λ1 > 1 such that f(Br1(z)) is open and

d(f(x), f(y)) ≥ λ1d(x, y) ∀x, y ∈ B̄r1(z) ,

and there exist a point x0Br1(z), x0 �= z, a positive integer m, and positive
constant δ1 and γ, such that fm(x0) = z, Bδ1(x0) ⊂ Br1(z), z is an
interior point of fm(Bδ1(x0)), and

d(fm(x), fm(y)) ≥ γd(x, y) ∀x, y ∈ B̄δ1(x0) ; (17)

2. there exists a positive constant µ1 such that

d(f(x), f(y)) ≤ µ1d(x, y) ∀x, y ∈ B̄r1(z) ; (18)

3. there exists a positive constant µ2 such that

d(fm(x), fm(y)) ≤ µ2d(x, y) ∀x, y ∈ B̄δ1(x0) . (19)

In addition, assume that f is continuous on B̄r1(z) and that fm is contin-
uous on B̄δ1(x0). Then, for each neighborhood U of z, there exist a positive
integer n > m and a Cantor set Λ ⊂ U such that fn : Λ → Λ is topologically
conjugate to the symbolic dynamical system σ : Σ+

2 → Σ+
2 . Consequently, fn

is chaotic on Λ in the sense of Devaney.

By Theorem 6, the following result for metric spaces with a certain com-
pactness property similar to that of finite dimensional Euclidean spaces can
be established.

Theorem 8 Let (X, d) be a metric space in which each bounded and closed
subset is compact. Assume that f : X → X has a regular nondegenerate
snap-back repeller z, associated with x0, m, and r as specified in Marotto’s
definitions, f is continuous on B̄r(z), and fm is continuous in a neighborhood
of x0. Then, for each neighborhood U of z, there exist a positive integer n
and a Cantor set Λ ⊂ U such that fn : Λ → Λ is topologically conjugate to
the symbolic dynamical system σ : Σ+

2 → Σ+
2 . Consequently, fn is chaotic on

Λ in the sense of Devaney.
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6 Chaos of Difference Equations in Metric Spaces
of Fuzzy Sets

In this section, the Li–Yorke and Marotto definitions are generalized to be
applicable to mappings from a space of fuzzy sets into itself, namely the
metric space (En, D) of fuzzy sets on the base space R

n.

6.1 Chaotic Mappings on Fuzzy Sets

The following definitions and results are taken from [29], see also [30].
The set En consists of all functions, called fuzzy sets here, u : R

n → [0, 1]
for which

(i) u is normal, i.e., there exists an x0 ∈ R
n such that u(x0) = 1,

(ii) u is fuzzy convex, i.e., for any x, y ∈ R
n and 0 ≤ λ ≤ 1

u(λx+ (1− λ)y) ≥ min{u(x), u(y)} ,

(iii) u is uppersemicontinuous, and
(iv) the closure of {x ∈ R

n;u(x) > 0}, denoted by [u]0, is compact.

Let u ∈ En. Then for each 0 < α ≤ 1 the α-level set [u]α of u, defined by

[u]α = {x ∈ R
n;u(x) ≥ α} ,

is a nonempty compact convex subset of R
n, as is the support [u]0 of u. Let

d be the Hausdorff metric for nonempty compact subsets of R
n. Then

D(u, v) = sup
0≤α≤1

d([u]α, [v]α) ,

where u, v ∈ En, is a metric on En. Moreover, (En, D) is a complete metric
space.

Let u, v ∈ En and let c be a positive number. Then addition u + v and
(positive) scalar multiplication cu in En are defined in terms of the α-level
sets by

[u+ v]α = [u]α + [v]α ,

and
[cu]α = c[u]α ,

for each 0 ≤ α ≤ 1, where

A+B = {x+ y;x ∈ A, y ∈ B} and cA = {cx;x ∈ A}

for nonempty subsets A and B of R
n. This defines a linear structure (but

without subtraction) on En, such that

D(u+ w, v + w) = D(u, v)
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and
D(cu, cv) = cD(u, v) ,

for all u, v, w ∈ En and c > 0. There is however no norm on En equivalent
to the metric D, which makes En into a normed linear space with the above
natural linear structure. Nevertheless by an embedding theorem of R̊adström,
En can be embedded isometrically isomorphically as a convex cone in some
Banach space. Consequently many well-known results for Banach spaces can
be adapted to the metric space (En, D) of fuzzy sets. An example is the
following fixed point theorem of Kaleva [29].

Theorem 9 (Kaleva) Let f : En → En be continuous and let X be a non-
empty compact convex subset of En such that f(X ) ⊆ X . Then f has a fixed
point ū = f(ū) ∈ X .

Consider now an iterative scheme of fuzzy sets

uk+1 = f(uk), k = 1, 2, . . . , (20)

where f is a continuous mapping from the space of fuzzy sets En into itself.
Such an iterative scheme or mapping f will be called to be chaotic if condi-
tions analogous to those of Theorem 1 are satisfied. Using the Kaleva fixed
point theorem, the following analogue of Theorem 3 can be shown to hold.
It provides sufficient conditions for a mapping on fuzzy sets to be chaotic.
(Alternatively, one could apply the results of the previous section here).

Theorem 10 (Kloeden [31]) Let f : En → En be continuous and suppose that
there exist nonempty compact subsets A and B of En, and integers n1, n2 ≥ 1
such that

(i) A is homeomorphic to a convex subset of En,
(ii) A ⊆ f(A),
(iii) f is expanding on A, that there exists a constant λ > 1 such that

λD(u, v) ≤ D(f(u), f(v))

for all u, v ∈ A,
(iv) B ⊂ A,
(v) fn1(B) ∩ A = ∅,
(vi) A ⊆ fn1+n2(B), and
(vii) fn1+n2 is one to one on B.

Then the mapping f is chaotic.

The proof of Theorem 10 essentially mimics the proof of Theorem 3, using
the Kaleva fixed point theorem instead of the Brouwer fixed point theorem.
Thus, it is omitted. A useful characterization of compact subsets of En has
been presented by Diamond and Kloeden in [30] and [32].
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6.2 An Example of a Chaotic Mapping on Fuzzy Sets

To illustrate the application of Theorem 10 a simple example of a chaotic
mapping f : E1 → E1, which satisfies the hypotheses of the theorem, will
be constructed. For this purpose observe that for each u ∈ E1 there exist
functions (their dependence on u is not explicitly stated) a, b : [0, 1] → R

such that the α-level sets of u are the intervals [u]α = [a(α), b(α)]. Moreover
for any 0 ≤ α ≤ α′ ≤ 1 the following inequalities hold:

a(0) ≤ a(α) ≤ a(α′) ≤ a(1) ≤ b(1) ≤ b(α′) ≤ b(α) ≤ b(0) .

Consider the following subsets of E1:

(a) E1
0 = {u ∈ E1 ; a(0) = 0},

(b) �1
0 = {u ∈ E1

0 ; a(α) = 1
2α(b(0) − L) and b(α) = b(0) − 1

2α(b(0) −
L) for some 0 ≤ L ≤ b(0)},

(c) ∆1
0 = {u ∈ �1

0 ; L = 0}.
For any u ∈ E1

0 , the support [u]0 is a nonnegative interval anchored on
x = 0. The endograph of any u ∈ �1

0 is a symmetric trapezium centred on
x = 1

2b(0), with base length b(0) and top length L. For any u ∈ ∆1
0 the

endograph is an isosceles triangle.
Now define the following mappings on fuzzy sets:

1. f1 : E1 → E1
0 by [f1(u)]α = [a(α)− a(0), b(α)− b(0)],

2. f2 : E1
0 → �1

0 by [f2(u)]α = [αM, b(0)− αM ], where M = 1
2b(0)− 1

8 (b(1)
− a(1)),

3. f3 : �1
0 → �1

0 by [f3(u)]α = g(b(0))[u]α = [g(b(0))a(α), g(b(0))b(α)],

where g : R
+ → R

+ is the function

g(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2 if 0 ≤ x ≤ 1

2 ,

−2 + 2/x if 1
2 ≤ x ≤ 1 ,

0 if 1 ≤ x.

Also define h : R
+ → R

+ by

h(x) = xg(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2x if 0 ≤ x ≤ 1

2 ,

2− 2x if 1
2 ≤ x ≤ 1 ,

0 if 1 ≤ x.

Finally, define f : E1 → E1 by f = f3 ◦ f2 ◦ f1. This mapping f is clearly
continuous with respect to the D-metric and maps ∆1

0 into itself. Now any
u ∈ ∆1

0 is determined uniquely by its value of b(0), written b henceforth, and
will be denoted by ub. Then f(ub) = uh(b).
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Theorem 10 applies for the mapping f with n1 = n2 = 1 and with the
compact convex subsets of E1

A =
{
ub ∈ ∆1

0 ;
9
16
≤ b ≤ 7

8

}
, B =

{
ub ∈ ∆1

0 ;
3
4
≤ b ≤ 7

8

}
,

with

f(A) =
{
ub ∈ ∆1

0 ;
1
4
≤ b ≤ 7

8

}
, f(B) =

{
ub ∈ ∆1

0

1
4
≤ b ≤ 1

2

}
and

f2(B) =
{
ub ∈ ∆1

0

1
2
≤ b ≤ 1

}
,

so
A ⊆ f(A), f(B) ∩ A = ∅, A ⊆ f2(B).

Moreover, f is expanding on A because h is expanding on [ 9
16 ,

7
8 ] with

|h(x)− h(y)| = |(2− 2x)− (2− 2y)| = 2|x− y| ,

so
D(f(ux), f(uy)) = 2D(ux, uy)

for any ux, uy ∈ A. Finally, h2 is one to one on [34 ,
7
8 ] because

h2(x) = 2(2− 2x) = 4− 4x ,

which implies that f2 is one to one on B.
The mapping f is thus chaotic. Its chaotic action is most apparent in the

compact subset {ub ∈ ∆1
0; 0 ≤ b ≤ 1} of E1. It is not hard to show that for

any u ∈ E1, the successive iterates fk(u) asymptote toward this set. Their
endographs become more and more triangular in shape, unless b(0)−a(0) > 1,
in which case they collapse onto the singleton fuzzy set χ0.

7 Conclusions

Studies thus far on criteria of chaos for difference equations defined in terms of
continuous mappings in various spaces ranging from the simplest one dimen-
sional space R, to R

n through Banach spaces and complete metric spaces,
and finally to metric spaces of fuzzy sets have been reviewed. In practice,
however, to establish the existence of chaos in a particular dynamical system
often still depends mainly on numerical calculations to estimate quantities
such as the maximum Lyapunov exponent and topological entropy. A unified,
well accepted, easy-to-test, and rigorous mathematical definition of chaos is
still in the process of being revealed, and this work is far from complete.
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Chaotic Dynamics with Fuzzy Systems

Domenico M. Porto

Abstract. In this chapter a new approach for modeling chaotic dynamics is pro-
posed. It is based on a linguistic description of chaotic phenomena, which can be
easily related to a fuzzy system design. This approach allows building chaotic gen-
erators by means of few fuzzy sets and using a small number of fuzzy rules. It is
also possible to create chaotic signals with assigned characteristics (e.g., Lyapunov
exponents). Fuzzy descriptions of well-known discrete chaotic maps are therefore
introduced, denoting an improved robustness to parameter changes.

1 Introduction

The possible interactions between fuzzy logic and chaos theory have been
explored since the 1980s, but these explorations have been carried on mainly
in three directions: the fuzzy control of chaotic systems [1, 2], the definition
of an adaptive fuzzy system by data from a chaotic time series [3], and the
study of the theoretical relations between fuzzy logic and chaos [4]. We shall
follow none of these approaches, but take as a starting point the work in [5],
to design fuzzy systems, which exhibit a chaotic behavior via a linguistic
description of chaotic dynamics.

By giving a linguistic description of a chaotic system and by translating
this description in a fuzzy model, we aim first to obtain fuzzy chaotic systems
with desired characteristics, denoting an improved robustness to parameter
changes, and second to show that a simple fuzzy system with few fuzzy sets
and few rules is capable of being a good model of a complex and cryptic
chaotic system.

2 A Brief Review of Chaos

During the last decade, the study of chaos has become increasingly important
among physicists and engineers [6] due to the large number of its possible
applications. But what is “chaos”? Firstly, all those behaviors in some sense
unpredictable due to the inadequate feature of measurement methodology
(e.g., weather evolution) were considered “chaotic”. Nevertheless, technolog-
ical improvements demonstrated that long-term prediction of certain phe-
nomena fails because of their intrinsic complexity (highly nonlinear behavior)

D.M. Porto: Chaotic Dynamics with Fuzzy Systems, StudFuzz 187, 25–44 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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and not because of computational limitation. This quasirandom behavior has
been observed even in simple nonlinear systems, which demonstrated to be
very sensitive to changes in parameters. What was initially considered only
as a “curious phenomenon” nowadays is found everywhere in nature, show-
ing a chaotic feature of our physical world. But the random behavior of a
deterministic system may also have some useful and surprising application in
cryptography [7], signal processing [8], and, more generally, in most fields of
industrial process control.

The peculiarities of a chaotic system can be listed as follows:

1. Strong dependence of the behavior on initial conditions
2. The sensitivity to the changes of system parameters
3. Presence of strong harmonics in the signals
4. Fractional dimension of space state trajectories
5. Presence of a stretch direction, represented by a positive Lyapunov expo-

nent [9]

The last can be considered as an “index” that quantifies a chaotic behav-
ior.

Famous artificial chaotic systems are Chua’s circuit [10], the Duffing oscil-
lator [11], and the Roessler system, which can be represented as third-order
nonlinear autonomous systems. However, chaotic dynamics can also be gen-
erated by simple discrete maps, like the logistic map:

x(k + 1) = ax(k)(1− x(k)) (1)

or the Henon map: {
x(k + 1) = y(k) + 1− ax2(k)
y(k + 1) = bx(k) (2)

The case of the one-dimensional map x(k + 1) = f(x(k)) is quite inter-
esting because there exists a simple expression for Lyapunov exponents:

λ = lim
n→∞

1
n

n∑
k=1

ln |f ′ (x(k))| (3)

It can be shown that even in this case slight changes of the parameters
may lead to very different behaviors (see Figs.1–3) to this end it has become
necessary to find an alternative description of chaos in order to design more
robust chaotic generators.

3 Fuzzy Modeling of Chaotic Behaviors

To model the evolution of a chaotic signal x(.), two variables need to be
considered as inputs: the “center” value x(k), which is the nominal value of
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Fig. 1. Logistic map: a = 2.9 (fixed point motion)
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Fig. 2. Logistic map: a = 3.3 (stable circle motion)
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Fig. 3. Logistic map: a = 4 (chaos)

the state x(k) at the step k, and the uncertainty d(k) on the center value. In
terms of fuzzy description, this means that the model contains four linguistic
variables [12]: x(k + 1), x(k) d(k), and d(k + 1).

The fuzzy rules we use to model the iteration must assert the values
x(k+1) and d(k+1) from the values x(k) and d(k). In the following we shall
consider two types of chaotic signals, single scroll and double scroll, according
to the cases in which it is possible to distinguish two different zones of chaos
in the space state. In both cases we shall use a fuzzy model with the Mamdani
implication, the center-of-sums defuzzification method, and the product as
t-norm [13].

3.1 Double Scroll System

In the fuzzy model of a double scroll system [5] the linguistic variables x(k+1)
and x(k) can take four linguistic values: large left (LL), small left (SL), small
right (SR), and large right (LR). The linguistic variables d(k + 1) and d(k)
can take five linguistic values:

zero (Z), small (S), medium (M), large (L), and very large (VL).
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Fig. 4. The fuzzy sets for x (upper) and d (lower)

The fuzzy sets associated with these linguistic values are shown in Fig. 4.
A double scroll system is characterized by two attractor points, one in the
positive axis and one in the negative axis, that make the state oscillate around
each of these points. Thus, considering the positive attractor, it happens that
if the value of x(k) is LR then the value of x(k+1) is SR and vice versa. The
scheme of this rule is

DS 1 if x(k) is LR then x(k + 1) is SR

DS 2 if x(k) is SR then x(k + 1) is LR

Obviously, the same behavior is observed when x(k) is negative (i.e., when
x(k) is LL or SL).

Once the region where the attractor is embedded is defined, the uncer-
tainty d must enlarge until the boundary region is reached.

DS 3 if d(k) is S then x(k + 1) is M

DS 4 if d(k) is L then x(k + 1) is VL
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Moreover, in order to allow x to oscillate around each attractor point for
an appreciable amount of time, a rule must be added to keep limited the
enlargement of x(k).

DS 5 if d(k) is M then x(k + 1) is M

After the uncertainty has reached the boundary region, the folding process
takes place. This process consists of two different actions. One action is the
shrinking of the uncertainty d in order to avoid behaviors leading to insta-
bility.

DS 6 if x(k) is LR and d(k) is VL then d(k + 1) is S

The other action consists in the changing of the lobe.

DS 7 if x(k) is LR and d(k) is VL then x(k + 1) is SL

Note that this rule is fired only when x is LR or LL but not when x is
SR or LR; this happens so that it cannot bounce back without beginning to
oscillate around one of the two attractor points just after it has passed from
the positive to negative axis (or vice versa). To this end, if x is small the
diverging trajectories are pushed toward the inner region of the attractor.

DS 8 if x(k) is SR and d(k) is VL then x(k + 1) is LR

The complete set of rules for the double scroll system is depicted in
Table 1.

Table 1. The sets of rules implementing a double scroll chaotic system

x(k)/d(k) Z S M L VL

LL SL/Z SL/M SL/M SL/VL SR/L
SL LL/Z LL/M LL/M LL/VL LL/S
SR LR/Z LR/M LR/M LR/VL LR/S
LR SR/Z SR/M SR/M SR/VL SL/L

Figure 5 represents the evolution of the x(k) time series generated by the
fuzzy system for x(0) = 0.01 and d(0) = 0.01.

As expected, the state x oscillates around one of the attractor points, then
jumps and begins oscillating around the other attractor point, then jumps
again, and so on. Thus the behavior of the state reproduces that of Chua’s
circuit.

The system we have modeled is a function F : [−0.5, 0.5] × [0, 1] �→
[−0.5, 0.5] × [0, 1], such that F (x(k), d(k)) = (x(k + 1), d(k + 1)). Figure 6
is obtained projecting the F point to a point on the plane x(k) × x(k + 1)
showing the nonlinear map implemented. From this figure, it is quite evident
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Fig. 5. The chaotic time series generated by the fuzzy system

Fig. 6. The center value x(k + 1) on x(k)
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Fig. 7. The map generated by the fuzzy model of the two-lobe system

that the system has two distinguished zones of chaos. Moreover, drawing the
evolution of each point of the fuzzy system, we obtain the trajectory shown
in Fig. 7, which represents more clearly the chaotic motion of the system.

3.2 Single Scroll System: Logistic Map

The most known one-dimensional map, which exhibits a single scroll chaotic
behavior, is the logistic map x(k+1) = 4(1 − x(k))x(k) (see Fig. 3). This
map, which is characterized by only one zone of chaos, has two unstable
fixed points, x = 0 and x = 3/4, which influence its behavior.

In the fuzzy model of this chaotic dynamics, all the linguistic variables
of the system (x(k), d(k), x(k+1), d(k+1)) can take five linguistic values:
zero (Z), small (S), medium (M), large (L), and very large (VL). The fuzzy
sets associated with these linguistic values are shown in Fig. 8; they are
constructed in such a way that the nontrivial fixed point x = 3/4 lies exactly
in the middle of the peaks of the fuzzy set M and the fuzzy set L.

In this single scroll system x tends to move out from the trivial equilib-
rium point (x = 0) until it begins to oscillate around the nontrivial equilib-
rium point (x = 3/4). The increasing amplitude of the oscillations forces the
trajectory to reach again the neighborhood of zero, where, due to instability,
the process repeats.
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Fig. 8. The fuzzy sets for x (upper) and d (lower): logistic map

In other words, when x is smaller than the nontrivial equilibrium point
(x = 3/4), it tends to increase, and when it is very large, it tends to decrease
very fast.

SS 1 if x(k) is S then x(k+1) is M

SS 2 if x(k) is VL then x(k+1) is Z

On the contrary, when x is close enough to the nontrivial equilibrium
point (x = 3/4), it tends to oscillate around that point. Thus it happens that
if the value of x(k) is medium then the value of x(k+1) is large, and if the
value of x(k) is large then the value of x(k+1) is medium.

SS 3 if x(k) is M then x(k+1) is L

SS 4 if x(k) is L then x(k+1) is M

Moreover, the asymmetric shape of these fuzzy sets (L and M) is necessary
to obtain a motion like that in Fig. 3.

As in the case of the double scroll system, after the uncertainty has
reached the boundary region, two different actions take place. One action
is the shrinking of the uncertainty d.
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Table 2. The sets of rules implementing a single scroll chaotic system

x(k)/d(k) Z S M L VL

Z Z/Z Z/M Z/M S/VL L/L
S M/Z M/M M/M M/VL L/S
M L/Z L/M L/M L/VL VL/S
L M/Z M/M M/M M/VL Z/S
VL Z/Z Z/M Z/M Z/VL Z/L

SS 5 if x(k) is M and d(k) is VL then d(k+1) is S

The other action is the escape of x from the neighborhood of the stable
equilibrium point.

SS 6 if x(k) is M and d(k) is VL then x(k+1) is VL

The complete set of rules for the single scroll system is depicted in
Table 2.

Figure 9 represents the evolution of the x(k) time series generated by the
fuzzy system for x(0) = 0.01 and d(0) = 0.01.

By considering the two-dimensional map x(k + 1) = F (x(k), d(k)) gen-
erated by the fuzzy system (shown in Fig. 10), we can observe the range in
which x(k) is bounded and the equilibrium point around which the fuzzy
map evolves.

Figure 11 is obtained by drawing the trajectory of the fuzzy system in the
state space. By comparing this figure with Fig. 3, we can note the similarity
between the two. Moreover, it is worth observing that the approximation is
better where the fuzzy sets are dense and worst where they are sparse; thus,
if we want to have a better approximation in a fixed region, we only need to
increase the number of fuzzy sets describing x(k).

3.3 Lyapunov Exponents

For the one-dimensional map x(k + 1) = f(x(k)) a simple expression for
Lyapunov exponents has already been given in Sect. 2:

λ = lim
n→∞

1
n

n∑
k=1

ln |f ′ (x(k))|

Moreover, in general, this expression can be written only by means of the
values of uncertainty

λ = lim
n→∞

1
n

n∑
k=1

ln
∣∣∣∣Ek+1

Ek

∣∣∣∣ ,
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Fig. 9. The chaotic time series generated by the fuzzy system: logistic map

Fig. 10. The center value x(k + 1) on x(k): logistic map
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where Ek+1 = f(x(k) +Ek)− f(x(k)) only when the exact expression of the
mapping function is known. It can also be written as∣∣∣∣Ek+1

Ek

∣∣∣∣ = eλ̄

where λ̄ can be considered as the “desired” value of the exponent. Considering
our fuzzy models, whose uncertainty evolves following the rules previously
explained, it can be written that∣∣∣∣CM

CS

∣∣∣∣ = eλ̄,

∣∣∣∣ CL

CM

∣∣∣∣ = eλ̄

where CS, CM, and CL denote, respectively, the centers of small, medium,
and large membership functions of uncertainty. This means that it is possible
to design a chaotic time series and “drive” its Lyapunov exponent by only
changing the distance between the centers of the fuzzy sets. Figure 12 shows
that there is a quite good accordance among computed values, obtained using
the method described in [14], and desired values of Lyapunov exponents, at
least for values between 0 and 0.25. Even if this range of values seems to be a
small one, the Lyapunov exponents of a very large number of chaotic systems
are contained in it [15].
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Fig. 12. The desired Lyapunov exponents against calculated ones

4 Two-Dimensional Maps

The Henon map, introduced in Sect. 2, can be considered in some sense
the two-dimensional extension of the logistic map. Here we rewrite the state
equations {

x(k + 1) = y(k) + 1− ax2(k)

k(k + 1) = bx(k)
(2)

For some values of parameters a and b, the discrete state space plot (or
Poincarè map) denotes a fractal-like limit set typical of a chaotic system (see
Fig. 13). The time evolution of the state variable x is depicted in Fig. 14. The
same behavior can be observed for y, which is proportional to a one-sample
delayed sequence of x, as can be seen from (2).

An approach similar to that described in Sect. 3.1 and in [16] could be
attempted. In this case a function F (x(k), dx(k), y(k), dy(k)) = (x(k +
1), dx(k + 1), y(k + 1), dy(k + 1)) should be modeled, taking into account
uncertainties dx and dy for each one of the two variables. However, this fact
may lead to a quite complex definition of the qualitative fuzzy model, if
compared with the analytical description of the system. In order to avoid
these complications, we assume to have only the uncertainty dx, considering
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Fig. 13. Henon map state space plot (parameters a. = 1.4, b = 0.3)

that it can influence also y through the second equation of (2) in a linear
way. y(k + 1) being proportional to x(k), the membership function of x and
y could be chosen to be identical. However, the slight influence of y(k) on
x(k+1) with given parameters (a = 1.4 and b = 0.3) suggests us to use fewer
fuzzy sets for y(k), which acts only if its absolute value is high. The choice
for x(k) is therefore similar to that adopted in the logistic map, because of
a similar parabolic behavior (but different range). Even in this case there is
a stable equilibrium point (X = 0.63, Y = 0.19) asymmetric with respect to
the range of x (and of y).

The fuzzy sets associated with the linguistic values are shown in Fig.
15; they have been constructed in such a way that the nontrivial equilibrium
point is between the fuzzy set M and the fuzzy set L. The case of y is simpler:
only three fuzzy sets are adopted, only small or large values of y (medium
values, close to zero, are in this case neglected) being remarkable for the
evolution of x (first equation of (2)). Fuzzy sets of the uncertainty dx are
exactly the same as considered in the previous section, but with different
ranges.

Qualitatively x evolves similarly to the logistic map: x tends to move
toward the nontrivial equilibrium point, until it begins to oscillate around
that point. This happens until the influence of the unstable equilibrium point
perturbs its trajectory, moving it out from the neighborhood of the nontrivial
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Fig. 14. The chaotic time series generated by the Henon map (parameters a = 1.4,
b = 0.3)

equilibrium point. To this end, when the influence of y(k) on x(k+1) is slight
(approximately when y(k) is M), it is possible to keep the same rule of the
previous section (see Table 3).

The influence becomes relevant when y(k) is L or S, even if limited to the
transition L-VL and S-Z of x. Therefore, when y(k) is S, the new rules that
have to be added are the following:

HS 1 if x(k) is Z and d(k) is L and y(k) is S then x(k+1) is Z (instead of S)

HS2 if x(k) is M and d(k) is VL and y(k) is S then x(k + 1) is L (instead of VL)

Table 3. The set of rules for the evaluation of x(k + 1) and d(k + 1) when y(k) is
M. (It is the same as in Table 2)

x(k)/d(k) Z S M L VL

Z Z/Z Z/M Z/M S/VL L/L
S M/Z M/M M/M M/VL L/S
M L/Z L/M L/M L/VL VL/S
L M/Z M/M M/M M/VL Z/S
VL Z/Z Z/M Z/M Z/VL Z/L
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Fig. 15. The fuzzy sets for x (upper) and y (lower): qualitative Henon map

The complete set of rules for this case is given in Table 4. The differences
with respect to Table 3 are underlined. The action of y decreases x(k + 1)
from S to Z or from VL to L.

On the other side, when y(k) is L, only increasing transitions (from L to
VL or from S to Z) take place. Therefore, the new rules to be added are the
following:

HS3 if x(k) is Z and d(k) is Z and y(k) is L then x(k + 1) is S (instead of Z)

HS4 if x(k) is Z and d(k) is S and y(k) is L then x(k + 1) is S (instead of Z)

HS5 if x(k) is Z and d(k) is M and y(k) is L then x(k + 1) is S (instead of Z)

HS6 if x(k) is Z and d(k) is VL and y(k) is L then x(k + 1) is VL (instead of L)

HS7 if x(k) is M and y(k) is L then x(k + 1) is VL (instead of L)

HS8 if x(k) is L and d(k) is VL and y(k) is L then x(k + 1) is S (instead of Z).

The complete set of rules for this case is shown in Table 5. The changes
made with respect to Table 3 are underlined.

In order to complete the whole set of rules for this fuzzy system, the
dynamic of y(k) has to be considered. Due to the second equation of (2),
these simple rules can be added:
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Fig. 16. Time evolution of state variable x(k) generated by the fuzzy system

Fig. 17. Space state plot of variables x(k) and y(k) generated by the fuzzy system
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Table 4. The set of rules for the evaluation of x(k +1) and d(k +1) when y(k) is S

x(k)/d(k) Z S M L VL

Z Z/Z Z/M Z/M Z/VL L/L
S M/Z M/M M/M M/VL L/S
M L/Z L/M L/M L/VL L/S
L M/Z M/M M/M M/VL Z/S
VL Z/Z Z/M Z/M Z/VL Z/L

Note: The differences with respect to Table 3 are underlined

Table 5. The set of rules for the evaluation of x(k +1) and d(k +1) when y(k) is L

x(k)/d(k) Z S M L VL

Z S/Z S/M S/M S/VL VL/L
S M/Z M/M M/M M/VL L/S
M VL/Z VL/M VL/M VL/VL VL/S
L M/Z M/M M/M M/VL S/S
VL Z/Z Z/M Z/M Z/VL Z/L

Note: The differences with respect to Table 3 are underlined

HS 9 if x(k) is Z then y(k + 1) is S

HS 10 if x(k) is S then y(k + 1) is S

HS 11 if x(k) is M then y(k + 1) is M

HS 12 if x(k) is L then y(k + 1) is L

HS 13 if x(k) is VL then y(k + 1) is L

These statements are summarized in Table 6.
The so-designed fuzzy system is now completed and its dynamic evolution

can be derived. By choosing [x(0) y(0) d(0)] = [0.01 0.01 0.01] as an initial
condition, it is possible to obtain the behavior of x(k) (Fig. 16) and the space
state plot representing both variables x and y (Fig. 17).

Table 6. The set of rules which allows to evaluate y(k + 1) (it depends only on
x(k))

x(k)/y(k) S M L

Z S S S
S S S S
M M M M
L L L L
VL L L L
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5 Conclusions

In this chapter a qualitative approach for fuzzy modeling of chaotic dynamics
has been discussed. This analysis has pointed out several facts regarding both
fuzzy logic and chaos theory:

1. Simple fuzzy systems are able to generate complex dynamics.
2. The precision in the approximation of the time series depends only on the

number and the shape of the fuzzy sets for x.
3. The “chaoticity” of the system depends only on the shape of the fuzzy

sets for d.
4. The analysis of a chaotic system via a linguistic description allows a better

understanding of the system itself.
5. Accurate generators of chaos with desired characteristics can be built using

the fuzzy model.
6. Multidimensional chaotic maps in some cases do not need a large number

of rules in order to be represented.

Future researches on fuzzy modeling of chaotic systems may be developed
in several directions. Qualitative analysis should evolve into the automatic
design of the fuzzy system, improving the precision of the resulting model.
These results could be used for a great number of applications, above all the
generation of chaotic signals for cryptographic purposes, which could require
well-defined statistic properties of the signals.
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Fuzzy Modeling and Control
of Chaotic Systems

Hua O. Wang and Kazuo Tanaka

Abstract. In this chapter, fuzzy modeling techniques based on Takagi-Sugeno
(TS) fuzzy model are first proposed to model chaotic systems; then, a unified ap-
proach is presented for stabilization, synchronization, and chaotic model following
control for the chaotic TS fuzzy systems using linear matrix inequality (LMI) tech-
nique; finally, illustrative examples are presented.

1 Introduction

Chaotic behavior is a seemingly random behavior of a deterministic system
that is characterized by sensitive dependence on initial conditions. There are
several distinct definitions of chaotic behavior of dynamical systems. From
a practical point of view, a chaotic motion can be defined as a bounded
invariant motion of a deterministic system that is not an equilibrium solution
or a periodic solution or a quasiperiodic solution [1]. Chaotic behavior of a
physical system can either be desirable or undesirable, depending on the
application. It can be beneficial in many circumstances, such as enhanced
mixing of chemical reactants. Chaos can, on the other hand, entails large
amplitude motions and oscillations that might lead to system failure. The
Ott, Grebogi and Yorke (OGY) method [2, 3] for controlling chaos sparked
significant interest and activity in control of chaos (see, e.g., [4–11] for more
recent developments).

In this chapter we explore the interplay between fuzzy control systems
and chaos. First, we show that fuzzy modeling techniques can be used to
model chaotic dynamical systems, which also implies that fuzzy system can
be chaotic. This is not surprising given the fact that fuzzy systems are essen-
tially nonlinear. This chapter presents a unified approach on the subject of
controlling chaos, [12–17], addressing a number of nonstandard control prob-
lems via a linear matrix inequality (LMI) based fuzzy control system design
scheme.

In the literature, most of the work on chaos control have as their goal the
replacement of chaotic behavior by a nonchaotic steady-state behavior. This is
the same as the regulation problem in conventional control engineering. Regu-
lation is no doubt one of the most important problems in control engineering.
For chaotic systems, however, there are a number of interesting nonstandard

H.O. Wang and K. Tanaka: Fuzzy Modeling and Control of Chaotic Systems,
StudFuzz 187, 45–80 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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control problems besides stabilization. In this chapter, we develop a unified
approach to address some of these problems including stabilization, synchro-
nization, and chaotic model following control (CMFC) for chaotic systems.
The unified approach is based on the Takagi–Sugeno (TS) fuzzy modeling
and the associated parallel distributed compensation (PDC) control design
methodology [17]. In this framework, a nonlinear dynamical system is first
approximated by the TS fuzzy model. In this type of fuzzy model, local dy-
namics in different state space regions are represented by linear models. The
overall model of the system is achieved by fuzzy “blending” of these linear
models. The control design is carried out based on the fuzzy model. For each
local linear model, a linear feedback control is designed. The resulting overall
controller, which is nonlinear in general, is again a fuzzy blending of each
individual linear controller. This control design scheme is referred to as the
PDC technique in the literature [17]. More importantly, it has been shown
in [17] that the associated stability analysis and control design can be aided
by convex programming techniques for LMIs.

In this chapter, for chaos control, a cancellation technique (CT) is pre-
sented as a main result for stabilization of chaotic systems. The CT also plays
an important role in the synchronization and the CMFC. Two cases are con-
sidered in the synchronization. The first one deals with the feasible case of the
cancellation problem. The other one addresses the infeasible case of the can-
cellation problem. Furthermore, the CMFC problem, which is more difficult
than the synchronization problem, is discussed using the CT method. One of
the most important aspects is that the approach described here can be ap-
plied not only to stabilization and synchronization but also to the CMFC in
the same control framework. That is, it is a rather unified approach to a class
of chaos control problems. In fact, the stabilization and the synchronization
discussed here can be regarded as a special case of the CMFC. Simulation
results demonstrate the utility of the unified design approach.

2 Fuzzy Modeling of Chaotic Systems

To utilize the LMI-based fuzzy system design techniques, we start with repre-
senting chaotic systems using TS fuzzy models. In this regard, the techniques
described in [17] are employed to construct fuzzy models for chaotic systems.
In the following, a number of typical chaotic systems with the control input
term added are represented in the TS modeling framework.

Lorenz’s equation with input term

ẋ1(t) = −ax1(t) + ax2(t) + u(t) ,
ẋ2(t) = cx1(t)− x2(t)− x1(t)x3(t) ,
ẋ3(t) = x1(t)x2(t)− bx3(t) ,
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where a, b, and c are constants and u(t) is the input term. Assume that
x1(t) ∈ [−d d] and d > 0. Then, we can have the following fuzzy model
which exactly represents the nonlinear equation under x1(t) ∈ [−d d]:

Rule 1: IF x1(t) is M1 THEN ẋ(t) = A1x(t) + Bu(t) ,
Rule 2: IF x1(t) is M2 THEN ẋ(t) = A2x(t) + Bu(t) ,

where x(t) = [x1(t) x2(t) x3(t)]
T,

A1 =

⎡⎣−a a 0
c −1 −d
0 d −b

⎤⎦ , A2 =

⎡⎣−a a 0
c −1 d
0 −d −b

⎤⎦ ,
B =

⎡⎣1
0
0

⎤⎦ ,
M1(x1(t)) =

1
2

(
1 +

x1(t)
d

)
, M2(x1(t)) =

1
2

(
1− x1(t)

d

)
.

Here a = 10, b = 8/3, c = 28, and d = 30.

Rossler’s equation with input term

ẋ1(t) = −x2(t)− x3(t) ,
ẋ2(t) = x1(t) + ax2(t) ,
ẋ3(t) = bx1(t)− {c− x1(t)}x3(t) + u(t) ,

where a, b and c are constants. Assume that x1(t) ∈ [c − d c + d] and
d > 0. Then, we obtain the following fuzzy model which exactly represents
the nonlinear equation under x1(t) ∈ [c− d c+ d]:

Rule 1: IF x1(t) is M1 THEN ẋ(t) = A1x(t) + Bu(t) ,
Rule 2: IF x1(t) is M2 THEN ẋ(t) = A2x(t) + Bu(t) ,

where x(t) = [x1(t) x2(t) x3(t)]
T,

A1 =

⎡⎣0 −1 −1
1 a 0
b 0 −d

⎤⎦ , A2 =

⎡⎣0 −1 −1
1 a 0
b 0 d

⎤⎦ ,
B =

⎡⎣0
0
1

⎤⎦ ,
M1(x1(t)) =

1
2

(
1 +

c− x1(t)
d

)
, M2(x1(t)) =

1
2

(
1− c− x1(t)

d

)
.
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Here a = 0.34, b = 0.4, c = 4.5, and d = 10.

Duffing forced-oscillation model

ẋ1(t) = x2(t)
ẋ2(t) = −x3

1(t)− 0.1x2(t) + 12 cos(t) + u(t)

Assume that x1(t) ∈ [−d d] and d > 0. Then, we can have the following
fuzzy model as well:

Rule 1: IF x1(t) is M1 THEN ẋ(t) = A1x(t) + Bu∗(t) ,
Rule 2: IF x1(t) is M2 THEN ẋ(t) = A2x(t) + Bu∗(t) ,

where x(t) = [x1(t) x2(t)]
T and u∗(t) = u(t) + 12 cos(t),

A1 =
[

0 1
0 −0.1

]
, A2 =

[
0 1
−d2 −0.1

]
,

B =
[

0
1

]
,

M1(x1(t)) = 1− x
2
1(t)
d2

, M2(x1(t)) =
x2

1(t)
d2

.

Here d = 50.

Henon mapping model

x1(t+ 1) = −x2
1(t) + 0.3x2(t) + 1.4 + u(t) ,

x2(t+ 1) = x1(t) .

Assume that x1(t) ∈ [−d d] and d > 0. The following equivalent fuzzy model
can be constructed as well:

Rule 1: IF x1(t) is M1 THEN x(t+ 1) = A1x(t) + Bu∗(t) ,
Rule 2: IF x1(t) is M2 THEN x(t+ 1) = A2x(t) + Bu∗(t) ,

where x(t) = [x1(t) x2(t)]
T and u∗(t) = u(t) + 1.4,

A1 =
[
d 0.3
1 0

]
, A2 =

[
−d 0.3
1 0

]
,

B =
[

1
0

]
,

M1(x1(t)) =
1
2

(
1− x1(t)

d

)
, M2(x1(t)) =

1
2

(
1 +

x1(t)
d

)
.

Here d = 30.
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In all cases above, the fuzzy models exactly represent the original systems.
As shown in [17], the TS fuzzy model is a universal approximator for nonlinear
dynamical systems. Other chaotic systems can be approximated by the TS
fuzzy models.

The fuzzy models above have the common B matrix in the consequent
parts and x1(t) in the premise parts. In this chapter, all the fuzzy models
are assumed to be the common B matrix case, i.e., the fuzzy model (1) is
considered.
Plant Rule i:

If z1(t) is Mi1 and · · · and zp(t) is Mip ,

then sx(t) = Aix(t) + Bu(t), i = 1, 2, . . . , r , (1)

where p = 1 and z1(t) = x1(t). Equation (1) is represented by the defuzzifi-
cation form

sx(t) =
∑r

i=1 wi(z(t)) {Aix(t) + Bu(t)}∑r
i=1 wi(z(t))

=
r∑

i=1

hi(z(t)) {Aix(t) + Bu(t)} , (2)

where sx(t) denotes ẋ(t) and x(t + 1) for continuous-time fuzzy systems
(CFS) and discrete-time fuzzy systems (DFS), respectively. In the fuzzy mod-
els above for chaotic systems, z(t) = z1(t) = x1(t).

Remark 1. The fuzzy models above have a single input. We can also con-
sider multi-inputs case. For instance, we may consider Lorenz’s equation with
multi-inputs:

ẋ1(t) = −ax1(t) + ax2(t) + u1(t) ,
ẋ2(t) = cx1(t)− x2(t)− x1(t)x3(t) + u2(t) ,
ẋ3(t) = x1(t)x2(t)− bx3(t) + u3(t) .

Same as before, we can derive the the following fuzzy model to exactly rep-
resents the nonlinear equation under x1(t) ∈ [−d d]:

Rule 1: IF x1(t) is M1 THEN ẋ(t) = A1x(t) + Bu(t) ,
Rule 2 : IF x1(t) is M2 THEN ẋ(t) = A2x(t) + Bu(t) , (3)

where u(t) = [u1(t) u2(t) u3(t)]T and x(t) = [x1(t) x2(t) x3(t)]T,
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A1 =

⎡⎣−a a 0
c −1 −d
0 d −b

⎤⎦ , A2 =

⎡⎣−a a 0
c −1 d
0 −d −b

⎤⎦ ,

B =

⎡⎣1 0 0
0 1 0
0 0 1

⎤⎦ ,
M1(x1(t)) =

1
2

(
1 +

x1(t)
d

)
, M2(x1(t)) =

1
2

(
1− x1(t)

d

)
.

This fuzzy model with three inputs is used as a design example later in this
chapter.

3 Stabilization

Two techniques for the stabilization of chaotic systems (or nonlinear systems)
are presented in this section. We first consider the common stabilization prob-
lem followed by a so-called cancellation technique (CT). In particular, the CT
plays an important role in synchronization and CMFC, which are discussed
in Sects. 4 and 5, respectively.

3.1 Stabilization via Parallel Distributed Compensation

Equation (4) shows the PDC controller for the fuzzy models given in Sect. 2.

Rule 1: IF x1(t) is M1 THEN u(t) = −F 1x(t) ,
Rule 2 : IF x1(t) is M2 THEN u(t) = −F 2x(t) . (4)

Please note that the chaotic systems under consideration in the previous
section are represented (coincidentally) by simple TS fuzzy models with two
rules. Therefore the following PDC fuzzy controller also has only two rules:

u(t) = −
∑2

i=1 wi(z(t))F ix(t)∑2
i=1 wi(z(t))

= −
2∑

i=1

hi(z(t))F ix(t) . (5)

By substituting (5) into (2), we have

sx(t) =
r∑

i=1

hi(z(t))
(
Ai −BF i

)
x(t) , (6)

where r = 2. We recall stable and decay rate fuzzy controller designs for
CFS and DFS cases, where the following conditions are simplified due to the
common B matrix case. These design conditions are all given for the general
TS model with r number of rules.
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Stable fuzzy controller design: CFS

Find X > 0 and M i(i = 1 ∼ r) satisfying

−XAT
i −AiX + MT

i BT + BM i > 0 ,

where X = P−1 and M i = F iX.

Stable fuzzy controller design: DFS

Find X > 0 and M i(i = 1 ∼ r) satisfying[
X XAT

i −MT
i BT

AiX −BM i X

]
> 0 ,

where X = P−1 and M i = F iX.

Decay rate fuzzy controller design: CFS

maximize
X ,M 1,...,M r

α

subject to X > 0

−XAT
i −AiX + MT

i BT + BM i − 2αX > 0 ,

where α > 0, X = P−1, and M i = F iX.

Decay rate fuzzy controller design: DFS
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Fig. 1. Control result (Example 1)
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Fig. 2. Control result (Example 2)

minimize
X ,M 1,...,M r

β

subject to X > 0[
βX XAT

i −MT
i BT

AiX −BM i X

]
> 0 ,

where X = P−1 and M i = F iX. It should be noted that 0 ≤ β < 1.

Example 1. Let us consider the fuzzy model for Lorenz’s equation with the
input term. The stable fuzzy controller design for the CFS is feasible. Figure 1
shows the control result, where the control input is added at t > 10 (s). It
can be seen that the designed fuzzy controller stabilizes the chaotic system,
i.e., x1(0) → 0, x2(0) → 0, and x3(0) → 0 .

Example 2. We design a stable fuzzy controller for Rossler’s equation with
the input as well. The stable fuzzy controller design for the CFS is feasible.
Figure 2 shows the control result, where the control input is added at t >
70 (s). It can be seen that the designed fuzzy controller stabilizes the chaotic
system.

Example 3. We design a stable fuzzy controller for Duffing forced-oscillation
with the input. The stable fuzzy controller design for the CFS is feasible.
Figure 3 shows the control result, where the control input is added at t >
30 (s). The designed fuzzy controller stabilizes the chaotic system.

Example 4. Let us consider the fuzzy model for the Henon map. The stable
fuzzy controller design for the DFS is feasible. Figure 4 shows the control
result, where the control input is added at t > 20 (s).
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Fig. 3. Control result (Example 3)
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Fig. 4. Control result (Example 4)

Example 5. Consider the fuzzy model for Lorenz’s equation with the input
term. The decay rate fuzzy controller design for the CFS is feasible. Figure 5
shows the control result, where the control input is added at t > 10 (s). Note
that the speed of response of the decay rate fuzzy controller is better than
that of the stable fuzzy controller in Example 1.

Example 6. Consider the fuzzy model for Lorenz’s equation with the input
term. The fuzzy controller design satisfying the stability conditions and the
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constraint on the output for the CFS is feasible, where λ = 9 and C = C1 =
C2 = [1 0 0]. This means that x1(t) is selected as the output, i.e., y(t) =
x1(t) = Cx(t). Figure 6 shows the control result, where the control input is
added at t > 10 (s). Note that the fuzzy controller satisfies max

t
‖x1(t)‖ ≤ λ,

but the control effort is very large.
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Fig. 5. Control result (Example 5)

0 5 10 15
-20

0

20

x1
(t

)

0 5 10 15
-50

0

50

x2
(t

)

0 5 10 15
0

50

x3
(t

)

0 5 10 15
0

5000

10000

u(
t)

time

Fig. 6. Control result (Example 6)
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Fig. 7. Control result (Example 7)

Example 7. To solve the excessive control effort problem, the constraint on
the control input is added to the design of Example 6. The fuzzy controller
design satisfying the stability conditions and the constraints on the output
and the control input for the CFS is feasible, where λ = 9, µ = 500 and
C = C1 = C2 = [1 0 0]. Figure 7 shows the control result, where the control
input is added at t > 10 (s). The designed fuzzy controller stabilizes the
chaotic system. It should be emphasized that the control input and output
satisfy the constraints, i.e., max

t
‖u(t)‖2 ≤ µ and max

t
‖x1(t)‖2 ≤ λ.

Example 8. Consider the Lorenz’s equation with three inputs described in
Remark 1. The fuzzy controller design satisfying the stability condition and
the constraints on the output and the control input for the CFS is feasible,
where λ = 9, µ = 500, and C = C1 = C2 = [1 0 0]. Figure 8 shows the
control result, where the control input is added at t > 10 (s). Note that the
control input and output also satisfy the constraints, i.e., max

t
‖u(t)‖2 ≤ µ

and max
t
‖x1(t)‖2 ≤ λ.

3.2 Cancellation Technique

This subsection discusses a CT. This approach attempts to cancel the non-
linearity of a chaotic system via a PDC controller. If this problem is feasible,
the resulting controller can be considered as a solution to the so-called global
linearization and the feedback linearization problems. The conditions for re-
alizing the cancellation via the PDC are given in the following theorem.
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Fig. 8. Control result (Example 8)

Theorem 1. Chaotic system represented by the fuzzy system (2) is exactly
linearized via the fuzzy controller (5) if there exist the feedback gains F i such
that {

(A1 −BF 1)− (Ai −BF i)
}T

×
{
(A1 −BF 1)− (Ai −BF i)

}
= 0, i = 2, 3, . . . , r . (7)

Then, the overall control system is linearized as sx(t) = Gx(t), where
G = A1 −BF 1 = Ai −BF i .

Proof. It is obvious that G = A1−BF 1 = Ai−BF i if condition (7) holds.

The conditions are applicable to both the CFS and the DFS. If B is a
nonsingular matrix, the system is exactly linearized using F i = B−1(G−Ai).
However, the assumption that B is a nonsingular matrix is very strict. If B
is not a nonsingular matrix, the conditions of Theorem 1 can still be utilized
by the following approximation technique. That is, the equality conditions of
Theorem 1 are approximately by the following inequality conditions:

X
{
(A1 −BF 1)− (Ai −BF i)

}T

×
{
(A1 −BF 1)− (Ai −BF i)

}
X < βS, i = 2, 3, . . . , r ,

where X is a positive definite matrix and S is a positive definite matrix such
that STS < I. The conditions (7) are likely to be satisfied if the elements
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in βS are near zero, i.e., βS ≈ 0, in the above inequality. Using Schur
complement, we obtain[

βS{
(A1 −BF 1)− (Ai −BF i)

}
X

X
{
(A1 −BF 1)− (Ai −BF i)

}T

I

]
> 0, i = 2, 3, . . . , r.

Define M i = F iX so that for X > 0 we have F i = M iX
−1. Substituting

into the inequalities above yields[
βS

{(A1X −BM1)− (AiX −BM i)}

{(A1X −BM1)− (AiX −BM i)}T
I

]
> 0, i = 2, 3, . . . , r.

Note that G is not always a stable matrix even if the condition of Theorem
1 holds.

From the discussion above as well as the stability conditions described in
this section, we define the following design problems using the CT:

Stable fuzzy controller design using the CT: CFS

minimize
X ,S,M 1,M 2,...,M r

β

subject to X > 0, β > 0,S > 0[
I S
S I

]
> 0 ,

−AiX + BM i −XAT
i + MT

i BT > 0, i = 1, 2, . . . , r ,[
βS

{(A1X −BM1)− (AiX −BM i)}

{(A1X −BM1)− (AiX −BM i)}T
I

]
> 0, i = 2, 3, . . . , r ,

where X = P−1 and M i = F iX.

Stable fuzzy controller design using the CT: DFS

minimize
X ,S,M 1,M 2,...,M r

β

subject to X > 0, β > 0,S > 0
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I S
S I

]
> 0 ,[

X XAi −MT
i BT

AiX −BM i X

]
> 0, i = 1, 2, . . . , r ,[

βS
{(A1X −BM1)− (AiX −BM i)}

{(A1X −BM1)− (AiX −BM i)}T
I

]
> 0, i = 2, 3, . . . , r ,

where X = P−1 and M i = F iX .

Decay rate fuzzy controller design using the CT: CFS

maximize
X ,S,M 1,M 2,...,M r

α

minimize
X ,S,M 1,M 2,...,M r

β

subject to X > 0, β > 0, α > 0,S > 0[
I S
S I

]
> 0 ,

−AiX + BM i −XAT
i + MT

i BT − 2αX > 0, i = 1, 2, . . . , r ,[
βS

{(A1X −BM1)− (AiX −BM i)}

{(A1X −BM1)− (AiX −BM i)}T
I

]
> 0, i = 2, 3, · · · , r ,

where X = P−1 and M i = F iX.

Decay rate fuzzy controller design using the CT: DFS

minimize
X ,S,M 1,M 2,...,M r

α

minimize
X ,S,M 1,M 2,...,M r

β

subject to X > 0, β > 0, 0 ≤ α < 1,S > 0[
I S
S I

]
> 0 ,[

αX XAi −MT
i BT

AiX −BM i X

]
> 0, i = 1, 2, . . . , r ,
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βS

{(A1X −BM1)− (AiX −BM i)}

{(A1X −BM1)− (AiX −BM i)}T
I

]
> 0, i = 2, 3, . . . , r ,

where X = P−1 and M i = F iX.

Remark 2. In the LMIs above, if the elements in β · S are near zero, i.e.,
β ·S ≈ 0, the CT problems are feasible. In this case, G = Ai−BF i for all i
and G is a stable matrix.

Remark 3. The decay rate design problems have two parameters α and β to
be maximized or minimized. These problems can be solved as follows: For
instance, first minimize β, where α = 0 . After β is fixed, α can be minimized
or maximized. This procedure may be repeated to obtain a tighter solution.

Of course, other LMI conditions, e.g., the constraints on control input and
output can be added to the design problem. Thus, by combining a variety
of control performances represented by LMIs, we can realize multiobjective
control.

Example 9. The stable fuzzy controller design to realize the CT for Lorenz’s
equation with three inputs term is feasible. Figure 9 shows the control result,
where the control input is added at t > 10 (s). The designed fuzzy controller
linearizes and stabilizes the chaotic system.

Example 10. Let us consider the fuzzy model for Rossler’s equation with the
input term. The stable fuzzy controller design using the CT is feasible. Fig-
ure 10 shows the control result, where the control input is added at t > 70 (s).
It can be seen that the designed fuzzy controller linearizes and stabilizes the
chaotic system.

4 Synchronization

In addition to the stabilization of chaotic systems (Sect. 3), chaos synchro-
nization and model following are perhaps more stimulating problems in that
chaotic behavior is exploited for potential applications such as secure com-
munications.

In this section, we consider the following synchronization problem: design
the control input so that the controlled system achieves asymptotic synchro-
nization with the reference system given the two systems start from different
initial conditions. Here the reference system and controlled system are taken
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Fig. 9. Control result (Example 9)
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Fig. 10. Control result (Example 10)

to be the same chaotic oscillator except that the controlled system has con-
trol input(s) (the controlled system can be viewed as an observer of the
reference system). In this section, only the special case of full state feedback
based on the CT is considered. Two cases of the cancellation problem are
discussed:
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Case 1: The cancellation problem is feasible, i.e., all the elements in β · S
are near zero.

Case 2: The cancellation problem is infeasible, i.e., all the elements in β · S
are not near zero.

4.1 Case 1

Consider a reference fuzzy model which represents a reference chaotic system.

Reference Rule i:

If zR1(t) is Mi1 and · · · and zRp(t) is Mip ,

then sxR(t) = AixR(t), i = 1, 2, . . . , r , (8)

where zR(t) = [zR1(t) zR2(t) · · · zRp(t)]T. The defuzzification process is
given as

sxR(t) =
r∑

i=1

hi(zR(t))AixR(t) . (9)

Assume that e(t) = x(t)− xR(t). Then, from (2) and (9), we have

se(t) =
r∑

i=1

hi(z(t))Aix(t)−
r∑

i=1

hi(zR(t))AixR(t) + Bu(t) . (10)

We design two fuzzy subcontrollers to realize the synchronization:

Sub-controller A

Control Rule i:

If z1(t) is Mi1 and · · · and zp(t) is Mip ,

thenuA(t) = −F ix(t), i = 1, 2, . . . , r . (11)

Subcontroller B

Control Rule i :

If zR1(t) is Mi1 and · · · and zRp(t) is Mip ,

thenuB(t) = F ixR(t), i = 1, 2, . . . , r . (12)

The overall fuzzy controller is constructed by combining the two subcon-
trollers, i.e.,
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u(t) = uA(t) + uB(t)

= −
r∑

i=1

hi(z(t))F ix(t) +
r∑

i=1

hi(zR(t))F ixR(t) . (13)

The design is to determine the feedback gains F i. By substituting (13) into
(10), we obtain

se(t) =
r∑

i=1

hi(z(t))(Ai −BF i)x(t)

−
r∑

i=1

hi(zR(t))(Ai −BF i)xR(t) . (14)

Applying Theorem 1 to the error system (14), we attempt to linearize the
error system using the fuzzy control law (13). If the conditions of Theorem
1 hold, the linearized error system becomes se(t) = Ge(t), where G = Ai −
BF i. As mentioned before the G is not always a stable matrix even if the
conditions of Theorem 1 hold. If we can find feedback gains F i such that G is
a stable matrix, the fuzzy controller linearizes and stabilizes the error system.
The linearizable and stable fuzzy controllers with the feedback gains F i can
be designed by solving the LMI-based design problems using the approximate
CT algorithm described in Sect. 3.

Example 11. The decay rate fuzzy controller design to realize the synchro-
nization for Lorenz’s equation with three input terms is feasible. Figures 11
and 12 show the control result, where the control input is added at t > 20
(s) and the initial values of x(0) are slightly different from those of xR(0).
It can be seen that the designed fuzzy controller linearizes and stabilizes the
error system, i.e., e1(t) → 0, e2(t) → 0, and e3(t) → 0.

Example 12. Consider the Lorenz’s equation with three inputs. The fuzzy
controller design satisfying the stability conditions and the constraints on the
output and the control input for the CFS is feasible, where λ = 100, µ = 500,
and C = C1 = C2 = I3. This means that e1(t), e2(t), and e3(t) are selected
as the outputs, i.e., e(t) = [e1(t) e2(t) e3(t)] = Cx(t). Figures 13 and 14 show
the control result. The designed fuzzy controller linearizes and stabilizes the
error system. It should be emphasized that the control input and output
satisfy the constraints, i.e., max

t
‖u(t)‖2 ≤ µ and max

t
‖e(t)‖2 ≤ λ .

Example 13. Consider the Rossler’s equation with the input term. The fuzzy
controller design satisfying the stability conditions and the constraints on the
output and the control input for the CFS is feasible, where λ = 10, µ = 30,
and C = C1 = C2 = I3. Figures 15 and 16 show the control result, where
the control input is added at t > 30 (s). It can be seen that the designed
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Fig. 11. Control result 1 (Example 11)

fuzzy controller linearizes and stabilizes the error system. Note that the con-
trol input and the output satisfy the constraints, i.e., max

t
‖u(t)‖2 ≤ µ and

max
t
‖e(t)‖2 ≤ λ.

Example 14. Consider the Rossler’s equation with the input term. The fuzzy
controller design satisfying the stability conditions and the constraints on the
output and the control input for the CFS is feasible, where λ = 10, µ = 30,
and C = C1 = C2 = I3. Figure 17 and 18 show the control result. It can
be seen that the designed fuzzy controller linearizes and stabilizes the error
system. It should be emphasized that the control input and the output satisfy
the constraints, i.e., max

t
‖u(t)‖2 ≤ µ and max

t
‖e(t)‖2 ≤ λ. In addition, note
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Fig. 12. Control result 2 (Example 11)

that this control result is better than that of Example 13 since the decay rate
is considered in the design.

4.2 Case 2

If the cancellation problem is infeasible, i.e., all the elements in β ·S are not
near zero, the error system cannot be linearized. Then, we have
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Fig. 13. Control result 1 (Example 12)

se(t) =
r∑

i=1

hi(z(t))Aix(t)−
r∑

i=1

hi(zR(t))AixR(t) + Bu(t)

=
r∑

i=1

hi(z(t))Aie(t)

+
r∑

i=1

{
hi(z(t))− hi(zR(t))

}
AixR(t) + Bu(t) . (15)

Assume that z(t) = x(t) and zR(t) = xR(t). Then, the second term is almost
zero, i.e.,

r∑
i=1

{
hi(z(t))− hi(zR(t))

}
AixR(t) ≈ 0
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Fig. 14. Control result 2 (Example 12)

if ‖e(t)‖ ≤ δ, where δ is a small value. As a result, the overall system is
approximated as

ė(t) =
r∑

i=1

hi(z(t))Aie(t) + Bu(t) .

Consider the following fuzzy feedback law for the error system:

u(t) =

⎧⎪⎨⎪⎩−
r∑

i=1

hi(z(t))F ie(t) ‖e(t)‖ ≤ δ

0 o.w.

Then, if there exist the feedback gains F i satisfying the stability conditions
described in Chap. 3 of [17], the stability of the error system is guaranteed
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Fig. 15. Control result 1 (Example 13)

near the equilibrium points, i.e., ‖e(t)‖ ≤ δ. The feedback gains F i can be
found by solving the design problems in Sect. 3. It should be noted that this
approach guarantees only the local stability. This is the same idea as the
OGY method [2]. Therefore, the converging time to an equilibrium point is
very long in general, but the control effort is small.

Example 15. We design a stable fuzzy controller for Rossler’s equation with
the input using the “case 2” design technique. The design problem is feasible.
Figures 19 and 20 show the control result, where the control starts at t =
40 (s). However, the control input is added around 83 s and stabilizes the error
system and the synchronization is realized.
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Fig. 16. Control result 2 (Example 13)

5 Chaotic Model Following Control

Section 4 has presented the synchronization of chaotic systems, where Ai

matrices of the fuzzy model should be the same as Ai matrices of the fuzzy
reference model. This section presents the chaotic model following control
(CMFC), where Ai matrices of the fuzzy model do not have to be the same
as Ai matrices of the fuzzy reference model. Therefore, the CMFC is more
difficult than the synchronization. In this section, the controlled objects are
assumed to be chaotic systems. However, note that the CMFC can be de-
signed for general nonlinear systems represented by TS fuzzy models.

Consider a reference fuzzy model which represents a reference chaotic
system.

Reference Rule i:

If zR1(t) is Ni1 and · · · and zRp(t) is Nip ,

then sxR(t) = DixR(t), i = 1, 2, . . . , rR . (16)

Assume that xR(t) ∈ Rn and Ai �= Di. The defuzzification process is given
as

sxR(t) =
rR∑
i=1

vi(zR(t))DixR(t) . (17)
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Fig. 17. Control result 1 (Example 14)

The CMFC can be regarded as nonlinear model following control for the
reference fuzzy model (17). Assume that e(t) = x(t)−xR(t). Then, from (2)
and (17), we have

se(t) =
r∑

i=1

hi(z(t))Aix(t)

−
rR∑
i=1

vi(zR(t))DixR(t) + Bu(t) . (18)

Consider two sub-fuzzy controllers to realize the CMFC:

Subcontroller A
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Fig. 18. Control result 2 (Example 14)

Control Rule i:

If z1(t) is Mi1 and · · · and zp(t) is Mip ,

thenuA(t) = −F ix(t), i = 1, 2, . . . , r . (19)

Subcontroller B

Control Rule i:

If zR1(t) is Ni1 and · · · and zRp(t) is Nip ,

thenuB(t) = KixR(t), i = 1, 2, . . . , rR . (20)

The combination of the subcontroller A and the subcontroller B is represented
as

u(t) = uA(t) + uB(t)

= −
r∑

i=1

hi(z(t))F ix(t) +
rR∑
i=1

vi(zR(t))KixR(t) . (21)

By substituting (21) into (18), the overall control system is represented as
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Fig. 19. Control result 1 (Example 15)

se(t) =
r∑

i=1

hi(z(t))(Ai −BF i)x(t)

−
rR∑
i=1

vi(zR(t))(Di −BKi)xR(t) . (22)

Theorem 2. The chaotic system represented by the fuzzy system (2) is ex-
actly linearized via the fuzzy controller (21) if there exist the feedback gains
F i and Kj such that
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Fig. 20. Control result 2 (Example 15)

{
(A1 −BF 1)− (Ai −BF i)

}T

×
{
(A1 −BF 1)− (Ai −BF i)

}
= 0, i = 2, 3, . . . , r , (23)

{
(A1 −BF 1)− (Dj −BKj)

}T

×
{
(A1 −BF 1)− (Dj −BKj)

}
= 0, i = 1, 2, . . . , rR . (24)

Then, the overall control system is linearized as sx(t) = Gx(t), where
G = A1 −BF 1 = Ai −BF i = Dj −BKj .

Proof. It is obvious that G = A1 −BF 1 = Ai −BF i = Dj −BKj if the
conditions (23) and (24) hold.

An important remark is in order here.

Remark 4. The CMFC reduces to the synchronization problem when r =
rR and Ai = Dj for i = 1 ∼ r and j = 1 ∼ rR. The CMFC reduces
to the stabilization problem when Di = 0 and xR(0) = 0 for i = 1 ∼
rR. Therefore, as mentioned above, the CMFC problem is more general and
difficult than the stabilization and synchronization problems. In addition,
the controller design described here can be applied not only to stabilization
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and synchronization but also to the CMFC in the same control framework.
Therefore the LMI-based methodology represents a unified approach to the
problem of controlling chaos.

If B is a nonsingular matrix, the error system is exactly linearized and
stabilized using F i = B−1(G − Ai) and Ki = B−1(G − Di). However,
the assumption that B is a nonsingular matrix is very strict. On the other
hand, if B is not a nonsingular matrix, Theorem 2 can be utilized by the
approximation CT technique. LMI conditions can be derived from Theorem
2 in the same way as described in Sect. 3.

Note that G is not always a stable matrix even if the conditions of The-
orem 2 hold. From Theorem 2 and the stability conditions, we define the
following design problems:

Stable fuzzy controller design using the CT: CFS

minimize
X ,S,M 1,M 2,··· ,M r

β

subject to X > 0, β > 0,S > 0[
I S
S I

]
> 0 ,

−AiX + BM i −XAT
i + MT

i BT > 0, i = 1, 2, . . . , r ,[
βS

{(A1X −BM1)− (AiX −BM i)}

{(A1X −BM1)− (AiX −BM i)}T
I

]
> 0, i = 2, 3, . . . , r ,

[
βS

{(A1X −BM1)− (DjX −BN j)}

{(A1X −BM1)− (DjX −BN j)}T
I

]
> 0, j = 1, 2, . . . , rR ,

where X = P−1, M1 = F 1X, M i = F iX, and N j = KjX.

Stable fuzzy controller design using the CT: DFS

minimize
X ,S,M 1,M 2,...,M r

β

subject to X > 0, β > 0,S > 0[
I S
S I

]
> 0 ,
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X XAi −MT

i BT

AiX −BM i X

]
> 0, i = 1, 2, . . . , r ,[

βS
{(A1X −BM1)− (AiX −BM i)}

{(A1X −BM1)− (AiX −BM i)}T
I

]
> 0, i = 2, 3, . . . , r ,

[
βS

{(A1X −BM1)− (DjX −BN j)}

{(A1X −BM1)− (DjX −BN j)}T
I

]
> 0, j = 1, 2, . . . , rR ,

where X = P−1, M1 = F 1X, M i = F iX, and N j = KjX.

Decay rate fuzzy controller design using the CT: CFS

maximize
X ,S,M 1,M 2,...,M r

α

minimize
X ,S,M 1,M 2,...,M r

β

subject to X > 0, β > 0, α > 0,S > 0[
I S
S I

]
> 0 ,

−AiX + BM i −XAT
i + MT

i BT − 2αX > 0, i = 1, 2, · · · , r ,[
βS

{(A1X −BM1)− (AiX −BM i)}

{(A1X −BM1)− (AiX −BM i)}T
I

]
> 0, i = 2, 3, . . . , r ,

[
βS

{(A1X −BM1)− (DjX −BN j)}

{(A1X −BM1)− (DjX −BN j)}T
I

]
> 0, j = 1, 2, . . . , rR ,

where X = P−1, M1 = F 1X, M i = F iX, and N j = KjX.

Decay rate fuzzy controller design using the CT: DFS
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minimize
X ,S,M 1,M 2,...,M r

α

minimize
X ,S,M 1,M 2,··· ,M r

β

subject to X > 0, β > 0, 0 ≤ α < 1,S > 0[
I S
S I

]
> 0 ,[

αX XAi −MT
i BT

AiX −BM i X

]
< 0, i = 1, 2, . . . , r ,[

βS
{(A1X −BM1)− (AiX −BM i)}

{(A1X −BM1)− (AiX −BM i)}T
I

]
> 0, i = 2, 3, . . . , r[

βS
{(A1X −BM1)− (DjX −BN j)}

{(A1X −BM1)− (DjX −BN j)}T
I

]
> 0, j = 1, 2, . . . , rR ,

where X = P−1, M1 = F 1X, M i = F iX, and N j = KjX.

Remark 5. In the LMIs, if all elements in β · S are near zero, i.e., β · S ≈ 0,
the cancellation problems for decay rate fuzzy controller designs are feasible.
In this case, G = A1 − BF 1 = Ai − BF i = Dj − BKj ∀i, j and G is a
stable matrix.

Example 16. Let us consider the fuzzy model for Lorenz’s equation with
three inputs term. The parameters are set as follows:

Rule 1: IF x1(t) is M1 THEN ẋ(t) = A1x(t) + Bu(t) ,
Rule 2 : IF x1(t) is M2 THEN ẋ(t) = A2x(t) + Bu(t) ,

where x(t) = [x1(t) x2(t) x3(t)]
T,

A1 =

⎡⎣−0.5 · a 0.5 · a 0
2 · c −1 −d
0 d −0.5 · b

⎤⎦ ,

A2 =

⎡⎣−0.5 · a 0.5 · a 0
2 · c −1 d
0 −d −0.5 · b

⎤⎦ ,

B =

⎡⎣1 0 0
0 1 0
0 0 1

⎤⎦ ,
M1(x1(t)) =

1
2

(
1 +

x1(t)
d

)
, M2(x1(t)) =

1
2

(
1− x1(t)

d

)
.
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Fig. 21. Control result 1 (Example 16)

Consider the following reference fuzzy model:

Reference Rule 1: IF x1R(t) is N1 THEN ẋR(t) = D1xR(t) ,
Reference Rule 2 : IF x1R(t) is N2 THEN ẋR(t) = D2xR(t) ,

where xR(t) = [xR1(t) xR2(t) xR3(t)]
T,

D1 =

⎡⎣−a a 0
c −1 −d
0 d −b

⎤⎦ , D2 =

⎡⎣−a a 0
c −1 d
0 −d −b

⎤⎦ ,
N1(xR1(t)) =

1
2

(
1 +

xR1(t)
d

)
, N2(xR1(t)) =

1
2

(
1− xR1(t)

d

)
,
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Fig. 22. Control result 2 (Example 16)

where xR1(t) ∈ [−d d]. The stable fuzzy controller design using the CT is
feasible. Figures 21 and 22 show the control result, where the control input is
added at t > 10 (s). It can be seen that the designed fuzzy controller realizes
the CMFC i.e., e1(t) → 0, e2(t) → 0, and e3(t) → 0.

Example 17. Let us consider the fuzzy model for Rossler’s equation with the
input term. The parameters are set as follows:

Rule 1: IF x1(t) is M1 THEN ẋ(t) = A1x(t) + Bu(t) ,
Rule 2 : IF x1(t) is M2 THEN ẋ(t) = A2x(t) + Bu(t) ,

where x(t) = [x1(t) x2(t) x3(t)]
T,
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Fig. 23. Control result 1 (Example 17)

A1 =

⎡⎣ 0 −1 −1
1 a 0

0.5 · b 0 −d

⎤⎦ , A2 =

⎡⎣ 0 −1 −1
1 a 0

0.5 · b 0 d

⎤⎦ ,

B =

⎡⎣0
0
1

⎤⎦ ,
M1(x1(t)) =

1
2

(
1 +

2 · c− x1(t)
d

)
, M2(x1(t)) =

1
2

(
1− 2 · c− x1(t)

d

)
.

Consider the following reference fuzzy model:
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Fig. 24. Control result 2 (Example 17)

Reference Rule 1: IF x1R(t) is N1 THEN ẋR(t) = D1xR(t) ,
Reference Rule 2 : IF x1R(t) is N2 THEN ẋR(t) = D2xR(t) ,

where xR(t) = [xR1(t) xR2(t) xR3(t)]
T,

D1 =

⎡⎣0 −1 −1
1 a 0
b 0 −d

⎤⎦ , D2 =

⎡⎣0 −1 −1
1 a 0
b 0 d

⎤⎦ ,
N1(xR1(t)) =

1
2

(
1 +

c− xR1(t)
d

)
, N2(xR1(t)) =

1
2

(
1− c− xR1(t)

d

)
,

where xR1(t) ∈ [c−d c+d]. The stable fuzzy controller design using the CT
is feasible. Figures 23 and 24 show the control result, where the control input
is added at t > 30 (s). The designed fuzzy controller realizes the CMFC.

6 Concluding Remarks

In this chapter we have explored the interplay between fuzzy modeling and
control systems and chaos. A comprehensive framework based on TS fuzzy
models and PDC control methodology has been proposed for the modeling
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and control of chaotic systems. We have shown that fuzzy modeling tech-
niques can be used to model chaotic dynamical systems. We have presented
a unified approach on controlling chaos, addressing a number of control prob-
lems such as stabilization, synchronization and chaotic model following via
the LMI-based fuzzy control system design scheme.
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Fuzzy Model Identification Using a Hybrid
mGA Scheme with Application
to Chaotic System Modeling

Ho Jae Lee, Jin Bae Park, and Young Hoon Joo

Abstract. In constructing a successful fuzzy model for a complex chaotic system,
identification of its constituent parameters is an important yet difficult problem,
which is traditionally tackled by a time-consuming trial-and-error process. In this
chapter, we develop an automatic fuzzy-rule-based learning method for approximat-
ing the concerned system from a set of input–output data. The approach consists
of two stages: (1) Using the hybrid messy genetic algorithm (mGA) together with
a new coding technique, both structure and parameters of the zero-order Takagi–
Sugeno fuzzy model are coarsely optimized. The mGA is well suited to this task
because of its flexible representability of fuzzy inference systems: (2) The identified
fuzzy inference system is then fine-tuned by the gradient descent method. In order
to demonstrate the usefulness of the proposed scheme, we finally apply the method
to approximating the chaotic Mackey–Glass equation.

1 Introduction

Identification of chaotic dynamical systems has recently attracted increas-
ing attention from engineering, physics, mathematics, and biomedical com-
munities [1]. Various difficulties encountered in tackling this subject have
posed a real need for using some kind of intelligent approaches. To date,
much endeavor have been devoted; to name a few, see [2–7] and references
therein. Among them, fuzzy logic theory has been remarkably successful in
a wide spectrum of applications such as control [8, 9] as well as identifica-
tion [2, 6, 7, 10–12] of complex chaotic systems.

Since fuzzy logic controllers and identifiers are implemented by fuzzy in-
ference systems, it is crucial to design such inference systems with minimum
numbers of rules and optimized parameters. In general, a fuzzy modeling
procedure is composed of two stages: structure identification and parameter
identification. There have been many studies on automatic identification tech-
nologies of fuzzy inference systems. For example, Horikawa proposed three
types of fuzzy neural networks with back-propagation learning and studied
an automatic identification method of fuzzy models for nonlinear function
approximation problems [5]. These neural network-based methods, however,
suffer from convergence to local minima, and their learning performance se-
riously depends on initial parameter settings.

H.J. Lee et al.: Fuzzy Model Identification Using a Hybrid mGA Scheme with Application
to Chaotic System Modeling, StudFuzz 187, 81–97 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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On the contrary, genetic algorithms (GA), which are based on the mecha-
nism of biological genetics and natural selection, are studied as an alternative
method for the identification of fuzzy inference systems [2, 6, 7, 12, 13]. How-
ever, these works are based on the standard genetic algorithm (SGA) algo-
rithm proposed by Goldberg [14]. To assure convergence to a global optima,
strings in GAs must be coded so that short, highly fit allele combination can
well combine to form the optima. If the linkage between necessary allele com-
binations is too weak, GAs will converge to suboptimal solutions [2]. In 1989,
Goldberg proposed the messy genetic algorithm (mGA) to tackle this prob-
lem and has lately been further developed in [15]. Chowdhury successfully
applied the mGA to the design of a fuzzy neural network-based controller for
an inverted pendulum [16].

In this chapter, we propose an automatic scheme for identification of
fuzzy inference systems with a hybrid algorithm using the mGA and the
gradient descent method. The proposed identification method consists of two
stages: (1) The first step is to determine the structure and parameters of
the fuzzy inference system for the given complex nonlinear, even chaotic,
system coarsely by the mGA, which processes the variable-length strings in
contrast to conventional GAs that work with fixed-length strings. Since the
coding scheme of the mGA is much more flexible than that of the SGA, we
use a two-dimensional string representation of the fuzzy inference system:(2)
The second step is the procedure that fine-tunes the parameters of the fuzzy
model, obtained from the mGA in the first step, by the gradient descent
method.

This chapter is organized as follows: Section 2 describes the Takagi–
Sugeno fuzzy inference system adopted for identification. Section 3, briefly
introduces, the mGA and shows how the fuzzy rule base is represented using
the mGA. In Sect. 4, the proposed method is verified through the fuzzy model
identification problem of chaotic time series generated by the Mackey–Glass
delay differential equation. Conclusions are drawn in Sect. 5.

2 Takagi–Sugeno Fuzzy Systems

A fuzzy model can provide a linguistic description for a complex, ill-defined,
and even chaotic systems, in which conventional mathematical model may fail
to give a satisfactory result. Fuzzy modeling is an approach to constructing
fuzzy inference systems based on given input–output data or knowledge of
experienced human experts [10].

In this chapter, we use the zero-order Takagi–Sugeno (TS) fuzzy system,
in which the consequent parts are represented as crisp numbers [10, 17]. The
ith rule is described by

Ri : IF x1 is about Γ i
1 and · · · and xp is about Γ i

p

THEN yi = wi (1)
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where Ri, i ∈ IR = {1, 2, . . . , r}, denotes the ith fuzzy inference rule, Γ i
j , j ∈

IP = {1, 2, . . . , p}, is fuzzy set, xj ∈ R is input variable, yi ∈ R is an output
variable, and wi ∈ R takes fuzzy singleton. To measure the membership value
of xj in Γ i

j , we use the triangular membership function Γ i
j : Uxj

⊂ R[ai
j ,cj

i ]
→

R[0,1] mathematically modeled by

Γ i
j (xj) = max

{
min

{
xj − (bij − ai

j)
ai

j

,
bij + cij − xj

cij

}
, 0

}
(2)

where Uxj
is the universe of discourse of xj and the triplet {ai

j , b
i
j , c

i
j}, (i, j) ∈

IR × IP , are left width, center, and right width for (2). By using singleton
fuzzifier, product inference, and center average defuzzifier, (1) is globally
inferred as

ŷ =
∑r

i θi(x)w
i∑r

i=1 θi(x)

where θi(x) =
∏p

j=1 Γ
i
j (xj).

2.1 Identification Objective

The identification objective is to construct (1) that minimizes the modeling
error, which will be defined in the sequel together with the size of fuzzy
inference system. This includes the following tasks:

• Structure identification: Find a minimal structure of the fuzzy inference
system with a minimal number of rules, r.

• Parameter identification: Optimize the membership function parameters,
ai

j , b
i
j , c

i
j , and wi.

Structure identification is related to the selection of the input variables and
partition of the input space into some fuzzy subspaces. The determination of
the partition of the input space leads to the determination of the number of
rules of the TS fuzzy model in our case. Parameter identification is related
to describing an input–output relation in each subspace.

3 Fuzzy Model Identification
by Using mGA Hybrid Scheme

3.1 GA Preliminaries

GAs are optimization methods in which a stochastic search algorithm is per-
formed based on the basic biological principles of selection, crossover, and
mutation. A GA scheme encodes each point in a solution space into a string
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composing of binary, integer, or real values, called a chromosome. Each point
is assigned a fitness value from zero to one, which is usually taken to be
the same as the objective function to be maximized, although they can be
different.

Unlike other optimization methods, such as the familiar gradient descent
method, a GA scheme keeps a set of points as a population, which is evolved
repeatedly toward a better and then even better fitness value. In each gen-
eration, the GA generates a new population using genetic operators such as
crossover and mutation. Through these operations, individuals with higher
fitness values are more likely to survive and to participate in the next genetic
operations. After a number of generations, individuals with higher fitness val-
ues are kept in the population while the others are eliminated. GAs, therefore,
can ensure a gradual increasing of improving solutions, till a desired optimal
or suboptimal solution is obtained.

A pseudocode outline of a usual GA is shown in Algorithm 1, where the
population at time t is represented by a time-dependent variable, P = P (t),
with an initial population P (0), which can be randomly estimated when the
algorithm is run for an application.

Algorithm 1 GA elements
1: set t = 0; initialize P (t).
2: evaluate P (t).
3: while not finished do
4: t ⇐ t + 1.
5: reproduce P (t) from P (t − 1).
6: crossover individuals in P (t).
7: mutate individuals in P (t).
8: evaluate P (t).
9: end while

GA was initiated by Holland [18] and has been applied to fuzzy modeling
and fuzzy control since the late 1980s. Recently, the GA has been success-
fully applied to a wide variety of problems such as search, optimization, and
machine learning in science, commerce [7], and engineering fields [12, 13, 16].
The major reason for this wide range of application is that GA searches for
optima within the entire complex solution space, which grants the robustness
against localization of an optimal solution.

3.2 The mGA

Despite empirical success of GAs, there have been some objections to their
use. The most crucial objection is the so-called linkage problem [15]. The
linkage problem arises because of the coding of the problem parameters. To
guarantee convergence to the global optima, strings in GA must be coded
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so that highly fit allele combinations can well combine to form the optima.
Unfortunately, the necessary linkages associated with a given problem are
usually not known. mGA works by searching for tight building blocks and
then combining them together to form the optima in a way that respects a
version of the schema theorem [15, 19]. Unlike the conventional GAs, mGAs
use variable-length strings that may be overspecified or underspecified with
respect to the problem being solved. mGAs use simple cut-and-splice oper-
ators rather than fixed-length crossover operations. As shown in Fig. 1, an
mGA divides the evolutionary into two phases: a primordial phase and a
juxtapositional phase.

In the primordial phase, individual that just evolves out of many candi-
date strings of a population is selected; that is, there is no evolution, but only
the selection operation is used to increasingly sample the highly fit strings
and the size of the population is reduced during the selection process. As
shown in Fig. 1, the size is fixed after certain generations. In the juxtapo-
sitional phase, instead of crossover and mutation used in conventional GAs,
the cut-and-splice operator is used to evolve individuals.

primordial phase

cut population
at every generatoin

juxtapositional phase
...
...
...
.. population size is not changed

max geneprimary genecutpop genegene=0

Fig. 1. Typical population reduction schedule

3.3 mGA Operators

In a crossover operation of the conventional GA, the position of the crossover
point for two parent individuals has a common locus. But the standard
crossover operator is no longer suitable to handle strings of variable length.
Therefore, mGAs use a cut-and-splice operator instead. A schematic diagram
of the cut-and-splice operation is shown as Fig. 2. The cut operator simply
cuts the string in two parts at a randomly chosen position. The splice op-
erator concatenates two strings, which could have been previously cut, in a
randomly chosen order. When the cut-and-splice operators are applied simul-
taneously to two parent strings they alter in a similar way to the ordinary
crossover operator.

The cut-and-splice operation is similar to the crossover operation of
the conventional GA, but there are many differences between them. While the
parent strings have the same crossover point in the crossover operation, the
cut-and-splice operation strings do not need to have the same crossover point.
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1 2

3 4

cut

..............................................................

1

1

2

2

3

3

4

4

splice

Fig. 2. The cut-and-splice operation

Therefore, the length of the child strings can be changed. As shown in Fig. 2,
it is possible that two parent strings generate four different child strings. In
real applications, only two child strings are selected and used. The cut opera-
tor cuts a string at an arbitrary point with probability pc. The splice operator
splices two arbitrarily selected strings with probability ps. These probabilities
are applied as mating rate and mutation rate in the conventional GA.

3.4 Coding Method for Fuzzy Modeling Using mGA

In the conventional mGA, genes are composed of the index of a gene and the
value corresponds to it. For example, a gene (1, 3) corresponds to the first gene
in the string whose allele value is 3. Unlike the conventional GA, the order of
genes in the string is not important in mGA, i.e., the strings {(1, 3)(3, 1)(2, 1)}
and {(2, 1)(1, 3)(3, 1)} are considered identical. Notice that we have not re-
quired all genes to be present, nor have we precluded the possibility of multi-
ple, possibly contradictory, genes. For example, string {(1, 3)(2, 1)} and string
{(1, 3)(2, 1)(3, 2)(1, 1)} are both valid. The former is said to be underspecified
because there is no gene that corresponds to the third gene (3, •), and the
latter is said to be overspecified. However, in most problems, the string needs
to be fully complemented with genes. In mGA, this underspecification prob-
lem is easily tackled by using templates. Templates are used to fill unspecified
genes in the string with locally optimal solutions. Since a local optimal so-
lution is not known a priori, the levelwise mGA is adopted in this chapter,
which is said to be overspecified. One way of solving this problem is to select
a gene from among conflicted genes based on the first-come-first-serve rule.
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0.0694 0.3046 0.0076 0.4659 0.6822 0.3361 0.3406 1
0.1014 0.1897 0.3734 0.2330 0.3028 0.4191 0.1897 0

1 2 3 4 5 6 7 8
1
2

premise part
consequent

part weight

rule
number

Fig. 3. An example of parameter matrix of fuzzy inference system

The next step is to design a proper structure of string that best represents
a given fuzzy inference system. Herein, we use the zero-order TS fuzzy model
in a scatter partition style. This string may contain one or more substring(s).
Each string, therefore, contains a possible solution to the problem. Fitness
function is used to evaluate how well a string solves the problem. In the
conventional mGA coding of a fuzzy inference system, integer number coding
is adopted to represent fuzzy inference systems [20]. In this chapter, real
number coding and integer number coding are used. The parameters and the
structure of the fuzzy model are encoded into one or more substring(s) in
the string. Parameters and structure of the fuzzy inference system can be
represented in a two-dimensional matrix form as shown in Fig. 3.

Figure 3 is an example of a parameter matrix of a fuzzy inference sys-
tem and of the raw structure of string not represented by the mGA coding.
The fuzzy inference system in Fig. 3 has two inputs and one output. Here,
we slightly modify the coding of the conventional mGA string to effectively
represent the fuzzy inference system.

In the proposed method, one gene is composed of three elements, i.e., the
gene {(i, j, h)} corresponds to the (i, j)th element in the parameter matrix
with value h. Figure 4 shows an example of string and decoding of the string,
while the obtained fuzzy inference system is shown in Fig. 5.

(1, 1, 0.0694)(1, 2, 0.3046)(1, 3, 0.0076)(1, 4, 0.4659)(1, 5, 0.6822)(1, 6, 0.3361)(1, 7, 0.3406)(1, 8, 1)

0.6822

0.4659 0.3361

0.3046

0.0694 0.0076

0.3406

2nd rule is invalid

(2, 1, 0.0694)(2, 2, 0.1897)(2, 3, 0.3734)(2, 4, 0.2330)(2, 5, 0.3028)(2, 6, 0.4191)(2, 7, 0.1897)(2, 8, 0)

0.3028

0.2330 0.4191

0.1897

0.1014 0.3734

0.1897

1st rule is valid

Fig. 4. An example of mGA string and decoding process



88 H.J. Lee et al.

IF x1 is and x2 is THEN y is

0.3046

0.0694 0.0076

0.6822

0.4659 0.3361

0.3406

Fig. 5. The fuzzy inference system obtained by the proposed decoding process

As can be seen above, the proposed mGA coding scheme has a more
flexible structure than those of the conventional mGA coding schemes. It is
more suitable to fuzzy modeling of chaotic nonlinear systems. By using the
above structure, the new string can efficiently describe the accuracy and the
size of the fuzzy inference system.

3.5 Multiobjective Fitness Function

Since the GA is guided by the fitness function, we also have to consider more
delicate fitness functions to determine the accuracy and the size of the fuzzy
inference system. The performance measures of accuracy and size of the fuzzy
inference system are

Paccuracy =
1
n

n∑
k=1

(ŷk − yk)2

Psize = r

where yk and ŷk are training and inferred outputs matched with the train-
ing input data {{xj}h

j∈IP
}h∈IN

. The purpose of identification is to reduce
Paccuracy and Psize. However, the mGA uses the fitness value, which has to
be maximized in general. So we have to determine the performance index for
fitness function transformation:

f(Paccuracy,Psize) = λ
1

1 + Paccuracy
+ (1− λ) 1

1 + Psize
(3)

where λ ∈ R[0,1] is the weighting factor; large λ values would result in a
more accurate fuzzy inference system and vice versa. Figure 6 illustrates the
pseudocode for the mGA.

3.6 Fine-tuning

As stated in the previous subsection, the fact that GA exploits only the coding
and the objective function value to determine plausible trials in the next
generation gives the flexibility for its application to optimization problems.
Since GA is a parallel searching algorithm through the solution space, the
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local convergence problem does not appear. However, GA is a blind search
algorithm; hence it has disadvantages when compared to other methods that
make use of problem-specific information. Although GA can effectively find a
near global optimal solution, it will take a long time to converge to the optimal
solution. When problem-specific information exists, it may be advantageous
to combine this information with GA to improve the ultimate genetic search
performance and to guarantee the convergence to a global optimum.

In the subsequent procedure, the gradient descent method carries out the
identification of parameters, which fine-tunes the parameters of the member-
ship functions in premise part and the fuzzy singletones in consequence, after
achieving a simultaneous parameter/structure identification of fuzzy model
by the mGA. Using this hybrid scheme, we are able to identify the best fuzzy
model in the view of global optimization.

In this hybrid scheme, we set an objective function to be minimized as

PFT =
1
n

n∑
k=1

(ŷk − yk)2

The parameter update rules for a fuzzy inference system can be easily derived
by using the chain rule. The following are the obtained learning rules:

ai
j(k + 1) = ai

j(k)− κa
∂PFT

∂ai
j

bij(k + 1) = bij(k)− κb
∂PFT

∂bij

cij(k + 1) = cij(k)− κc
∂PFT

∂cij

wi(k + 1) = wi(k)− κw
∂PFT

∂wi

where κa, κb, κc, and κw are learning rates and the partial derivative are
further computed by

∂PFT

∂ai
j

=
1∑r

i=1 θi(x)
(ŷ − y)(wi − ŷ)∂θi(x)

∂ai
j

∂PFT

∂bij
=

1∑r
i=1 θi(x)

(ŷ − y)(wi − ŷ)∂θi(x)
∂bij

∂PFT

∂cij
=

1∑r
i=1 θi(x)

(ŷ − y)(wi − ŷ)∂θi(x)
∂cij

∂PFT

∂wi
=

θi(x)∑r
i=1 θi(x)

(ŷ − y) .
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1 void mGA(maxera, popsize, maxgen, pcut, psplice, pmut) {
2 template = make_initial_template();
3 for (era = 1; era <= maxera; era++) {pop = init_pop(era);
4 fitness = evalpopu(pop);
5 // Check if there are better individual in the initialized pop
6 // than TEMPLATE
7 if (check_init_pop(pop)) {
8 // Primordial phase
9 while(primoridal_phase) {

10 pop = binary_tournament_selection(pop);
11 }
12 // Juxtapositionl phase
13 while(juxtapositional_phase) {
14 fitness = evalpopu(pop);
15 // Generate next population via cut, splice,
16 // and mutation
17 pop = nextpopu(pop, fitness, pcut, psplice, pmut);
18 }
19 // Update template
20 best = find_best(pop);
21 template = string2template(best);
22 }
23 // No individual in the initial population is better than the template
24 else {
25 // Do nothing
26 } } }

Fig. 6. Pseudocode of mGA

3.7 Summary: Algorithm Description

Step 1: Obtain a sample input–output data set for identification. The initial
parameters such as population size, maximum number of rules of
the fuzzy inference system, maximum number of generations, or the
tolerance, cut, splice, and mutation rate are initially provided by the
designer.

Step 2: Perform the mGA identification routine shown in Fig. 6.
Step 3: Choose the best individual and using this individual construct initial

parameters of the fuzzy inference system. Apply the gradient descent
algorithm to fine-tune the parameters of the fuzzy inference system.

4 An Example: The Chaotic Mackey–Glass Time Series

We seek to find a TS fuzzy model of the Mackey–Glass chaotic equation. The
Mackey–Glass equation is a time delay differential equation first proposed as
a model of white blood cell production in a human body [21]. Because rates
of stem cell proliferation entail a time delay, periodic dynamics and chaos
can be obtained. Indeed, Mackey and Glass have suggested that long-term
fluctuations in cell counts observed in certain forms of leukemia are evidence
for these behaviors in vivo:

dx

dt
=

ax(t− τ)
1 + x(t− τ)c

− bx(t) (4)
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0.6

1x(t − 2τ)
0.6

1

x(t)

0.2

1.4
x(t − τ)

Fig. 7. Mackey–Glass chaotic attractor

where x(t) ∈ R is a change of blood cell concentration; the constants are
commonly chosen as a = 0.2, b = 0.1, and c = 10. The delay parameter τ
determines the behavior of (4): for τ < 4.53, there is a stable fixed point
attractor; for 4.53 � τ < 13.3, there is a stable limit cycle attractor; period
doubling begins at τ = 13.3 and continues until τ = 16.8; for τ > 16.8, the
chaos emerges from (4). Figure 7 shows a spatial orbit of (x(t), x(t− τ), x(t−
2τ)), where τ = 17 and x(t) = 1.2, t ∈ R�0.

Our goal is to find some TS fuzzy inference system to produce a pre-
diction of x(k + D), ŷ by using a subset of the time series data up to k.
Mathematically, the task is formulated to identify some chaotic mapping FD

with several parameters as

ŷ = FD(x(k), x(k −∆), . . . , x(k − (p− 1)∆)

in terms of zero-order TS fuzzy inference system, where ∆ is a lag time and
p is an embedding dimension. Mapping FD implies that prediction of x, x̂
at the time ahead D can be obtained through a proper combinations of p
points of the Mackey–Glass series space ∆ apart. We choose the parameters
as p = 4 and ∆ = D = 6, i.e., {xi}i∈I4 = {x(k−18), x(k−12), x(k−6), x(k)}.
Numerical pointwise solutions are generated based on dde23.m function in
MATLAB with an initial condition x(0) = 1.2, a history function x(t) = 1.2
for t ∈ R�0, and time lag τ = 17, from which 1000 input–output data pairs,
{xi; y}i∈I4 = {x(k − 18), x(k − 12), x(k − 6), x(k);x(k + 6)}, k ∈ I1023 =
{24, 25, . . . , 1023}, are extracted. For convenience, all training data pair are
normalized to be between 0 and 1. In order to use levelwise processing of
the mGA, we first randomly select an initial template. The standard mGA
provides all possible building blocks as an initial population in each level.
However, it is impossible for the standard mGA to provide all possible build-
ing blocks as an initial population since real number coding is adopted in the
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proposed method. We solve this problem by simply constructing a large num-
ber of strings in the initial population. The mean-square-error (MSE) is used
as the cost function. Although we generate initial population and template
at random, we apply some problem-specific information in the initialization
process. First, the initial widths of the membership functions are random real
numbers of the interval

[
0,W

]
, which divides input space properly:

W =
2(xmax − xmin)

R

where xmin = mink∈I[24,1023] x(k), xmax = maxk∈I[24,1023] x(k), and R is the
initial number of the fuzzy rules. Second, we extend the initial range of the
input space, in which the initial center values of membership functions are
randomly set to improve the accuracy of the fuzzy model in the extremes of
the input space [22]. In this example, we use the extend input space

[
0.2, 1.4

]
.

Initial parameters for the mGA hybrid identification scheme are as follows:
Maximum number of era is 10, maximum size of initial population in each
era is 500, population size in juxtapositional phase is 400, splice probability
is ps = 1.0, cut probability is pc = 0.2, mutation probability is 0.2, and λ is
0.95. Large λ value means that we would have a more accurate fuzzy model
while the size of the fuzzy model is not reduced. The fitness function (3) is
adopted in the simulation.

Figure 8 shows the change of f(Paccuracy,Psize) during the mGA opti-
mization process. The change of f(Paccuracy,Psize) from era 4 to era 10 is

0.8

0.85

0.9

0.95

1

1 50 100

f
(P

ac
cu

ra
cy

↪ P
si

ze
)

number of generation

0.75

Fig. 8. Change of f(Paccuracy,Psize) in the mGA tuning state: first era (line with
circle), second era (dashed line), third era (solid line)
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number of iteration

0.0006

0.0014

0.0022

Fig. 9. Change of PFT in the fine–tuning state

omitted since there are no better individual in the initial population than
the template. The value of f(Paccuracy,Psize) from the obtained fuzzy model
is 0.9979. In the fine-tuning stage, the learning rates κa, κb, κc, and κw are
1.0−5, 1.0−5, 1.0−5, and 1.0−4, respectively. The number of iteration is 10 000.
Figure 9 shows the change of PFT in the fine-tuning stage. Since we focus on
the accuracy of the fuzzy model, the MSE of the fuzzy model obtained by
the proposed method is superior to other methods. However, the number of
fuzzy rules are not reduced very much.

The parameters of the fuzzy model identified by the proposed method
are listed in Table 1 and its membership function are illustrated in Fig. 10
for visual understanding. In Table 2, we compare the performance of our
fuzzy model with other models, in which our model outperforms the method
in [7] in both performance and number of rules. Figure 11 compares the
actual output of the Mackey–Glass and the output from the identified fuzzy
model.
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Fig. 10. Identified fuzzy rules by the proposed method
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Table 2. Comparison of the proposed method with other method

Reference Number of Rules RMSE

[7] 164 0.0378
Ours 10 0.0245
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Fig. 11. Comparison of the actual output of Mackey–Glass chaotic time series
(dashed line) and the output from the identified fuzzy model (solid line)

5 Conclusions

In predicting the chaotic time series via fuzzy inference systems, the most
difficult obstacle is the identification of an optimal fuzzy model. In order to
resolve this problem, this study presented an approach to constructing an
optimal fuzzy model from a given complex chaotic input–output data by hy-
bridly combining the merits of the mGA with our new coding scheme for
coarsely optimizing structure and parameters of the concerned fuzzy model,
together with the gradient descent method for fine-tuning. The simulation re-
sult on the chaotic Mackey–Glass time series data convincingly demonstrated
the advantage of the developed identification method. It implies the potential
of the proposed method for reliable chaos applications.
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Fuzzy Control of Chaos

Oscar Calvo

Abstract. In this chapter a Mamdani fuzzy model based fuzzy control technique
is proposed to control chaotic systems, whose dynamics is complex and unknown,
to the unstable periodic orbits (UPO). Some empirical tricks are introduced for
building up a proper fuzzy rule base and designing a fuzzy controller. Finally,
an example of fuzzy control of the Chua’s circuit is presented to illustrate the
effectiveness of the proposed approach.

1 Control of Chaos

1.1 Introduction

Chaos is present in many aspects of life. Initially regarded as a curiosity that
interested only the mathematics community, it was later revamped when
observed in meteorology, physics, chemistry, and biology. The observations
of chaos in Nature, in many forms, caught the attention and span a huge
number of publications in that area. In particular there has been a recent
interest in the field of synchronization of neurons in human brain. Further
developments on chaos quickly triggered practical applications in the fields
of mechanical and electrical engineering, communications, laser dynamics,
chemistry, biology, oceanography, and economics to name a few. Furthermore,
beneficial aspect of chaos fueled the study of synchronization and control.
Examples are found in practically all the areas mentioned above.

A recent review by Andrievskii [1] summarizes the main uses of chaos con-
trol. For instance, in mechanical engineering where the applications started
as experimental demos for educational purposes, such as the control of pen-
dulum [2], beams, and plates, these were quickly developed in more realistic
applications such as the control of vibroformers [3], stabilization of crane os-
cillations [4], spacecrafts [5], satellite, and others. Physics is probably the field
where chaos control became a paradigm and a discipline itself. Important con-
tribution has been made in control of turbulence [6], dynamics of lasers [7],
plasma [8], and many others. In chemistry, it has been used in the control of
chemical reactions, such as the stabilization of the Belousov–Zhabotinsky [9]
reaction, electrodissociation of nickel-based electrodes in sulfuric acid [10],
and many more. In biology, chaos suppression has been considered in eco-
logical systems, control of algae growth [11], beetle populations, and many

O. Calvo: Fuzzy Control of Chaos, StudFuzz 187, 99–125 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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applications in medicine. In particular, very interesting results have been ob-
tained in the treatment of cardiac arrhythmias [12], reduction of seasonal
epidemics, and brain synchronization. In electrical and electronic engineer-
ing, applications initially started for the simulation of the classical sets of
nonlinear differential equations (Rossler, Lorenz, Chua) with analog circuits
but further developments have been made in the control of chaos in DC–DC
converters [13], DC motors [14], transducer and power systems [15], magnetic
suspension [16], etc. In the last decade, chaos synchronization has proven to
be useful to encrypt communications [17], as presented in the special issue
of IEEE Transactions on Circuits and Systems [18]. In chemical industries,
chaos control has been used for chaotic stirring of liquids, materials [19], and
gases. There are many more applications of chaos control; those mentioned
in this chapter are only a few samples of the numerous applications of chaos
control existing in the literature.

1.2 Different Techniques of Chaos Control

Chaos is usually associated with randomness and intermittency [20], since
chaotic systems show random conduct with bursts of synchronization and
almost periodic behavior. According to Ditto [20], a definition of chaos would
consist of a superposition of (unstable) periodic motions. Another important
observation of the chaotic dynamics is its sensitivity to small changes in the
parameters or to the initial conditions (butterfly effect). A distinction of the
techniques of chaos control could be made based on the use of feedback [21].
Closed-loop techniques monitor some variable in the phase plane and by
perturbating temporarily a parameter or variable bring the dynamics to the
desired orbit. On the other hand, open-loop system produces the same effect
by changing slightly some parameter or property of the system, permanently,
without the feedback.

One of the techniques based on the closed-loop approach consists of the
following: while observing carefully the motion on the phase plane, we can de-
tect the presence of unstable periodic orbits (UPOs). These orbits are present
in an infinite number and are embedded in a compact area of the phase plane,
a chaotic attractor. A small perturbation in the parameters of the system
kicks the dynamics to jump from one orbit to another, very close to it. This
property was utilized by Ott et al. [22] to propose method for the control of
chaos that became a benchmark in the field.

1.3 OGY Method

A key aspect in the application of the Ott–Grebogi–York (OGY) method-
ology is the observation of the dynamics of the particle in the phase plane.
The trajectory in a simple dynamical system such as a pendulum would be
a circle. If the pendulum is composed of two masses joined by a link (double
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pendulum), the dynamics gets much more complicated. There will be tra-
jectories of double period, observed as two circles in the phase plane. If we
intersect the trajectory with a plane (Poincaré surface) and plot the results,
we would visualize a single point for the first case and two points for the
second (periodicity two). If a system shows a random behavior, the Poincaré
surface would be populated by dots. In chaotic systems, since they perform
as a superposition of infinite periodic motions, there will be infinite points
confined in a geometric structure called chaotic attractor. A slight perturba-
tion to the system will change the position of the attractor on the surface
and hence the location of the unstable fixed points. The idea underneath the
method is to perturb the attractor slightly, so that future intersections of the
chaotic orbits with the plane will bring them back to the stable manifolds of
the attractor, confining the dynamics always in the vicinity of the UPOs.

In order to apply the OGY method, the following assumptions are usually
made [21, 22]:

a) The dynamics of the system can be described by an n-dimensional map
ξn+1 = F (ξn, p), where in the continuous case the map is obtained using
a Poincaré surface.

b) p is a parameter that can be changed slightly around its nominal value.
c) For this value of pnominal, there is a periodic orbit embedded in the at-

tractor where the system will stay when stabilized.
d) The orbit changes smoothly with changes in p and the global dynamics

of the system is slightly affected.

Let us assume that we have a three-dimensional continuous time differential
equation

∂x

∂t
= F (x, p) with x ∈ � and p ∈ � (1)

where p is a parameter that can be changed within a range p±∆pmax.
We choose a Poincaré surface Σ which defines a map P . Given ξ0 (point

belonging to the map P), we identify it as the point where the trajectory
intersects the surfaceΣ. Since F depends on p, the Poincaré map also depends
on p : P (ξ, p) ∈ �2. We can choose one of the UPOs of the attractors as
the target of our control. For simplicity, let us consider a period-one orbit
(fixed point on map P ). Let us call ξF an unstable point of P . For p =
p0, P (ξF , p0) = ξF . Now, consider a neighborhood of (ξF , p0). By a linear
approximation procedure, we can obtain

P (ξ, p) ≈ P (ξF , p0) +A(ξ − ξF ) + ω(p− p0) (2)

where A is the Jacobian matrix of P (ξF , p0) and ω = ∂P (ξF ,p)
∂p is the derivative

of P with respect to p. Stabilization is achieved by introducing feedback
P (ξ) = p0 + cT (ξ − ξF ), where cT = λµ

fT
µ
fT

µ and λu is the unstable eigenvalue
and fµ is the eigenvector of A.
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1.4 Occasional Proportional Feedback Method

A derivation of the OGY method for one dimensions is the occasional pro-
portional feedback (OPF) method. Hunt proposed this method to stabilize
the orbits of a chaotic circuit [23]. In the OPF method, the control signal is
computed using only one variable:

P (ξ) = P0 = c(ξ − ξF ) (3)

We are interested in the values of c for which ξ is a fixed point, that is,
ξ = ξF . An application of the OPF to a double scroll dynamical system was
presented by Ogorzalek [24]. He applied the OPF to stabilize the orbits of a
Chua’s circuit by using a shock absorber concept.

Satisfying the conditions enumerated above to the one-dimensional case:
Let ξF be the fixed point of the map P , for the parameter value p∗. In the close
vicinity of ξF we assume that the dynamics is linear and given by ξn+1−ξF =
M(ξn − ξF ). The elements of the matrix M can be computed using the time
series in the neighbourhood of ξF . We can obtain the eigenvalues λs and
λu (stable and unstable) and the corresponding eigenvectors es and eu that
provide the stable and unstable directions around the fixed point. Defining
fs and fu the contravariant eigenvectors fses = fueu = 1 and fseu = fueu we
find a linear approximation for small |pn − p∗|:

ξn+1 = spn + [λueufu + λsesfs][ξn − spn] (4)

where s = ∂ξF (p)
∂p .

1.4.1 Implementation Details

In the implementation made by Hunt, the OPF algorithm used to stabilize
the amplitude of the limit cycles was based on measuring the local maximum
of the output. The control law suggested that

uk

{
kyk if |yk| < ∆
0 otherwise

(5)

yk = yk − y∗ and y∗ = h(x0) (6)

where y∗ represents the desired upper level (target) of the oscillation. A
problem of this method resides in estimation of the Poincaré map because of
the uncertainty of the linearized plant model.

2 Fuzzy Control of Chaos

2.1 Introduction

As mentioned above, chaos control exploits the sensitivity to initial condi-
tions and to perturbations that is inherent in chaos as a means to stabilize
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UPOs within a chaotic attractor. The control can operate by altering sys-
tem variables or system parameters, and either by discrete corrections or by
continuous feedback. Many methods of chaos control have been derived and
tested [19, 22, 25]. Why then consider fuzzy control of chaos?

A fuzzy controller works by controlling a conventional control method. We
propose that fuzzy control can become useful together with one of these other
methods—as an extra layer of control—in order to improve the electiveness
of the control in terms of the size of the region over which control is possible,
the robustness to noise, and the ability to control long period orbits. We will
put forward the idea of fuzzy control of chaos, and we provide an example
showing how a fuzzy controller applying OPF to one of the system parameters
can control chaos in Chua’s circuit.

2.2 Fuzzy Control

Fuzzy control [26, 27] is based on the theory of fuzzy sets and fuzzy logic
[28, 29]. The principle behind the technique is that imprecise data can be
classified into sets having fuzzy rather than sharp boundaries, which can be
manipulated to provide a framework for approximate reasoning in the face
of imprecise and uncertain information. Given a datum, x, a fuzzy set A
is said to contain x with a degree of membership µA(x), where µA(x) can
take any value in the domain [0,1]. Fuzzy sets are often given descriptive
names (called linguistic variables) such as FAST ; the membership function
µFAST (x) is then used to reject the similarity between values of x and the
contextual meaning of FAST. For example, if x represents the speed of a car
in kilometers per hour and FAST is to be used to classify cars traveling fast,
then FAST might have a membership function equal to zero for speeds below
90 km/h and equal to one for speeds above 130 km/h, with a curve joining
these two extremes for speeds between these values. The degree of truth of
the statement the car is travelling fast is then evaluated by reading off the
value of the membership function corresponding to the car’s speed.

Logical operations on fuzzy sets require an extension of the rules of classi-
cal logic. The three fundamental Boolean logic operations intersection, union,
and complement have fuzzy counterparts defined by extension of the rules of
Boolean logic. A fuzzy expert system uses a set of membership functions and
fuzzy logic rules to reason about data. The rules are of the form “if x is FAST
and y is SLOW then z is MEDIUM,” where x and y are input variables, z
is an output variable, and SLOW, MEDIUM, and FAST are linguistic vari-
ables. The set of rules in a fuzzy expert system is known as the rule base,
and together with the database of input and output membership functions it
comprises the knowledge base of the system.

A fuzzy expert system functions in four steps. The first is fuzzification,
during which the membership functions defined on the input variables are
applied to their actual values, to determine the degree of truth for each rule
premise. Next is inference, during which the truth-value for the premise of



104 O. Calvo

each rule is computed and applied to the conclusion part of each rule. This
results in one fuzzy set to be assigned to each output variable for each rule.
Third is composition in which all of the fuzzy sets assigned to each output
variable are combined together to form a single fuzzy set for each output
variable. Finally comes defuzzification, which converts the fuzzy output set
to a crisp (nonfuzzy) number.

A fuzzy controller may then be designed using a fuzzy expert system to
perform fuzzy logic operations on fuzzy sets representing linguistic variables
in a qualitative set of control rules (see Fig. 1).

Fig. 1. Fuzzy logic controller block diagram

As a simple metaphor of fuzzy control in practice, consider the experience
of balancing a stick vertically on the palm of ones hand. The equations of
motion for the stick (a pendulum at its unstable fixed point) are well known,
but we do not integrate these equations in order to balance the stick. Rather,
we stare at the top of the stick and carry out a type of fuzzy control to keep
the stick in the air: we move our hand slowly when the stick leans by a small
angle and fast when it leans by a larger angle. Our ability to balance the
stick despite the imprecision of our knowledge of the system is at the heart
of fuzzy control.

3 Fuzzy Logic Controller

A fuzzy logic controller (FLC) is a special controller that is used to modify
the dynamics of a closed-loop system based on heuristic rules. It elaborates
a control law from a set of rules that mimic the reactions of a human expert
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to various situations, mainly, when the system to be controlled is vaguely
defined, is very complex and nonlinear, or when its dynamics is unknown
and the sensors provide noisy and incomplete data.

The diagram shown in Fig. 1 corresponds to a single-input–single-output
(SISO) controller. The input variable, usually an analog signal, must be sam-
pled and converted to a discrete signal for its further processing. An FLC
can be seen as a special case of a digital controller with a nonlinear behavior
as we will show later. The main elements of the FLC are a fuzzification unit,
an inference engine, a knowledge base, and the defuzzification unit. We will
analyze each of these units separately.

Knowledge Base: The fuzzy knowledge base (KB) contains the knowledge
necessary to solve a given problem along with the proper control objectives.
The main components of the KB are the rules, mapping the fuzzy inputs to
fuzzy values of the outputs, and the memberships functions of the variables
to the fuzzy sets. The rules contain all the knowledge expressing the control
relations and are expressed in a format like

IF E IS PB AND ∆E is PM THEN u IS NB (7)

where E and ∆E are either input variables coming from the sensors or state
variables and u is an output variable that will influence the actuators. PB,
PM, and NB are the linguistic labels (fuzzy sets) defined for the variables E,
∆E, and u in their universes of discourse.

In general, if X is a collection of objects denoted generically by x, then a
fuzzy set A in X is defined as a set of ordered pairs: A = {(x , µA(x)) ∈ X},
where µA(x)} is called the membership function for the fuzzy set A. The
membership function maps each element of X (the universe of discourse) to
a membership grade between 0 and 1. In human terms (natural language) a
rule could state “If the temperature error is positive big and its derivative is
positive medium the fuel injected should be decreased.”

Inference Engine: The inference engine is responsible for the implications,
using the information stored in the database and applying recursively the
rules by a recursive composition inference mechanism. It performs a fuzzy
inference produce control actions, evaluating the KB to the fuzzified inputs.

Fuzzifier: This component associates a membership value to the inputs, for
a given partitioning of the universe of discourse. It transforms a crisp data
in a fuzzy variable by a verbalization process. The fuzzification mechanism
involves the following operations:

a) Measure the input value.
b) Scale the inputs, normalizing them to the universe of discourse.
c) Determine the degree of match of every input with and the defined fuzzy

sets, using the membership functions
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Defuzzifier: The fuzzy consequences of the fired rules must be combined to
provide a unique control action. Defuzzification implies a mapping from a
fuzzy space into a crisp value. No single optimal strategy exists. There are
several methods, and the matter is still a subject of research. Nevertheless,
only a few methods cover most of the practical cases. They are the center of
area (COA), center of largest area (COLA), Maximum (MAX), and mean of
maximum (MOM).

3.1 Fuzzy Logic Controller Design

Unfortunately there is no standard procedure for the design of an FLC, but it
is possible to define the sequence of steps involved to achieve a good design.
The methodology employed follows the general guidelines described clearly
in the literature [30, 31]. As it will be demonstrated later, the solution is no
unique and the design is based on heuristic knowledge of the process to be
controlled and a trial-and-error process until an adequate response is obtained
(covering our specifications) in a iterative tuning procedure. Many methods
exist nowadays to automate the tuning procedure. These can be based on
genetic algorithms, neural networks [32], or other optimization technique.
When the adjustment is performed on-line, we have the self-organized fuzzy
logic controller (SOFLC), though stability considerations must be taken.

3.1.1 Methodology

The methodology proposed to build a static FLC can be summarized by the
following steps:

1. Variables and universe of discourse selection.
2. Adoption of a proper fuzzification strategy, including

2.1 input and output spaces partitioning,
2.2 selection of membership functions of primary fuzzy sets,
2.3 discretization and normalization of the universes of discourse, and
2.4 completeness of the spaces.

3. Rule base construction:
3.1 input and control variable selection.
3.2 choice of the control rules.

4. Decision making logic selection:
4.1 implication definition,
4.2 interpretation of AND and OR connectives,
4.3 definition of composition operator,
4.4 inference mechanism, and
4.5 defuzzifier strategy.
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3.1.2 Variables and Universe of Discourse Selection

The first step in any control system is to identify the input and output vari-
ables in the controller. It is also necessary to assert the ranges of these vari-
ables. Two different scenarios could be observed. If there is previous expertise,
the FLC develops from human knowledge, in which case this stage is com-
pleted to mimic the human expert. But if there is no previous knowledge
about the behavior of the systems we have to select the control action (out-
put variable of the controller) and monitor relevant variables, usually error
signal and its first derivative. These signals come directly from the sensors. It
is necessary to identify the ranges and the standby condition of the different
signals involved.

3.1.3 Fuzzification Strategy

This is related with the vagueness and imprecision and transforms a measure
in a subjective value. It is a mapping between crisp measured data into a
membership value for a given fuzzy set of the input universe of discourse. It
is necessary to define the fuzzy sets and their support and the partitioning
of the universes. By increasing the number of fuzzy sets we obtain a more
powerful and flexible control. If we use the error and its first derivative as
input variables, we can adjust the parameters to obtain an adequate dynamic
response. Typical sets are Positive Small (PM), Negative Medium (NM), etc.
The increase in power on describing the problem must be balanced by the
growth in the number of rules involved, since they grow as the product of
the number of fuzzy sets for each input. Typical number of linguistic labels
ranges from two to nine for each input and output variable, but usually a
trial-and-error procedure will give us a logical number.

There are many articles discussing the shape of the membership functions,
but no big difference exists on the results of the control action obtained for
the different possible shapes (triangular, trapezoidal, gaussian, sigmoid, etc.).
Most of the commercial software tools prefer trapezoidal (and triangular as
a special case) because of its simple implementation.

The fuzzification operator converts a crisp value into a fuzzy singleton
for a given universe of discourse. A singleton is not a real fuzzy variable, in
the sense that it represents an input x0 as a fuzzy set A with a membership
µa(x) that is equal to zero, except at x0, where it equals one. Now, if the
input is noisy, like in most practical cases and we can characterize the noise
by its standard deviation, the support of the fuzzy set for the given input
signal must be at least twice the standard deviation of the noise to make
sense. In some cases designers take the probability distribution of the noise
as the membership function, but it should be clear that the approximation
to fuzzy sets is purely a deterministic process. It must also be observed that
the partitioning process explained for the inputs is also valid for the outputs,
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Table 1. Discretization and partitioning example

Level Range NB NM NS ZE PS PM PB

−6 x0 < −3.2 1.0 0.3 0.0 0.0 0.0 0.0 0.0
−5 −3.2 < x0 < −1.6 0.7 0.7 0.0 0.0 0.0 0.0 0.0
−4 −1.6 < x0 < −08 0.3 1.0 0.3 0.0 0.0 0.0 0.0
−3 −0.8 < x0 < −0.4 0.0 0.7 0.7 0.0 0.0 0.0 0.0
−2 −0.4 < x0 < −0.2 0.0 0.3 1.0 0.3 0.0 0.0 0.0
−1 −0.2 < x0 < −0.1 0.0 0.0 0.7 0.7 0.0 0.0 0.0

0 −0.1 < x0 < 0.1 0.0 0.0 0.3 1.0 0.3 0.0 0.0
1 0.1 < x0 < 0.2 0.0 0.0 0.0 0.7 0.7 0.0 0.0
2 0.2 < x0 < 0.4 0.0 0.0 0.0 0.3 1.0 0.3 0.0
3 0.4 < x0 < 0.8 0.0 0.0 0.0 0.0 0.7 0.7 0.0
4 0.8 < x0 < 1.6 0.0 0.0 0.0 0.0 0.3 1.0 0.3
5 1.6 < x0 < 3.2 0.0 0.0 0.0 0.0 0.0 0.7 0.7
6 3.2 < x0 0.0 0.0 0.0 0.0 0.0 0.3 1.0

keeping in mind that the output sent to the perform a control action (valve,
current, etc.) must be a real number.

3.1.4 Discretization and Normalization
of the Universes of Discourse

When a digital computer is used to process the information on a fuzzy sys-
tem, such information must be quantified first. If the universe of discourse is
continuous, it must also be discretized. Besides, to simplify the processing,
the universe of discourse may also be normalized.

Discretization is quantification into segments (quantification levels). An
example of discretization that includes a non-linear mapping between the
physical inputs and the segments of the universe of discourse is shown in Ta-
ble 1. The number of levels influence directly on the smoothness of the control
action (fine control) but commensurable with the word-length memory saving
constrains. Also the time is discrete through the sampling process, turning a
continuous x(t) signal into a discrete time variable x(k). Furthermore, since it
is expected that the controller provides a control action for any possible state
of the system under control, it is necessary that every value of inputs and
outputs variables of the FLC should be assigned to a fuzzy set (completeness
of the sets). The union of the supports should cover all the ranges of input
and output variables. There is even an intrinsic overlapping of sets and the
crossover points of consecutive fuzzy sets are usually in 0.5. This means that
when there is no dominant rule between two conflicting ones, they contribute
with equal weight to the output.

The normalization implies that the physical values of both the inputs
and the outputs are mapped on a predetermined normalized domain. This
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Fig. 2. Symmetric partitioning of universe of discourse in fuzzy sets

Fig. 3. Scales adjustment. (a) Correct; (b) incorrect

process involves a scaling, or multiplication, of the physical input by a nor-
malization factor. For example, to obtain a symmetric partitioning as shown
in Fig. 2, where all the membership functions are symmetrical and have the
same support length, some (or all) of the inputs and output variables should
be multiplied by certain gain. By inspecting the evolution of the variables
in the phase plane we can decide the proper values of the gains. Figure 3
shows and example of correct (a) and incorrect (b) gain adjustments. The
advantages obtained is that fuzzification, rule firing, and defuzzification can
be designed independently of the physical domains of inputs and output vari-
ables. This facilitates the implementation of an FLC in a microprocessor. In
most of the cases the fuzzy sets are symmetrical with equal support length.

3.1.5 Rule Base Design

A fuzzy system is defined by a set of linguistic statements that embed the
knowledge of the expert. This is usually in the form of if–then–else rules,
which are implemented in fuzzy logic. The rules are linguistic relations be-
tween linguistic variables. The choice of variables and memberships has a
strong influence on the behavior of the FLC. There are essentially four modes
of obtaining the fuzzy control rules as reported in [31].
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a) Knowledge and experience of a control engineer knowledgeable on the
process to be controlled: This is probably the easiest way to elicit the
knowledge and the form by which the KB was supposed to be designed.
The knowledge is organized by the expert in the form of variables de-
scribed by natural language. Consequently, the terms of this language
are translated into linguistic labels and their relation is established in
the rule base. The knowledge may came from the expert itself, as stated
in operation manuals or by an interview with operators, or somebody
acting as the knowledge engineer. Starting from a minimum set of rules
that constitute the first prototype, the growth will be incremental, based
mainly on trial and error until the desired response is achieved.

b) Operator’s control actions: In many situations it is difficult to find a
model that describes mathematically the process to be controlled, or the
model is too complex or with too many variables involved. Nevertheless
the operator can bring the system to a successful behavior. A simple
example of this is parking a car backward—a simple chore for a human
that can be put as a set of rules that mimic the human actions.

c) Fuzzy model of the process: It is possible to make a linguistic description
of the dynamical characteristics of the process under control. In general
terms, this is a fuzzy model of the process. Given the model, fuzzy rules
can be obtained to control it, even optimizing some figure of merit. This
strategy has given very good results. A well-known model is the para-
metric model, proposed by Sugeno [33, 34] and used widely nowadays.
The rules of the TS model have the following format:

Ri : IF s1 is Si
1 AND s2 is Si

2 AND s3 is Si
3 AND · · · sp is Si

p

THEN vi = ai
0 + ai

1s1 + ai
2s2 + · · ·+ ai

psp

d) Learning: This technique implies the automatic modification of the rule-
base based on some optimization criteria. The precursor of this method
was Mamdani [35, 36] who built a self organized controller (SOC) com-
posed two sets of rules. The first one is the standard FLC that takes care
of the control actions. The second rulebase acts as a supervisor exhibit-
ing a human like behavior, tuning the control rules. In this hierarchy of
two sets of rules, the supervisory rules, known as “meta rules”, mod-
ify the rulebase based on performance index. This technique developed
into the adaptive FLC, becoming very popular nowadays. The popular
one is the neuro-fuzzy controllers, like ANFIS [32] based on Genetic al-
gorithms.

e) Phase plane: When little experience is available on the process to be
controlled, this methodology is useful since we can learn about the process
dynamics and obtain control actions based on intuitive ideas. We will
develop this approach in detail and use it later in this chapter [31].

f) Looking at the transient waveform of the controlled variable it is possible
to divide it in time segments where the variable and its derivative keep
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Fig. 4. Transient response to step inputs and time partitioning for rule derivation

the same sign as shown in Fig. 4. It is useful to define as critical points,
the time instants where any of the two variables becomes zero (a, b, c, d,
etc., in Fig. 4). For each of the zones just defined (i, ii, iii, iv, v, etc.), a
control action will be applied with a double purpose: to reduce overshoot
and risetime. To achieve this goal simple rules must be followed. For
instance, in zone i, when the error is big and positive and the derivative
is negative, to decrease the risetime, the control action should be large and
positive. In region ii, the error is negative and the slope is still negative, so
the best action would be to try decrease the overshoot, slowing down the
response with a negative control action (like pressing the brake pedal).

With these “common sense” rules Table 2 is obtained as a preliminary
rulebase with three linguistic variables for the two inputs and the control
action. Rules are interpreted as follows: “If the error is Positive (P) and
the derivative is Zero (Z) then the control action is Positive (P).” This rule
(Rule 1) is applicable to points a, e, and i and to the rules that follow the
same pattern.

From these initial rules we can build a control table of two inputs, also
known as inference matrix. Plotting the matrix in three dimensions would
yield the standard control surface. In effect, entering the surface with the
error and its derivative, the height of the surface is directly the control action.
The matrix just developed, with 19 rules, is shown in Fig. 5a.

The same zones and critical values identified in the transient response
can be seen in a phase plot, as shown in Fig. 6. Using this plot and with
the same objectives set before, reducing overshoot and risetime, we can infer
the control actions to be applied. After dividing the phase plane in five areas
(A1, A2, A3, A4, and ZE), and considering the critical points defined before
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Fig. 5. Inference matrix: a) incomplete; b) complete

(a, b, c, ... etc.) we can deduct some of the general rules that govern the FLC
(metarules):

a) If E = ∆E, keep the output of the FLC ∆u = 0.
b) If E goes naturally to zero, at a right speed, do nothing.
c) If E does not corrects itself, ∆U will be different from zero. Its sign and

magnitude will depend on E and ∆E according to the following rules:
1. At the critical points, when the signal crosses the zero axis (E = 0)

(b, d, f, ...) sgn(∆u) = sgn(∆E).
2. At peaks and valleys (∆E = 0) (c, e, g, ...): sgn(∆u) = sgn(∆E).
3. In the area denoted as A1 we want to shorten the risetime when E is

big and in A2 we want to prevent overshoot when E is small, then
∆u > 0 when we are far from zero.

Table 2. Initial rule base

Rule E ∆E Control Reference Value

1 PB ZE PB a
2 PM ZE PM e
3 PS ZE PS i
4 ZE NB NB b
5 ZE NN NM f
6 ZE NS NS j
7 NB ZE NB c
8 NM ZE NM j
9 NS ZE NS k

10 ZE PB PB d
11 ZE PM PM h
12 ZE PS PS i
13 ZE ZE ZE Desired Value
14 PB NS PM i (rise time)
15 PS NB NM i (overshoot)
16 NB PS NM iii
17 NS PB PM iii
18 PS NS ZE ix
19 NS PS ZE xi
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Table 3.

E NB NM NS ZE PS PM PB
µ0 NB NM NS ZE PS PM PB

∆u lower or equal to zero when we are getting closer to the way point
.

4. In the area A2 we want to prevent the overshoot by making ∆u < 0.
5. In the area A3 (similar reasoning as in A1)
∆u greater or equal zero when we are converging to the setpoint
∆u < 0 when |E| is far from zero.

6. In the Area A4 we want to reduce the overshoot on the valley, then
∆u > 0.

The meta rules allow us to determine the sign of ∆u. For its magnitude
we should consider that when ∆E ≈ 0, then u = u0, where u0 takes the
values shown in Table 3. When ∆E is different from 0, then u = (u0 + ∆E )
+ C, where C is a compensation factor, usually zero.

The sum, can be considered as a linguistic sum

PM + PS = PL,PS + PL = PL,PS +NM = NS, etc.

When E is big (NM, NL, PM, PL), ∆E has little influence, and we choose
C to speed up the response. When |E| is small (ZS, PS, NS ), ∆E has a big
influence and we can choose C to have a small |u| and prevent overshoot.

The relation between the phase plane and the inference matrix is depicted
in Fig. 7.

reduce
overshoot

reduce
risetime

Fig. 6. Rule determination by phase plane partitionnig
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Fig. 7. Phase plane and inference matrix relation

Completeness

The controller must generate outputs for any fuzzy input state. Assuming
these states are represented by x, the previous condition can be stated as
follows:

∀x ∈ X ∃
1≤i≤n

Xt(x) > ε ε ∈ [0.1]

It is desirable that E exceeds 0.5 to be sure that at least a dominant rule
fires (situation contemplated at the KB level). This feature guarantees that
linguistic labels cover all the universes of discourse. In effect, if for every value
of the input and the output variables there exists a fuzzy set to which they
belong, and a rule that is related with those sets, the controller will provide
an output for any combination of the inputs. If, instead we detect that this
is not the case, a rule should be added to cover the unforeseen situation and
rule out any possible hole on the rulebase. For instance, by simple inspection
of Fig. 5 we could check if there is a case not contemplated. There will be also
a violation of this condition when any of the linguistic labels is not present;
in other words, there are holes in the description of part of the support of
the universe of discourse.

Control Rules Interaction

In an FLC, there is a strong interaction between rules. The presence of any
rule affects the behavior of the whole set. This set is responsible for the
shape of the control surface. Lets assume we add an i-Rule to the base. If
the surface is represented by R and the inputs by X, the composition of both
will produce a new fuzzy set Y that is different. This can be stated formally
as

∃
1≤j<i≤n

Xi ·R �= Yj

It has been shown [37] that the interaction between the rules depends on the
type of implication chosen.
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Fig. 8. Comparison of defuzzification strategies

Rulebase Consistency

Contradictory rules proposing opposed control actions must be eliminated
or replaced in the KB. In an FLC with few rules, the consistency can be
determined by simple inspection, but in cases with a large number of rules,
it is necessary to make the test more systematic. There are methods based
on the possibility (PI) and necessity (ND) definitions that can provide an
inconsistency index for each rule in the set [38].

3.1.6 Defuzzification Strategy

Once we are finished with the above steps, the result of the rules aggregation
(the inference process) will be a fuzzy set. Nevertheless, a physical actuator
must be driven by a nonfuzzy signal. For instance, if the actuator is a valve,
the controller’s output acting over a servomotor controlling the valve does
not support commands such as apply a small positive voltage. It is therefore
necessary to have a block capable of converting the fuzzy signal into a crisp
value, being the best possible representation of the distribution of probabil-
ities of the control action inferred. This is the purpose of the deffuzzifier.
The most popular strategies employed for this purpose are the criteria of
Maximum (MAX), the Mean of Maximum (MOM), and the Center of Area
(COA). The different results obtained with each method are shown in Fig. 8.

MAX Criteria

This method forces an output at the support value of the fuzzy set where the
possibility distribution of the control output has a maximum value. It may
present the problem of multiple maximum, mainly when the implication is
done with Mamdani minimum function. In that case the crisp value is not
unequivocally defined.

Mean of Maximum Criteria

The MOM generates a control action u0 that represents the average value of
the control actions with a maximum value in their membership functions:
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u0 =
l∑

j=1

wj

l

where wj is the support at which the membership function reaches a max-
imum. This criterion provides the best transient response. Unfortunately it
does not take into account the shape of the membership functions of the
output variables. The information lost in the process takes into account the
elicited knowledge of each rule and could affect the shape of the responses.

Center of Area Method

This is by far the most widely used criterion. It computes the center of
gravity of the output fuzzy set and uses its support as the crisp output of the
controller. In the case of a discrete universe, with n quantification levels, the
method provides

u0 =

∑n
j=1 µ(wj) · wj∑n

j=1 µ(wj)
(8)

The behavior of the FLC for this criterion is similar to the one obtained
with a conventional PI controller with variable gains. This method yields the
best static behavior since the quadratic error is the smallest of all.

3.1.7 Inference Mechanisms

So far we have shown how the data coming from the sensor is fuzzified and
depending on the similarity degree that present with the antecedents of the
rules, they fired with that level of activation (minimum of the AND for Mam-
dani). Later, the rules combine their consequents (max for Mamdani OR) on
a unique fuzzy set through a procedure known as aggregation. Finally, a de-
fuzzification operation is applied over this set, yielding to a crisp output, as
explained before, that is sent to the actuators. The whole procedure is known
as inference mechanism and is shown in Fig. 9. So far we have utilized the

Input 1 Input 2

Output

Fig. 9. Inference mechanisms for two inputs and one output
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Aggregation results =>

Fig. 10. Sugeno inference method

inference mechanism proposed by Ebrahim Mamdani and his colleagues from
the Queen Mary College [35].

Nevertheless, it is possible to imagine that instead of having fuzzy sets
at the consequents of the rules, we could have single values (singletons) with
amplitude proportional to the degree of firing of the rule (see Fig. 10). This
mechanism of inference was proposed by Sugeno [33] and it is widely used
nowadays in multiple applications. It presents some advantages that can be
easily appreciated. For instance, the defuzzification process is much simpler
and easier to implement in a computer since the activation value of each rule
is considered as the defuzzified output. For this reason it is usually the choice
for hardware implementations. The Sugeno systems are classified by their
order. For instance, a typical rule of order zero would be given as

if x is A and y is B then z = k

where A and B are fuzzy variables and k is a constant. Likewise, a Sugeno
rule of order one would be written as

if x is A and y is B then z = p∗x+ q∗y + r

where A and B are fuzzy variables and p, q, and r are constants.
We can look at these outputs as if they shift along the support depending

on the values of the inputs. Higher orders of the Sugeno inference do not show
a commensurable advantage on the results obtained, but they increase the
complexity of the computation. And that is why they are rarely employed.

Another attractive feature of this type of inference is the possibility of
guaranteeing continuity in the control surface simplifying its mathematical
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treatment. Besides, it adapts easily to adaptive control and identification
since it facilitates the incorporation of lineal techniques. It can be used easily
as a non-linear approximator or as a supervisor, interpolating between several
linear controllers adjusted for different operating points [32].

4 Fuzzy Chaos Control in Electronic Circuits: An
Introductory Example

As we mentioned before, to control a system necessitates perturbing it.
Whether to perturb the system via variables or parameters depends on which
are more readily accessible to be changed, which in turn depends on what type
of system is to be controlled, i.e., electronic, mechanical, optical, chemical,
biological, etc. Whether to perturb continuously or discretely is a question
of intrusiveness; it is less intrusive to the system, and less expensive to the
controller, to perturb discretely. Only when discrete control is not effective
might continuous control be considered.

As discussed in Sect. 1.3, Ott et al. [21] invented a method of applying
small feedback perturbations to an accessible system parameter in order to
control chaos. The OGY method uses the dynamics of the linearized map
around the orbit one wishes to control. Using the OGY method, one can
pick any UPO that exists within the attractor and stabilize it. The control
is imposed when the orbit crosses a Poincaré section constructed close to the
desired UPO. Since the perturbation applied is small, it is supposed that the
UPO is unaffected by the control.

As discussed in Sect. 1.4, OPF [19, 38] is a variant of the original OGY
chaos control method. Instead of using the unstable manifold of the attractor
to compute corrections, it uses one of the dynamical variables in a type of
one-dimensional OGY method.

This feedback could be applied continuously or discretely in time; in OPF
it is applied discretely. An OPF method exploits the strongly dissipative
nature of the flows often encountered, enabling one to control them with a
one-dimensional map. The method is easy to implement, and in many cases
one can stabilize high period unstable orbits by using multiple corrections per
period. It is a suitable method to base a fuzzy logic technique for the control
of chaos, since it requires no knowledge of a system model, but merely an
accessible system parameter.

4.1 Implementation Details and Experimental Results

Chua’s circuit [39, 40] exhibits chaotic behavior, which has been extensively
studied and whose dynamics is well known [41]. Recently, the OPF methods
has been used to control the circuit [23]. The control used an electronic circuit
to sample the peaks of the voltage across the negative resistance and if it fell
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Fig. 11. Membership functions of the input and output variables E, ∆E, and ∆a

within a window, centered about a by a set-point value, modified the slope of
the negative resistance by an amount proportional to the difference between
the set point and the peak value. The non-linear nature of this system and the
heuristic approach used to find the best set of parameters to take the system
to a given periodic orbit suggest that a fuzzy controller that can include
knowledge rules to achieve periodic orbits may provide significant gains over
the OPF alone.

We have implemented a fuzzy controller to control the nonlinearity of
the nonlinear element (a three segment nonlinear resistance) within Chua’s
circuit. We have followed the steps described in Sect. 3. The block dia-
gram of the controller is like the one already shown in Fig. 3. As we de-
scribed earlier, it consists of four blocks: knowledge base (KB), fuzzifica-
tion, inference, and defuzzification. The KB is composed of a data base
and a rule base. The data base consists of the input and output member-
ship functions (Fig. 11). Table 4 shows the quantification levels for these
memberships functions and the membership values for all five linguistic

Table 4. Ouantification levels and membership functions

Error, E −1 −0.75 −0.5 −0.25 0 0.25 0.5 0.75 1
Change in error, ∆E −1 −0.75 −0.5 −0.25 0 0.25 0.5 0.75 1
Control, ∆a −1 −0.75 −0.5 −0.25 0 0.25 0.5 0.75 1
Quantification level −4 −3 −2 −1 0 1 2 3 4

Linguistic Labels Membership Functions

Positive Big, PB 0 0 0 0 0 0 0 0.5 1
Positive Small, PS 0 0 0 0 0 0.5 1 0.5 0
Approximately Zero, AZ 0 0 0 0.5 1 0.5 0 0 0
Negative Small, NS 0 0.5 1 0.5 0 0 0 0 0
Negative Big, NB 1 0.5 0 0 0 0 0 0 0
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Fig. 12. The whole controller and control systme in the form of a block diagram,
including the fuzzy controller, the peak detector, the window comparator, and the
chua’s circuit system being controlled

Table 5. Rule table for the linguistic variables defined in Table 3

E

NB NS AZ PS PB

De NB NS NS AZ AZ
NB NB NS AZ AZ PS
NS NS NS AZ PS PB
AZ NS AZ AZ PS PB
PS NS AZ AZ PS PB
PB AZ AZ PS PS PB

sets. It provides the basis for the fuzzification, defuzzification, and inference
mechanisms. The rule base is made up of a set of linguistic rules mapping
inputs to control actions. Fuzzification converts the input signals E and ∆E
into fuzzified signals with membership values assigned to linguistic sets. The
inference mechanisms operate on each rule, applying fuzzy operations on the
antecedents and by compositional inference methods derives the consequents.
Finally, defuzzification converts the fuzzy outputs to control signals, which
in our case control is the slope of the negative resistance ∆a in Chua’s circuit
(Fig. 12). The fuzzification maps the error E and the change in the error ∆E
to the labels of the fuzzy sets. Scaling and quantification operations are ap-
plied to the inputs. The knowledge rules (Table 5) are represented as control
statements such as

“if E is NEGATIVE BIG and ∆E is NEGATIVE SMALL then ∆a is
NEGATIVE BIG”

The normalized equations representing the circuit are
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∆a = Fuzzy Controller Output×Gain× a

where f(x) represents the nonlinear element of the circuit. Changes in the
negative resistance were made by changing a by an amount

∂x

∂t
= α(y − x− f(x))

∂y

∂t
= x− y + z

∂z

∂t
= −βy

and
f(x) = bx+

1
2
(a− b)((x+ 1)(x− 1))

We have performed numerical simulations, both in C and in Simulink, of
Chua’s circuit controlled by the FLC. Figure 12 shows the whole control
system in the form of a block diagram, including Chua’s circuit, the fuzzy
controller, the peak detector, and the window comparator. Figure 13 gives a
sample output of the fuzzy controller stabilizing an unstable period-one orbit
by applying a single correction pulse per cycle of oscillation. By changing
the control parameters we can stabilize orbits of different periods. In Fig. 14
we illustrate more complex higher period orbits stabilized by the controller.

Fig. 13. The fuzzy controller stabilizes a previously unstable period-one orbit.
The control is switched on at time 20. The lower trace shows the correction pulses
applied by the controller
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Fig. 14. Trajectory traces show higher period orbits stabilized by the controller.
As before, the lower trace shows the correction pulses applied by the fuzzy control
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One can tune the fuzzy control over the circuit to achieve the type of response
required in a given situation by modifying some or all of the rules in the KB
of the system.

Of course, in the case of Chua’s circuit the system equations are available
and fuzzy logic is thus not necessary for control, but this simple example
permits us to see the possibilities that fuzzy control provides, by allowing a
nonlinear gain implemented in the form of knowledge based rules.

5 Conclusions

We have introduced the idea of using fuzzy logic for the control of chaos. The
FLCs are commonly used to control systems whose dynamics is complex and
unknown, but for expositional clarity here we have given an example of its
use with a well-studied chaotic system. We have shown that it is possible to
control chaos in Chua’s circuit using fuzzy control. Further work is necessary
to quantify the effectiveness of fuzzy control of chaos compared to alternative
methods, to identify ways in which to systematically build the knowledge
base for fuzzy control of a particular chaotic system, and to apply the fuzzy
controller to further chaotic systems.
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Chaos Control Using Fuzzy Controllers
(Mamdani Model)

Ahmad M. Harb and Issam Al-Smadi

Abstract. Controlling a strange attractor, or say, a chaotic attractor, is introduced
in this chapter. Because of the importance to control the undesirable behavior in
systems, researchers are investigating the use of linear and nonlinear controllers
either to get rid of such oscillations (in power systems) or to match two chaotic
systems (in secure communications). The idea of using the fuzzy logic concept for
controlling chaotic behavior is presented. There are two good reasons for using
the fuzzy control: first, mathematical model is not required for the process, and
second, the nonlinear controller can be developed empirically, without complicated
mathematics. The two systems are well-known models, so the first reason is not a
big deal, but we can take advantage from the second reason.

1 Introduction

Modern nonlinear theories, such as bifurcation and chaos, have been widely
used in many fields. Many researchers have used such theories to investigate
and analyze the stability problem. Abed and Varaiya [1], Dobson et al. [2],
and Harb et al. [3] used the bifurcation theory to analyze the stability of
voltage collapse and SSR phenomena in electrical power systems. Endo and
Chua [4] and Harb and Harb [5] analyzed the stability of phase-looked loop
(PLL) in communication systems. Nayfeh and Balachandran [6] and Harb
et al. [7] analyzed the stability of Duffing oscillator in mechanical systems.

Recently, research has been devoted toword the bifurcation and chaos
control of such mentioned systems. The main goal of bifurcation and chaos
control is stabilizing bifurcation branches, changing the type of bifurcation
from subcritical to supercritical Hopf bifurcation, and delaying the bifurca-
tions. Abed et al. [8–10] used state feedback nonlinear controllers to change
the type of the Hopf bifurcation and to suppress the amplitude of the limit
cycles at the vicinity of the Hopf bifurcation points. Ikhouane and Krstic [11],
Harb et al. [12, 13], and Zaher et al. [14–17] used recursive backstepping algo-
rithms to design nonlinear controllers to stabilize systems of chaotic behavior.

Fuzzy set theory has been used successfully in virtually all technical fields,
including modeling, control, and signal/image processing. Fuzzy control is a
rule-base system that is based on fuzzy logic. Since fuzzy is described as com-
puting with words rather than numbers, then fuzzy control can be described
as control with sentences rather than equations. In 1974, Professor Mamdani
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was the first to develop the concept of the fuzzy controller. Driankov et al. [18]
and Calvo and Cartwright [19] introduced the idea of fuzzy in chaos control.
Tang et al. [20], Mann et al. [21], Hu et al. [22], and Gradjevac [23] used
the PID fuzzy controller, while Hsu and Cheng [24] and Toliyat et al. [25]
designed a fuzzy controller to enhance power system stability. In this chapter
we are going to discuss how to design control signals based on fuzzy theory
to stabilize two chaotic systems.

The structure of this chapter is as follows: The next section introduces
basic definitions of fuzzy theory and discusses fuzzy logic controllers. In Sect.
3 the mathematical models of Lorenz equation and Chua’s circuit are in-
troduced. Section 4 discusses the numerical simulations in order to test the
performance of fuzzy controllers. Finally, some conclusions and comments are
given.

2 Fuzzy Logic Control Preliminaries and Background

2.1 Fuzzy Logic Control

After being mostly viewed as a controversial technology for more than two
decades, fuzzy logic has finally been accepted as an emerging technology since
the late 1980s. This is largely due to the wide array of successful applications
ranging from image processing to industrial control [26]. Compared with con-
ventional control approaches, fuzzy logic control (FLC) utilizes information
from domain experts and relies less on mathematical modeling of physical sys-
tems. The term fuzzy logic has been used in two different senses. In a narrow
sense, fuzzy logic refers to a logic system that generalizes classical two-valued
logic for reasoning under uncertainty. In a broad sense, fuzzy logic refers to
all of the theories and technologies that employ fuzzy sets, which are classes
with nonsharp boundaries [27]. Fuzzy logic control and modeling use only a
small portion of fuzzy mathematics that is available [26]. Fuzzy set theory
has been used successfully in virtually all technical fields, including modeling,
control, signal/image processing, except systems.

In the next section, the necessary background and preliminaries of the
theory of fuzzy logic, especially of FLC, will be discussed.

2.2 Basic Concepts of Fuzzy Logic

Fuzzy set theory was developed by Lotfi A. Zadeh, professor of computer
science at the University of California at Berkeley, to provide a mathemat-
ical tool for dealing with the concepts used in natural language (linguistic
variables). Fuzzy logic is basically multivalue logic that allows intermediate
values to be defined between conventional evaluations. In this section, we
give an introduction to the concept of fuzzy sets and membership functions
(MFs).
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2.2.1 Fuzzy Set

A fuzzy set is a set with smooth boundaries [26–28]. Fuzzy set theory general-
izes the classical set theory to allow partial membership. A set in classical set
theory “Boolean or conventional logic” has a sharp boundary, which uses the
black-and-white concept to represent the MF. An object either completely
belongs to the set or does not belong to the set at all [28]. It makes us draw
lines in the sand. A definition of fuzzy sets can be given as follows:

A fuzzy set is a set with smooth boundaries, which consists of a universe
of discourse (X) and an µ(x), that maps every element in the discourse to a
membership value between 0 and 1. Mathematically this can be represented
as follows: LetX be a collection of objects (X is the universel of discourse set),
then a fuzzy set A in X can be defined as a set of ordered pairs [26, 29, 30]:

A = {(x, µA(x)) |x ∈ X} (1)

where µA(x) is called the MF of x in A, and normally its values are limited
between 0 and 1. A value of µA(x) which is close to 1 implies that it is very
likely for x to be in A; on the other hand, a value of µA(x) near 0 denotes
nonmembership. Equivalently, µA(x) is the degree to which x ∈ A. When the
membership space contains only two points 0 and 1, A is a nonfuzzy (crisp)
set, and µA(x) is identical to the characteristic function of a nonfuzzy set [5].
Elements with zero degree of membership are not usually listed. When A is
a discrete (finite) set, the fuzzy sets may be expressed as in [29, 30].

A = µA(x1)/x1 + µA(x2)/x2 + · · ·+ µA(xn)/xn =
n∑

i=1

µA(xi)
xi

(2)

where “+” denotes the set theory union operator rather than the arithmetic
sum. The oblique line “/” does not denote division. Instead it denotes a
particular MF for a value on the universe of discourse. Fuzzy sets provide a
systematic means for dealing with uncertain and imprecise notation.

2.2.2 Membership Function

It was shown that a fuzzy set is completely characterized by its membership
functions (MFs), which can be described by a mathematical formula. In this
subsection, we will describe some of the most commonly used MF’s with
respect to their input and parameter, and describe in detail the MF types
utilized in this thesis.
Triangular membership function: A triangular MF is specified by three pa-
rameters a,b,c, with a < b < c, as follows [27, 29]:

trimf(x; a, b, c) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 , x < a
x−a
b−a , a ≤ x ≤ b
c−x
c−b , b ≤ x ≤ c
0 , x > c

(3)
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Trapezoidal membership function: A trapezoidal MF is specified by four pa-
rameters a, b, c, d, with a < b < c ≤ d, as follows [27, 29]:

trapmf(x; a, b, c, d) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, x ≤ a
x−a
b−a , a ≤ x ≤ b
1, b ≤ x ≤ c
d−x
d−c , c ≤ x ≤ d
0, d ≤ x

(4)

The triangular MF is a special case of the trapezoidal MF. Due to their
simple formulas and computational efficiency, both triangular and trapezoidal
MFs have been used widely in fuzzy logic control and modeling [26, 27, 30].

Gaussian membership function: A Gaussian MF is specified by two para-
meters mσ, where m represents the center and σ determines the width as
follows:

gaussmf(x;m,σ) = exp

(
−

(
x−m
σ

)2
)

(5)

We can control the shape of the function by adjusting the parameter σ.
A small σ will generate a “thin” MF, while a big σ will lead to a “flat” MF.

Bell-shaped membership function: A bell-shaped MF is specified by three
parameters a, b, c as follows:

bellmf(x; a, b, c) =
1

1 +
∣∣x−c

a

∣∣2b
(6)

where the parameter b is usually positive (if b is negative, the shape becomes
an upside-down bell); a and c are used to vary the center, while b is used to
control the slopes at the crossover.

Figure 1 shows the difference between fuzzy and crisp sets for the linguis-
tically variable Tall.

Figure 2 shows triangular, trapezoidal, Gaussian, and bell-shaped MFs,
respectively. Since the MF essentially embodies all fuzziness for all particular
fuzzy sets, one of the key issues in the theory and practice of fuzzy sets is
how to define the proper MF of a fuzzy set. The following approaches can be
used to define the proper MFs for a fuzzy set [26, 30]:

Intuition: Asking the experts to define them. This can lead to different
fuzzy sets to the same vague concept.

Inference: Using data from the controlled/modeled system to generate
them.

Neural network: Here a neural network is first used to learn the relation-
ship between the system input and output by using collected data from the
controlled/modeled system, and then it is used to describe the MF.

Trial and error: From a practical point of view this method works effec-
tively and efficiently in many real-time applications.
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Fig. 2. The most commonly used MFs in fuzzy logic control and modeling

From the stability viewpoint, the MF of input variable fuzzy sets should
be designed in a way such that the following conditions are satisfied:

1. Ai ∩Aj = φ ∀ j �= i, i+ 1, i− 1 (7)

2.
∑

i

µAi(x) ∼= 1 (8)
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In other words, each MF overlaps only with the closest neighboring MFs,
and for any time, the membership values in all active fuzzy sets should sum
to (or nearly to) 1, which means the use of symmetry MFs.

2.2.3 Hedges of Fuzzy Sets

A hedge is a modifier to a fuzzy set. It modifies the meaning of the original
set to create a compound fuzzy set. “Very” and “More or Less” are the most
commonly used hedges, which can be defined as follows:

µvery
A = [µA(x)]2 (9)

µmore or less
A =

√
µA(x) (10)

In principle, a hedge can be applied to any fuzzy set. However, it should
be used when the modified term is meaningful [28, 30].

2.2.4 Linguistic Variable

A linguistic term is used to express concepts and knowledge in human com-
munication. A linguistic variable enables its value to be described both qual-
itatively by a linguistic term (symbol serving as the name of a fuzzy set) and
quantitatively by a corresponding MF which expresses the meaning of a fuzzy
set [30]. Linguistic terms represent the process states and control variables
in a fuzzy logic controller. Their values are defined in linguistic terms and
they can be words or sentences in a natural or artificial language [26, 27]. For
example, the sentence “The temperature is high” uses the fuzzy set “high” to
describe the linguistic variable temperature. More formally, this is expressed
as “Temperature is high.”

2.3 Basic Set Theoretic Operation for Fuzzy Sets

As a fuzzy set is defined in terms of its MF, a set operation of fuzzy sets
will be defined via their MFs. Fuzzy logic AND (intersection or conjunction),
OR (union or disjunction), and NOT (complement) operations are used in
fuzzy controller and modeling. Unlike the binary AND, OR, and NOT op-
erators whose operations are uniquely defined, their fuzzy counterparts are
not unique [27, 28]. A variety of consistent definitions can be given for the
fuzzy operations. The following are the most widely accepted for FLC. Let
A,B, and C be three fuzzy sets in X, with MFs µA(x), µB(x), and µc(x)
respectively. The basic connective operations in conventional set theory are
those of intersection, union, complement, and subsethood.
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2.3.1 Intersection (Conjunction or AND)

The definition of the intersection operator ∩ (or the logical AND connec-
tive) of fuzzy sets is defined as follows: The MF µA∩B(x) of the intersection
(conjunction) A ∩B is a pointwise function defined by

µA∩B(x) = µ(x) t µB(x) ≤ min {µA(x), µB(x)} for x ∈ X (11)

where “t” is the t- or triangular norm defined as a two-place function mapping
from [0,1] × [0,1] to [0,1] which is nondecreasing (monotonically) in each
element, (x tw ≤ y t z for x ≤ y, w ≤ z); it is commutative, associative,
and satisfies boundary conditions x t 0 = 0 and x t 1 = x, for x, y, z, w ∈
[0,1] (corresponds to the properties of intersection).

The t-norms include intersection, algebraic product, logarithmic product,
inverse product, bounded product, and drastic product. The most common
t-norms are the intersection and the algebraic product. Some t-norms for
x, y ∈ [0,1] are

Intersection: x t y = x ∧ y = min(x, y)
Algebraic product: x t y = x ∗ y = xy

Logarithmic product: x t y = x⊗l y = logw

[
1 +

(wx − 1)(wy − 1)
(w − 1)

]
,

0 < w <∞, w �= 1
Bounded product: x t y=x⊗b

y= max[0, (λ+ 1)(x+ y− 1−λxy)], λ ≥ −1

Drastic product: x t y = x⊗d y =

⎧⎨⎩
x, y = 1
y, x = 1
0, x, y < 1

(12)

The usual t-norms are intersection and algebraic product with

x ∧ y ≥ x ∗ y (13)

t-norms are employed for defining conjunction in approximate reasoning.

2.3.2 Union (Disjunction or OR)

The definition of the union operator (the logical OR connective) of fuzzy sets
is defined as follows: The MF µA∪B(x) of the union (disjunction) A ∪B is a
pointwise function defined by

µA∩B(x) = µA(x)sµB(x) ≥ max
{
µA(x), µB(x)

}
forx ∈ X (14)

where “s” is the s- or triangular co-norm defined as a two-place function
mapping from [0, 1]× [0, 1] to [0,1] which is nondecreasing (monotonically) in
each argument; it is commutative, associative, and satisfies boundary condi-
tions xs0 = x, and xs1 = 1, for x ∈ [0, 1] (corresponds to the properties of
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union). The relation between s- and t-norms is given by the equivalent of the
De-Morgan law in set theory

x s y = (1− x)t(1− y) withx, y ∈ [0, 1] (15)

The triangular co-norms or s-norms include union, algebraic sum, bounded
sum, logarithmic sum, ration sum, drastic sum, and disjoint sum operations.
The most common s-norms are the union and algebraic sum. Some s-norms
for x, y ∈ [0, 1] are

Union: x s y = x ∨ y = max(x, y)
Algebraic sum: x s y = x⊕ y = x+ y = xy

Logarithmic sum: x s y = x⊕1 y = 1− logw

[
(w1−x − 1)(w1−y − 1)

(w − 1)

]
,

0 < w <∞, w �= 1

Drastic sum: x s y = x⊕d y =

⎧⎨⎩
x, y = 0
y, x = 0
1, x, y > 0

Disjoint sum: x s y = x∆y = max{min(1, 1− y),min(1− x, y)}
(16)

The most used s-norms are union and algebraic sum, for which

A⊕B ≥ A ∧B (17)

Clearly the t- and s-norms provide a wide range of models for connective
fuzzy sets, each selected as appropriate to the problem domain. For the set
operation of complement, we can define the negation of the fuzzy set by the
following definition.

2.3.3 Fuzzy Set Complement

The MF µĀ(x) of the complement of a fuzzy set A is defined for all x ∈ X as

µĀ(x) = 1− µA(x) (18)

This corresponds to the logical NOT operation; the idea of the complement
reflects the negation.

2.3.4 Subsethood

A fuzzy set A in the universe X is a subset of another fuzzy set B if for every
element x in X its membership degree in A is less or equal to its membership
degree in B. Mathematically, this can formulated as

A ⊆ B ⇔ ∀x ∈ X µA(x) ≤ µB(x) (19)

The notation of subset itself can also be extending to a matter of degree,
which is called fuzzy subsethood. Figure 3 shows some operations on fuzzy
sets.
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Fig. 3. Operation on fuzzy sets: (a) Two fuzzy sets A and B; (b) complement of
fuzzy set A; (c) union of A and B fuzzy sets; (d) intersection of A and B

2.4 Properties of Fuzzy Set

We now introduce some definitions of fuzzy sets, which are needed to describe
fuzzy logic controllers.

Continuous fuzzy sets: A fuzzy set is said to be continuous if its MF is
continuous.

Support, fuzzy singleton, and α cut: For a fuzzy set whose universe of
discourse is X, all elements in X that have nonzero membership value form
the support of the fuzzy set S(A). Mathematically this can be set as

S(A) =
{
x ∈ X|µA(x) > 0

}
(20)

In practice, the fuzzy set whose support is a single point in X with
µA(x) = 1 is referred to as a fuzzy singleton. A fuzzy set A has a compact set
if its support is finite. If (20) is modified so that we have the definitions of
α-cut for µA(x) > 0 and strong α-cut for µA(x) ≥ 0, respectively.

Height, normal, and subnormal fuzzy sets: The largest membership value
of a fuzzy set is called the height H(A) of the fuzzy sets, mathematically,

H(A) = max
{
µA(x)

}
(21)

If the height of a fuzzy set is less than unity, the fuzzy set is called subnormal.
While if it is unity the fuzzy set is called a normal fuzzy set.

Core and boundary of fuzzy set : The core of a fuzzy set A,C(A), is the
set of all points x ∈ X such that
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C(A) =
{
x|µA(x) = 1

}
(22)

The boundary of a fuzzy set can be defined as the region of the universe-
containing elements that have nonzero membership but not complete mem-
bership.

Convex fuzzy set : A convex fuzzy set is a fuzzy set A whose universe of
discourse [a, b] is convex if and only if

µA

(
λx1 + (1− λ)x2

)
≥ min[µA(x1), µA(x2)] (23)

∀x1, x2 ∈ [a, b], and ∀ λ ∈ [0, 1], where min( ), max( ) denote the mini-
mum and maximum operators, respectively.

A fuzzy number: A practical significance in control systems is the use of
the linguistic variable, which may be considered as a variable whose value is
a fuzzy number or as a variable whose values are defined in linguistic terms.
A fuzzy number A is a fuzzy set which is normal and convex. Figure 4 shows
some properties of fuzzy sets, including normal and subnormal, the core and
the support of fuzzy sets, singleton, and convex and nonconvex fuzzy sets.
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Fig. 4. (a) Normal and subnormal fuzzy sets; (b) core and support of fuzzy sets;
(c) singleton fuzzy set; (d) convex (A) and nonconvex (B) fuzzy sets
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2.5 Fuzzy Relation

A fuzzy relation generalizes the notation of the classical black-and-white re-
lation into one that allows partial membership [27]. The classical notion of
relation is described as the relationship that holds between two or more ob-
jects. In control systems relationships are defined between system inputs and
outputs. In fuzzy systems, these relationships or mappings are between fuzzy
variables defined on different universes of discourse through fuzzy conditional
statements or linguistic implications.

2.5.1 Fuzzy IF–THEN Rules

Fuzzy control is a rule-base system that is based on fuzzy logic. Among
all the techniques developed using fuzzy sets, the fuzzy IF–THEN is by far
the most visible one due to its wide range of successful applications. Fuzzy
IF–THEN rules play a critical role in industrial applications ranging from
robotics manufacturing, process control, medical imaging to financial trading.
A fuzzy logic controller (FLC) uses fuzzy rules, which are, linguistically, IF–
THEN statements involving fuzzy sets, fuzzy logic, and fuzzy inference. Fuzzy
rules play a key role in representing expert control knowledge and experience
and in linking the input variables of FLC to output variables [26, 30]. Fuzzy
logic controller (FLC) is a rule-based controller in which the control action
depends on a set of rules and on selected input variables. In fuzzy logic, the
truth of any statement becomes a matter of degree. The main feature of
fuzzy rule-based inference is its capability to perform inference under partial
matching. The general jth IF–THEN rule in fuzzy rule-based system takes
the following form:

Rule j : IF < antecedentj > THEN < consequentj >

where <antecedentj> is the premise (condition) of the rule j with respect to a
certain input variable, and <consequentj> is the control action (conclusion)
of the rule j. The FLC rules may use several variables both in the condition
(antecedent) and the conclusion (consequent) of the rules. The controllers can
therefore be applied to both multi-input–multi-output (MIMO) problems and
single-input–single-output (SISO) problems. Mamdani and Takagi–Sugeno
(TS) fuzzy rules are the major types of fuzzy rules used. Next, we will give a
brief discussion of only the Mamdani type of fuzzy rule.

2.6 Mamdani Fuzzy Rules

One of the most widely used fuzzy rule based systems is the Mamdani fuzzy
rule, which consists of the following linguistic rules that describe a mapping
from X1×X2 . . . Xn to U . The general jth IF–THEN rule in fuzzy rule based
system takes the form
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Rule j : IF x1 is Xj1 AND x2 isXj2 AND . . .AND xn is Xjn THEN uj is A

where Xjk(k = 1, 2, . . . , n) are the fuzzy sets (levels), x1, x2, . . . , xn are the
prime (input) variables, and u is A is a fuzzy consequent which is the control
action of the rulej. This rule is an example of MISO Mamdani fuzzy rule,
which can also be modified to perform SISO and MIMO. A MIMO Mamdani
fuzzy rule in general form can be formulated as follows:

Rule j : IF x1 is Xj1 AND x2 is Xj2 AND . . .AND xn is Xjn

THEN u1 is A, u2 is B, . . . , um is Z

As mentioned before, for most FLCs, the input fuzzy sets are continuous,
normal, convex and usually of the four common types of MFs. If the output
fuzzy sets are of the singleton type then the general Mamdani fuzzy rule can
be reduced to

Rule j : IF x1 is Xj1 AND x2 is Xj2 AND . . .AND xn is Xjn

THEN uj is αj

where αj represents a singleton fuzzy set.

2.7 Fuzzy Rule Based Inference

Fuzzy inference system (FIS) is the process of formulating the mapping from
a given input to an output using fuzzy logic that uses the theory of fuzzy set
which will give the decisions to be made. Fuzzy inference is sometimes called
reasoning or approximate reasoning. It is used in a fuzzy rule to determine
the rule outcome from the input information and known facts [26, 30].

The algorithm of fuzzy rule based inference consists of three steps and an
additional optional step, which can be summarized as follows:

• Fuzzy Matching : Calcualate the degree to which the input data match the
condition of the fuzzy rule. In this first step, fuzzify the input variables,
which means use the fuzzification method, which is a mathematical proce-
dure for converting an element in the universe of discourse to the member-
ship value of the fuzzy set. Then apply fuzzy operators if the antecedent
(IF part) of the rules has more than one input.

• Inference: Calculate the rules conclusion based on its matching degree.
There are two major methods, namely the clipping method and the scal-
ing method. Both methods generate an inferred conclusion by suppressing
the MF of the consequent, depending on the degree to which the rule is
matched.

• Combination: Combine the conclusions inferred by all the fuzzy rules into
a final conclusion. Combining fuzzy conclusions through superposition is
based on applying the max fuzzy disjunction operator to multiple possibil-
ity distribution of the output variables.
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• Defuzzification: For an application that needs a crisp output (e.g., control
systems), an additional step called defuzzification is used to convert a fuzzy
conclusion into a crisp one. Defuzzification is a mathematical process used
to convert a fuzzy set or sets to a real number (crisp value).

Next we will discuss the theoretical foundation of the fuzzy inference and
defuzzification steps.

2.7.1 Fuzzy Inference

Fuzzy inference is an inference procedure that drives conclusion from a set
of fuzzy IF–THEN rules and known facts. There are a number of fuzzy infer-
ence methods that can be used for Mamdani fuzzy rule based system. The
most common used are shown in Table 1. They are the Mamdani minimum
inference, the Larsen product inference, and the bounded product inference
methods [26, 30].

Remark 1: If Mamdani FLC employs singleton output set as the rule con-
sequent, then all the inference methods produce the same inference result.

2.7.2 Defuzzification

Defuzzification is a mathematical operation with the aim to produce a non-
fuzzy control action from fuzzy sets. It is a necessary step because fuzzy sets
generated by fuzzy inference in fuzzy rules must be somehow mathematically
combined to come up with a crisp value such as an FLC output. There are
many proposed methods in the literature. We will present some of the most
widely used:

• Max-membership principle: Also known as the height method, this scheme
is limited to peak output function. This principle can be formulated alge-
braically as

µA(x∗) ≥ µA(x), for all x ∈ X (24)

where x∗ corresponds to the maximum value of the output fuzzy set.
• Center of area (COA) method : This method is sometimes called center

of gravity, weighted average defuzzification method. COA calculates the
weighted average of fuzzy sets. The result of applying COA defuzzification
to a fuzzy set conclusion can be expressed by the formula

Table 1. Definition of different types of inference methods

Fuzzy Inference Method Definition

Mamdani minimum inference min(µ,µA(x)), for all x
Larsen product inference µ × µA(x), for all x
Bounded product inference max(µ + µA(x)-1,0), for all x
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U =
∑R

i=1 µA(x)µi∑R
i=1 µi(x)

(25)

where R is the total number of rules.
• The mean of maximum (MOM) method : The MOM method generates a

crisp control action by averaging the support values when their membership
values reach the maximum

u =
l∑

i=1

mi

l
(26)

where l is the number of the quantized m values, which reach their maxi-
mum membership values.

2.8 General Viewpoint to Design Fuzzy Logic Controllers

In this section, we will give a basic example on how to design and implement
an FLC Mamdani type for a SISO system, using a basic knowledge and
linguistic IF–THEN rules. Thus the aim is to develop an FLC that maps the
error (e = r(t)− y(t)) into the control action (u as shown in Fig. 5).

Fig. 5. Closed-loop fuzzy logic controller

Figure 6 shows system response and four rules which can be used to
establishe an FLC. The FLC will depend on the error and with some logic,
we can derive the following rules.

2.8.1 Mamdani FLC Type

For the Mamdani FLC type one may construct the following rules:

Rule 1: IF the error is Pos AND the change of error is Pos THEN u is Pos
Rule 2: IF the error is Pos AND the change of error is Neg THEN u is Zero
Rule 3: IF the error is Neg AND the change of error is Pos THEN u is Zero
Rule 4: If the error is Neg AND the change of error is Neg THEN u is Neg
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Fig. 6. System response with some possible fuzzy rule in the rule-based system
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Fig. 7. The MFs for the error (e) and change of error (ce)

The input variables in the antecedent part of the rules are error and change
of error, and the output variable in the consequent part is u (the control
action). Pos, Zero, and Neg are fuzzy levels (sets) representing “Positive,”
“Zero,” and “Negative,” respectively. The rules are set heuristically. In rule
1, the error is positive and increasing (change of error is positive), so control
action should be Positive. In rules 2 and 3 there is an error but it is decreasing,
so it is desirable to let the FLC output be at the same level; hopping systems
output will land on the set-point smoothly on its own. Finally, in rule 4, the
error is negative and increasing, which is the opposite circumstance of rule
1, so control action should be Negative.
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Among the design issues in the FLC Mamdani type is the design of MFs,
the selection of their shapes, the universe of discourse MFs, and the overlap
region between MFs. The universe of discourse of MFs can be designed in
such way that it covers all the possible values of the FLC input. The shape of
MFs is indeed a challenging aspect in designing FLC. However, some remarks
may help in the design process: in FLC use the parameterized MFs with
small number of parameters. A parameterized MF is an MF which can be
defined mathematically by a few parameters, such as triangular, trapezoidal,
Gaussian, and bell-shaped MFs. The MFs should be designed in such a way
so that the translation from one rule to another rule is done smoothly. For
the FLC the MFs shown in Fig. 7 are used to represent the error (e) and
change of error (ce) respectively.

2.9 Structure of a Fuzzy Logic Controller

The principle of a fuzzy logic system is to express the human knowledge in
the form of linguistic IF–THEN rules. These rules take the form

Rule 1: IF x is Neg and z is Neg THEN u is NB
Rule 2: IF x is Neg and z is ZE THEN u is NM

and so on, as shown in Table 2. Every rule has two parts: (i) the antecedent
part, which is the IF part of the rule, and (ii) the consequent part, which
is the THEN part of the rule. The input value “Neg” is the linguistic term
used for the word negative; the output value “NB” stands for negative big
and “NM” for negative medium. The collection of such rules is called rule
base. A fuzzy expert system functions in four steps as shown in Fig. 8. The
first is fuzzification, in which the crisp inputs are measured and translated
into corresponding universes of discourse by scaling. Next under inference of
the truth, value for the antecedent of each rule is computed, and applied on
the consequent part of each rule. This results in one fuzzy set to be assigned
to each output variable. By applying the implication method (use the degree
of support for the entire rule to shape the output fuzzy set) all of the fuzzy
sets assigned to each output variable combine together to form a single fuzzy
set for each output. Finally, defuzzification is used to translate the processed
fuzzy data into the crisp (nonfuzzy) data suited to real-world applications.

Table 2. Rule table for the linguistic variable (state) x, z

x/z Neg ZE Pos

Neg NB NM ZE
ZE NM ZE PM
Pos ZE PM PB
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Fig. 8. General structure of fuzzy interference system

3 Mathematical Models

To validate the proposed Mamdani fuzzy controller, two chaotic systems are
studied in this section. First is the Lorenz system, which discusses the ther-
mally induced fluid convection in the atmosphere [6]. The second is the well-
known Chua’s circuit [19].

First Model: The mathematical model of the lorenz system is given by

x′ = σ(y − x)
y′ = ρx− y − xz (27)
z′ = −βz + xy

where σ, ρ, and β are system parameters.
Second Model: The mathematical model (normalized equation) of the

Chua’s circuit is given by

x′ = α(y − x− f(x))
y′ = x− y + z (28)
z′ = −βy

where
f(x) = bx+

1
2
(a− b)(|x+ 1| − |x− 1|)

which represents the nonlinear element of the circuit, and α and β are system
parameters.

4 Numerical Simulations

Fuzzy logic controller (Mamdani model) is used to control the chaotic behav-
ior of Lorenz system and Chua’s circuit to be a stable constant or periodic
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solution, where the control parameter in Lorenz system is chosen to be ρ,
and the fuzzy logic controller adjust ρ. On the other hand, a is used as a
control parameter for the Chua’s circuit, and the fuzzy controller adjust the
same control parameter. In both cases, the used fuzzy logic controller is of
the Mamdani type, which consists of two inputs and one output with nine
rules, as shown in Figs. 9 and 10, and in Table 2.
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Fig. 9. The MF of the input x, z
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Fig. 10. The MF of the output u

The chaotic behavior, in both systems, is controlled to be constant or
periodic solution through adjusting the control parameter. For the Lorenz
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system: Adjust ρ by ∆ρ, where ∆ρ = ρ×Fuzzy Controller Output × Gain.
For the Chua’s circuit: Adjust a by ∆a, where; ∆a = a×Fuzzy Controller
Output × Gain. After we formulated the designed fuzzy logic controller as
shown in Fig. 11, we used Simulink in Matlab Software.

Fig. 11. Fuzzy logic controller in the form of block diagrams x, z is the linguistic
variable and X, Z is the scaled variable through Kx and Kz respectively

4.1 Numerical Simulation for Lorenz Equation

Figure 12 shows the uncontrolled results, time history, as well as state-plane.
It shows the chaotic behavior when σ = 10, ρ = 20, and β = 1. The control
signal u is a fuzzy controller output and U is the adjusted fuzzy controller
output by Ku. For the same parameters of the uncontrolled case and for the
following parameters of the fuzzy control signal, Kx = 0.5,Kz = 0.5, and
Ku = 0.75, Fig. 13 shows the time history and the state-plane. It can be
clearly seen that the control signal brings the chaotic behavior to a stable
periodic solution. While for σ = 10, ρ0 = 20, β = 1,Kx = 0.15,Kz = 0.15,Ku

= 0.32, Fig. 14 shows how the fuzzy control signal brings the system to the
equilibrium solution (constant solution).

4.2 Numerical Simulation for Chua’s Circuit

In this case, Fig. 15 shows the uncontrolled chaotic behavior of Chua’s circuit,
for a = −1.139, b = −0.711, α = 40, and β = 93.333. Again, same as we did
in the previous example, and for the same uncontrolled case (a = −1.139, b =
−0.711, α = 40, β = 93.333), we used the fuzzy control concept; the control
parameters adjusted were Kx = 0.05,Kz = 0.05, and Ku = 2. Figure 16
shows the stable periodic solution. On the other hand, Fig. 17 shows the
constant solution for a0 = −1.139, b = −0.711, α = 40, β = 93.333, but
Kx = 0.45,Kz = 0.45, and Ku = 2.
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Fig. 12. Uncontrolled simulations of Lorenz equation
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Fig. 13. Controlled system to get on a periodic solution using the fuzzy controller
(Lorenz equation)

4.3 Remark

The fuzzy logic controller can be used when there is no mathematical model
available for the process, this gives the robustness behavior for the proposed
fuzzy logic controller design. To prove so, a systematic study of the control
error versus the parameters of the nonlinear dynamical system is shown in
Figs. 18–20 for the Lorenz attractor and the same thing can also be done
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Fig. 14. Controlled system to get on a constant solution using the fuzzy controller
(Lorenz equation)
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Fig. 8. Uncontrolled chua’s circuit 
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Fig. 15. Uncontrolled simulations of Chua’s circuit

for Chua’s circuit. Figure 18 shows the control error when σ changes to 10
(curve a), 15 (curve b), 20 (curve c), and 5 (curve d). On the other hand,
Fig. 19 shows the control error when β changes; curve a for β = 1, curve b
for β = 0.5, and curve c for β = 1.5. In addition, Fig. 20 shows the control
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Fig. 9. fuzzy controller obtain a periodic solution 
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Fig. 16. Controlled system to get on a periodic solution using the fuzzy controller
(Chua’s circuit)
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Fig. 17. Controlled system to get on a constant solution using the fuzzy controller
(Chua’s circuit)
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Fig. 18. Control error when σ changed

error when both σ and β change; curve a represents the control error when
σ = 15 and β = 1.5, curve b for σ = 12 and β = 1.3, while curve c for σ = 8
and β = 0.5. From these results one can say that the proposed fuzzy logic
controller is robust under parameter variations.

5 Conclusion

In this chapter, the idea of using fuzzy logic concept for controlling chaotic
behavior is presented. There are two good reasons for using the fuzzy control:
first, there is no mathematical model available for the process, and second,
to satisfy nonlinear control that can be developed empirically, without com-
plicated mathematics. The two systems are well-known models, so the first
reason is not a big deal, but we can take advantage from the second reason.
The results show the effectiveness of using fuzzy theory to control chaotic
systems.
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Digital Fuzzy Set-Point Regulating
Chaotic Systems: Intelligent Digital
Redesign Approach

Ho Jae Lee, Jin Bae Park, and Young Hoon Joo

Abstract. This chapter concerns digital control of chaotic systems represented by
Takagi–Sugeno fuzzy systems, using intelligent digital redesign (IDR) technique.
The term IDR involves converting an existing analog fuzzy set-point regulator into
an equivalent digital counterpart in the sense of state-matching. The IDR problem
is viewed as a minimization problem of norm distances between nonlinearly inter-
polated linear operators to be matched. The main features of the present method
are that its constructive condition with global rather than local state-matching, for
concerned chaotic systems, is formulated in terms of linear matrix inequalities; the
stability property is preserved by the proposed IDR algorithm. A few set-point reg-
ulation examples of chaotic systems are demonstrated to visualize the feasibility of
the developed methodology, which implies the safe digital implementation of chaos
control systems.

1 Introduction

The research on controlling chaos has received increasing attention in the
last few years [1–6]. There are many practical reasons for controlling chaos.
For example, when chaotic mechanical vibrations occur, chaos is expected
to be suppressed, where the most interesting mechanical systems are mathe-
matically built in terms of continuous-time differential equations. It is, there-
fore, common practice and, in fact, advantageous to design a control in the
continuous-time framework, which we call an analog control design.

It is now known that controlling chaos in continuous-time setting can be
implemented by analog circuits. However, in order to take advantage of the
modern high-speed computers and microelectronics, it is more preferable to
digitally implement an analog control by use of digital devices [5]. Unfortu-
nately, such an attempt often evolves an analog plant controlled by feeding
sampled outputs back with analog-to-digital and digital-to-analog devices
for interfacing in which continuous-time and discrete-time signals coexist. It
makes traditional analysis tools for a homogeneous signal system unable to
be directly used.

To fully enjoy the advancement of the digital technology in control engi-
neering as well as surmount the theoretical obstacles, various digital control
techniques have been consistently pursued with tremendous effort by many

H.J. Lee et al.: Digital Fuzzy Set-Point Regulating Chaotic Systems: Intelligent Digital Re-
design Approach, StudFuzz 187, 157–183 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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researchers. Among these, yet another efficient approach is the so-called digi-
tal redesign (DR) [3–5, 7–15], which is used to convert a well-designed analog
control into an equivalent digital one maintaining the property of the original
analog control system in the sense of state-matching, by which the benefits of
both the analog control and the advanced digital technology can be achieved.

DR techniques were first considered in [16], and then developed by many
others [3–5, 7–15]. It has been noticed that although the DR techniques
are attractive for digital implementation of advanced analog control, these
schemes basically work only for linear systems, but are not applicable to
chaotic nonlinear systems.

For that reason, there has been high demand to develop some intelligent
digital redesign (IDR) methodology for complex chaotic systems, and the
first attempt in this direction was made by Joo et al. [2]. They synergistically
merged both the Takagi–Sugeno (TS) fuzzy model based control and the DR
technique for a class of complex chaotic systems. Chang et al. extended it to
uncertain chaotic TS fuzzy systems [6].

Although the previous IDR techniques allowed the control engineer to
enjoy the classical DR techniques for nonlinear systems represented by TS
fuzzy systems, there were some issues to be addressed. The previous IDRs
were acquired under the local state-matching criterion of each sub-closed-
loop system—the control loop closed with the the ith plant and the ith
control rule, not the global one. Moving to stability, preserving the stability
has been assumed to be implicitly retained by closely matching the digitally
controlled state with the analogously controlled stable state. Involving an
explicit stability preserving condition into the IDR algorithm has not been
treated. Thus far, the above-mentioned still remain theoretically challenging
issues and thereby must be fully tackled.

In this chapter, we further develop a systematic method for the IDR of a
fuzzy set-point regulator for complex chaotic systems. To alleviate the prob-
lems discussed above, we propose an alternative way: numerical optimization-
based IDR involving linear matrix inequalities (LMIs). Casting the IDR prob-
lem into such a format is highly desirable since it allows to simultaneously
reflect a variety of specifications in the design algorithm. The stabilizabil-
ity of the hybrid digital chaos control system is also rigorously proved. Two
numerical examples are provided to show how reliable our method is in the
digital chaos set-point regulation.

2 Preliminaries

2.1 TS Fuzzy Systems

Most chaotic systems are quite complex in practice and have strong nonlin-
earities so that it is difficult, if not impossible, to build rigorous mathematical
models [17]. Fortunately, a certain class of chaotic dynamical systems can be
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expressed in some forms of either a linear mathematical model locally or an
aggregation of a set of linear mathematical models.

Consider a nonlinear dynamical system of the following form:{
ẋc(t) = f(xc(t))
yc(t) = Cxc(t) ,

(1)

where xc(t) ∈ R
n is the state and yc(t) ∈ R

p is the output. The subscript c
means that an analog control signal is applied to (1), for ordering the chaotic
phenomenon evolved by (1). While the subscript d denotes that we inject
the digital control signal into (1) in the sequel. The vector field f : Ux ⊂
R

n → Vx ⊂ R
n on some compact set Ux containing its equilibrium points is

assumed to belong to Cq, q � 1, and C : Ux ⊂ R
n → Vy ⊂ R

p×n is a linear
output mapping.

One way to view a TS fuzzy system is that it performs a nonlinearly
interpolated linear mapping χ(xc(t)) : Ux ⊂ R

n → Vx ⊂ R
n so as to satisfy

sup
xc(t)∈Ux

‖f(xc(t))− χ(xc(t))‖ � δ

with arbitrary small scalar δ ∈ R>0, which is known as the universal approx-
imation in the literature.

Suppose there exist r singleton of vi = Ai which represent the local dy-
namic behavior of (1), such that the matrix polytope

F = co {A1, . . . , Ar}

contains the domain Ux, where co {·} denotes a convex hull of the set V =
{v1, . . . , vr} and Ai ∈ R

n×n. Therefore, one can find an adequate mapping
at time instant t with δ of the form

χ(xc(t)) = A(θ)xc(t),

where A(θ) ranges over a matrix polytope

A(θ) ∈ co {A1, . . . , Ar}

with
∑r

i=1 θi = 1, θi ∈ R[0,1], i = IR = {1, 2, . . . , r}. The key idea of the
TS fuzzy inference system is to determine the coefficients θi in the convex
combination of the given vertices V by virtue of the available qualitative
knowledge from domain experts, which are quantified by “IF–THEN” rule
base. More precisely, the ith rule of the TS fuzzy system is formulated in the
following form [1, 2, 6, 7, 17–27]:

Ri : IF z1(t) is about Γ i
1 and · · · and zp(t) is about Γ i

p

THEN ẋc(t) = Aixc(t), (2)
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where Ri denotes the ith fuzzy inference rule; zj(t), j ∈ IP = {1, . . . , p}, is
the premise variable injectively mappled from xc(t); and Γ i

j , (i, j) ∈ IR×IP ,
is the fuzzy set of the jth premise variable in the ith fuzzy inference rule.

Using the center-average defuzzification, product inference, and singleton
fuzzifier, the global dynamics of (2) is inferred as{

ẋc(t) =
∑r

i=1
θi(z(t))Aixc(t)

yc(t) = Cxc(t)
(3)

in which

θi(z(t)) =
ωi(z(t))∑r
i=1 ωi(z(t))

, ωi(z(t)) =
p∏

j=1

Γ i
j (zj(t))

and Γ i
j : Uzj

⊂ R → R[0,1] is the membership value of zj(t) in Γ i
j , where Uzj

the universe of discourse of zj(t) is a compact set. Some basic properties of
θi(t) are

θi(z(t)) � 0,
r∑

i=1

θi(z(t)) = 1 .

This TS fuzzy system is quite suitable to exactly represent a large number
of chaotic systems [28]. We provide two examples.

Example 1. (Chen’s Chaotic Attractor) Chen’s attractor is a newly found
chaotic attractor that was derived from the Lorenz system, with a similar but
topologically not-equivalent structure [29]. This system has a sophisticated
yet elegant and symmetric attractor, and is given by the following simple
closed form.

The dynamics of the Chen’s chaotic is as follows [29]:⎧⎪⎨⎪⎩
ẋ = a(y − x)
ẏ = (c− a)x− xz + cy
ż = xy − bz.

(4)

The nominal values of (a, b, c) are (35, 3, 28) for chaos to emerge. System (4)
has two nonlinear terms: xz and xy.

To construct a TS fuzzy system for Chen’s attractor, TS fuzzy modeling
of these nonlinear terms is first discussed. Consider a nonlinear function

f(x, y) = xy (5)

with assumption x ∈ Ux ⊂ R[M1,M2]. Then (5) can be represented by a
nonlinear weighted sum of linear functions of the form

χ(x, y) = M(θ)y , (6)
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where M(θ) ∈ co {M1,M2} so that the following is satisfied:{
x = θ1M1 + θ2M2

θ1 + θ2 = 1 .

Solving the above yields

θ1(x) =
−x+M2

M2 −M1
, θ2(x) =

x−M1

M2 −M1
. (7)

Importing (7) as membership functions of fuzzy sets Γ 1
1 and Γ 2

1 , (6) can be
viewed as a defuzzified output of a TS fuzzy system for (5) with
supx∈Ux

‖f(x, y)− χ(x, y)‖ � δ = 0. Then, one can further construct a TS
fuzzy system for (4). The result is

R1 : IF x is about Γ 1
1 THEN ẋc(t) = A1xc(t) ,

R2 : IF x is about Γ 2
1 THEN ẋc(t) = A2xc(t) ,

where

A1 =

⎡⎣ −a a 0
c− a c −M1

0 M1 −b

⎤⎦ , A2 =

⎡⎣ −a a 0
c− a c −M2

0 M2 −b

⎤⎦ .
In order to construct a TS fuzzy system for this Chen’s attractor, we set

(M1,M2) = (−30, 30). This boundary is found through a numerical simula-
tion of (4). Figure 1 shows very typical chaotic phenomena generated by the
discussed TS fuzzy system with initial data

[
x(0), y(0), z(0)

]
=

[
1, 1, 1

]
, from

an initial time t0 = 0 (s) to tf = 30 (s).

Fig. 1. Trajectory of TS fuzzy system for Chen’s chaotic attractor
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Example 2. Another famous chaotic attractor is by Otto Rössler, who set
out to find the simplest set of differential equations capable of generating
chaotic motion. Rössler’s equations can be viewed as a metaphor for chemical
chaos, in which regard it is worth noting that dynamics of the Rössler variety
were subsequently discovered experimentally in the Belousov–Zhabotinsky
and peroxidase–oxidase reactions.⎧⎪⎨⎪⎩

ẋ = −y − z
ẏ = x+ by
ż = b+ z(x− a) .

(8)

Rössler discovered that the system (8) has the spiral type chaotic behavior
when b = 0.2 and a = 5.7 [30].

We can identify a TS fuzzy system of (8) as follows: since we are concerned
in an autonomous form, let the state be xc(t) =

[
x, y, z, b

]T. Next, along a
similar line to Example 1, an autonomous TS fuzzy system for (8) is obtained
as

R1 : IF x is about Γ 1
1 THEN ẋc(t) = A1xc(t) ,

R2 : IF x is about Γ 2
1 THEN ẋc(t) = A2xc(t) ,

where

A1 =

⎡⎢⎢⎣
0 −1 −1 0
1 b 0 0
0 0 M1 − a 1
0 0 0 0

⎤⎥⎥⎦ , A2 =

⎡⎢⎢⎣
0 −1 −1 0
1 b 0 0
0 0 M2 − a 1
0 0 0 0

⎤⎥⎥⎦ ,
and (M1,M2) = (−3, 3). The chaos generated by the TS fuzzy system is
shown in Fig. 2 and is of the so-called spiral variety.

Fig. 2. Trajectory of TS fuzzy system for Rössler chaotic attractor
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2.2 Analog Fuzzy Control Systems

For control purpose of (3), we consider a general analog TS fuzzy system
equipped with input term{

ẋc(t) =
∑r

i=1
θi(z(t))(Aixc(t) +Buc(t))

yc(t) = Cxc(t) ,
(9)

where uc(t) ∈ R
m×1 and B ∈ R

n×m are arbitrarily chosen such that the local
controllability of (9) is secured [6].

Throughout our discussion, a well-constructed analog fuzzy control guar-
anteeing global exponential stability (GES) with zero-reference is assumed to
be predesigned, which will be used in intelligently redesigning a digital fuzzy
control. The predesigned analog control rule takes the following form:

Ri : IF z1(t) is about Γ i
1 and · · · and zp(t) is about Γ i

p

THEN uc(t) = Ki
cxc(t) + Ei

cr(t) ,

where Ki
c and Ei

c, i ∈ IR, are given analog control gain matrices. r(t) ∈ R
p×1

is a reference to be tracked by yc(t), which is assumed to be piecewisely
constant in any time interval [kT, kT + T ], k ∈ Z�0, supt∈R�0

‖r(t)‖ = rM <
∞.

Similar to (3), its defuzzified output is given by

uc(t) =
r∑

i=1

θi(z(t))(Ki
cxc(t) + Ei

cr(t)) . (10)

Then the overall analog closed-loop TS fuzzy system (9) cascaded by (10) is
written as

ẋc(t) =
r∑

i=1

θi(z(t))((Ai +BKi
c)xc(t) +BEi

cr(t)) . (11)

2.3 Digital Fuzzy Systems and Its Time Discretization

This subsection discusses a desired digital fuzzy control system and its time-
discretization. By sharing the premise parts of (3), and interfacing an ideal
sampler and a zero-order holder between a concerned system and a control,
a desired digital fuzzy control system is represented by{

ẋd(t) =
∑r

i=1
θi(z(t))(Aixd(t) +Bud(t))

yd(t) = Cxd(t) ,
(12)

where ud(t) = ud(kT ) ∈ R
m is a piecewise constant control to be deter-

mined during a time interval [kT, kT + T ), k ∈ Z�0, where T ∈ R>0 is a
nonpathological sampling period.
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The IDR problem is usually set up in discrete-time setting so as to find
some relevant digital control satisfying the state-matching criterion at each
sampling time instant. Thus, it is more convenient to timely discretize (12)
for derivation of the IDR condition.

There are several methods in discretizing an LTI system. Unfortunately,
these approaches are not directly applicable to the discretization of the TS
fuzzy system, since it is not LTI but implicitly time-varying and nonlin-
ear [18]. Moreover, it is further strongly desired to maintain the polytopic
structure of the discretized TS fuzzy system for the construction of a digital
fuzzy model based control. Thus we need a mathematical foundation for the
discretization of TS fuzzy systems.

Assumption 1. Assume that the firing strength of the ith rule θi(z(t)) :
Uzi

→ R[0,1] is approximated by its value at time t = kT , that is, θi(z(t)) ≈
θi(z(kT )) for t ∈ [kT, kT + T ). Consequently, the nonlinear matrix function∑r

i=1 θi(z(t))Ai : Uz → co {A1, . . . , Ar} can be approximated by constant
matrices

∑r
i=1 θi(z(kT ))Ai over any interval [kT, kT+T ), k ∈ Z�0 [1, 18, 31].

If a suitable small sampling period T ∈ R>0 is chosen, Assumption 1 is
reasonable and we have the following result.

Proposition 1. The pointwise dynamical behavior of (12) can be efficiently
approximated by{

xd(kT + T ) =
∑r

i=1
θi(z(kT ))(Gixd(kT ) +Hiud(kT ))

yd(kT ) = Cxd(kT ) ,
(13)

where Gi = eAiT and Hi = (Gi − I)A−1
i B.

Proof. The general solution xd(t; t0, x0) to (12) with any initial data (t0, x0) ∈
R�0 × Ux is

xd(t; t0, x0) = φ(t, t0)xd(t0) +
∫ t

t0

φ(t, τ)Bud(kT ) dτ ,

where the state transition map φ : R>0 × R>0 → R
n×n ∈ C3 satisfies

φ(t, t0) = φ(t, t1)φ(t1, t0) and ∂
∂tφ(t, t0) = (

∑r
i=1 θi(z(t))Ai)φ(t, t0) with the

initial condition φ(t0, t0) = I. Let the initial time t0 be kT , then the exact
solution to (12) evaluated at t = kT + T can be written as

xd(kT + T ) = φ(kT )xd(kT ) + ψ(kT )ud(kT )

where φ(kT ) = φ(kT + T, kT ) and ψ(kT ) =
∫ kT+T

kT
φ(kT + T, τ)B dτ .

The exact evaluation of φ(·, ·) is very difficult, if not impossible, since
(12) exhibits nonlinear dynamical behavior. To get around with this diffi-
culty, suppose that Assumption 1 is satisfied, then φ(kT ) and ψ(kT ) are
approximately evaluated as follows:
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φ(kT ) = e
∑ r

i=1 θi(z(kT ))AiT

= I +
r∑

i=1

θi(z(kT ))AiT +O(T 2)

≈
r∑

i=1

θi(z(kT ))(I +AiT )

≈
r∑

i=1

θi(z(kT )) eAiT

and

ψ(kT ) =
∫ kT+T

kT

e
∑ r

i=1 θi(z(kT ))Ai(kT+T−τ)B dτ

=
(
e
∑ r

i=1 θi(z(kT))AiT−I
)(

r∑
i=1

θi(z(kT ))Ai

)−1

B

=

(
r∑

i=1

θi(z(kT ))AiT +O(T 2)

)(
r∑

i=1

θi(z(kT ))Ai

)−1

B

≈
r∑

i=1

θi(z(kT ))BT

≈
r∑

i=1

θi(z(kT ))Hi ,

where Gi = eAiT and Hi =
∫ kT+T

kT
eAi(kT+T−τ)B dτ = (Gi − I)A−1

i B.

Remark 1. If Ai is singular, Hi can be computed by the following formula
[20]:

Hi =
∞∑

j=1

1
j!

(AiT )j−1BT.

Remark 2. The discretized TS fuzzy system (13) contains the discretization
error with order of O(T 2).

For digitally ordering (12), the intelligently redesigned digital fuzzy con-
trol takes the following form:

Ri : IF z1(kT ) is about Γ i
1 and · · · and zp(kT ) is about Γ i

p,

THEN ud(t) = Ki
dxd(kT ) + Ei

dr(kT )

for t ∈ [kT, kT + T ), and the overall control is given by
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ud(t) =
r∑

i=1

θi(z(kT ))(Ki
dxd(kT ) + Ei

dr(kT )) (14)

during the sampling time interval.
Then, the closed-loop system with (13) and (14) is constructed to yield⎧⎪⎪⎨⎪⎪⎩
xd(kT + T ) =

∑r

i=1

∑r

j=1
θi(z(kT ))θj(z(kT ))((Gi +HiK

j
d)xd(kT )

+ HiE
j
dr(kT ))

yd(kT ) = Cxd(kT ) .
(15)

Corollary 1. The pointwise dynamical behavior of (11) can also be approx-
imately discretized as⎧⎨⎩xc(kT + T ) =

∑r

i=1

∑r

j=1
θi(z(kT ))θj(z(kT ))(φixc(kT ) + ψijr(kT ))

yc(kT ) = Cxd(kT ) ,
(16)

where φi = e(Ai+BKi
c)T and ψij =

∫ kT+T

kT
e(Ai+BKi

c)(kT+T−τ)BEj
c dτ .

Proof. It can be straightforwardly proven by Proposition 1.

3 Intelligent Digital Redesign
of Fuzzy Set-Point Regulator

For practical digital implementation of the predeveloped analog fuzzy order-
ing of chaotic phenomenon, one may desire to convert it into a digital control
equivalent in some performance measure sense.

To attain this, one may try to simply insert sample-and-hold devices into
the original analog control loop. However, such a digital implementation of
analog control will heavily degrade the ordering performance, and what is
worse is that it can be destabilized even in a small sampling period, as is
shown in [1], because this method does not consider the state behavior nor
preserves the stabilizability of the digitalized analog control.

Our goal is to develop an IDR technique for TS fuzzy systems revealing
chaotic phenomenon so that the global dynamical behavior of (12) with the
intelligently redesigned digital fuzzy control may retain that of the closed-
loop TS fuzzy system with the existing analog fuzzy control, and the stability
of the digitally controlled TS fuzzy system is preserved.

To this end, we formulate the following IDR problem:
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Problem 1. (IDR Problem for a Fuzzy Set-Point Regulator) Given the well-
designed analog control gain matrices Ki

c and Ei
c for (10) that ensures GES

of (11), find the digital control gain matrices Ki
d and Ei

d for (14) such that
the followings are satisfied:

1. The state xd(kT ) of the discrete-time representation (15) of the digitally
controlled system (12) with (14) matches the state xc(kT ) of the discrete-
time representation (16) of the analogously controlled system (11) at t =
kT , k ∈ Z>0, as closely as possible.

2. The hybrid system (12) controlled by (14) with r(t) =
[
0
]
p×1

is GES.

Consider the first objective of Problem 1. In comparison of (15) with (16),
to realize xc(kT+T ) = xd(kT+T ) under the assumption of xc(kT ) = xd(kT ),
it is necessary to determineKi

d and Ei
d such that the following matrix equality

constraints

φi = Gi +HiK
j
d (17)

ψij = HiE
j
d (18)

hold for all pair (i, j) ∈ IR × IR.
The second objective in Problem 1 can be handled in a discrete manner

by virtue of the following proposition:

Proposition 2. Suppose (15) with r(kT ) =
[
0
]
p×1

is GES; then the zero
equilibrium points xdeq =

[
0
]
n×1

of the hybrid digital control system (12) and
(14) are also GES.

Proof. It follows from (12), (14), and Assumption 1 for t ∈ [kT, kT +T ) that

‖xd(t)‖ �
∥∥∥e(

∑ r
i=1 θi(z(kT ))Ai)(t−kT ) xd(kT )

∥∥∥
+

∥∥∥∥∥
∫ t

kT

e(
∑ r

i=1 θi(z(kT ))Ai)(t−τ)B

(
r∑

i=1

θi(z(kT ))Ki
d

)
xd(kT ) dτ

∥∥∥∥∥
� sup

z(kT )∈Uz

{
e‖

∑ r
i=1 θi(z(kT ))Ai‖T ‖xd(kT )‖

+ T e‖
∑ r

i=1 θi(z(kT ))Ai‖T

∥∥∥∥∥∥
r∑

j=1

θi(z(kT ))BKj
d

∥∥∥∥∥∥ ‖xd(kT )‖
}

� sup
(i,j)∈IR×IR

{e‖Ai‖T ‖xd(kT )‖+ T e‖Ai‖T
∥∥∥BKj

d

∥∥∥ ‖xd(kT )‖}

= µ ‖xd(kT )‖ ,

where µ = sup(i,j)∈IR×IR
e‖Ai‖T (1 + T

∥∥∥BKj
d

∥∥∥) is independent of k. By the

GES definition of (15): ‖xd(k, k0, x0)‖ � ς1 e−ς2(k−k0)T ‖x0‖, for any initial
data (k0, x0) ∈ Z[0,k)×R

n, we further proceed over the interval [kT, kT +T )
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‖xd(t; t0, x0)‖ � µς1 e−ς2(k−k0)T ‖x0‖
= µς1 eς2(t−kT ) e−ς2(t−k0T ) ‖x0‖
� µς1 eς2T e−ς2(t−t0) ‖x0‖
= ς3 e−ς2(t−t0) ‖x0‖ ,

where t0 = k0T and ς3 = µς1 eς2T . Therefore, we conclude that the trivial
solutions xd(t; t0, x0) to (12) with (14) are GES.

Remark 3. There are three points to be mentioned on Problem 1.

1. Conditions (17) and (18) may be solvable for Ki
d and Ei

d, if p � n and
m � n and Hi is nonsingular. However, in control engineering these are
usually overdetermined, hence one may suffer difficulty in having exact
solutions.

2. It should be addressed that (17) and (18) are hardly solved in many cases of
TS fuzzy model based control, since each variableKi

d and Ei
d should satisfy

r different equality constraints, respectively, for the global matching [19].
3. The stability property of the analog fuzzy control should be preserved

in the IDR procedure. However securing the GES of (15) weights down
solving Ki

d and Ei
d analytically.

In order to cope with the difficulties, an alternative approach is applied
by relaxing Problem 1 and searching the digital fuzzy set-point regulator in a
numerical manner. Our key idea is to find Ki

d and Ei
d in such a way that the

norm distances between φi and Gi +HiK
j
d, and ψij and HiE

j
d, respectively,

are minimized by using a numerical optimization technique.

Problem 2. (γ-Suboptimal IDR Problem for a Fuzzy Set-Point Regulator)
Given well-designed analog GES control gain matrices Ki

c and Ei
c for (10),

find the digital control gain matrices Ki
d and Ei

d for (14) such that the fol-
lowings are satisfied:

1. ‖φi−Gi−HiK
j
d‖ and ‖ψij−HiE

j
d‖ are minimized for all (i, j) ∈ IR×IR,

in the sense of the induced 2-norm measure.
2. The discretized closed-loop system (15) with r(kT ) =

[
0
]
p×1

is GES in the
sense of Lyapunov.

Notice that Problem 2 becomes a convex optimization problem, hence can
be numerically solved by formulating in terms of LMIs. The main results of
this paper are summarized as follows:

Theorem 1. (γ-Suboptimal IDR for a Fuzzy Set-Point Regulator) If there
exist matrices Q = QT  0, Xij = XT

ij = Xji = XT
ji, and F i

d, E
i
d with

compatible dimensions, and possibly small positive scalars γ1 ∈ R>0, γ2 ∈
R>0, such that the following minimization problem has solutions
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MP: Minimize
Q,Xij ,F i

d,Ei
d

trace{γ1, γ2}

subject to [ −γ1Q (•)T
φiQ−GiQ−HiF

j
d −γ1I

]
≺ 0 (19)[ −γ2I (•)T

ψij −HiE
j
d −γ2I

]
≺ 0, (i, j) ∈ IR × IR (20)[

−Q+Xij (•)T(
GiQ+HiF

j
d +GjQ+HjF i

d

2

)
−Q

]
≺ 0 (21)[

Xij

]
r×r

 0, (i, j) ∈ IJ × IR (22)

then xd(kT ) of the discrete-time representation (13) of (12) controlled by the
intelligently redesigned digital set-point regulator (14) closely matches xc(kT )
of the discrete-time representation (16) of the analog control system (11),
and (15) is GES in the sense of Lyapunov, where (•)T denotes the transposed
element in symmetric positions and IJ×IR means all pairs (i, j) ∈ Z>0×Z>0

such that 1 � i � j � r.

Proof. First, consider the first constraint in the first objective of Problem 2.
Introducing a free matrix variable W having a full column rank of n, then
we have ∥∥∥φi −Gi −HiK

j
d

∥∥∥
2

� γ̂1

= γ̂1
1

‖W‖2
‖W‖2

= γ1 ‖W‖2 (23)

for all (i, j) ∈ IR × IR, where γ1 = γ̂1/ ‖W‖2 ∈ R>0. Without loss of gen-
erality, one can pick P such that P  WTW , which is reasonable since
P = PT  0 is definitely bounded from (19).

From the definition of the induced 2-norm, (23) holds if the following
inequality are satisfied:

(φi −Gi −HiK
j
d)T(φi −Gi −HiK

j
d) ≺ γ2

1P . (24)

Using Schur complement, (24) can be represented by LMIs of the form:[
−γ1P (•)T

φi −Gi −HiK
j
d −γ1I

]
≺ 0 . (25)

Further applying the congruence transformation to (25) with diag{P−1, I},
and denoting F i

d = Ki
dP

−1 yields (19). Next, ‖ψij − HiE
j
d‖2 is minimized

whenever we minimize γ2 over Ei
d subject to (ψij−HiE

j
d)T (ψij−HiE

j
d) ≺ γ2

2I
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or equivalently (20). LMI (21) and (22) directly follow from the standard
Lyapunov GES theorem [21] details of which are shown in the Appendix.
This completes the proof of the theorem.

Remark 4. The matrix constraints regarding ψi such that Γh
i ∩ Γh

j = ∅,
h ∈ IP on Uzh

, and for all t ∈ R�0 do not have to be solved in IDR procedure.

4 Examples

Two examples are included to visualize the theoretical analysis and design.
More precisely, using the suggested technique digital control problems of
two chaotic systems, the Duffing-like chaotic oscillator and the chaotic Chua
circuit, are presented in this chapter.

4.1 IDR and Set-Point Regulation
of the Duffing-like Chaotic Oscillator

Consider the following Duffing-like chaotic oscillator [32]:

ÿ(t)− ay(t) + by(t)|y(t)| = −ε(ζẏ(t)− c sin(ωt)) , (26)

where a = 1.1, b = 1, and c = 21 are some positive constants, and ζ = 3 and
ε = 0.1 are small positive constants for chaos to emerge. The trajectory of
this system is shown in Fig. 3, which is chaotic and irregular. Let the system
state be xc(t) =

[
y(t), ẏ(t)

]T, and rewrite (26) as

d
dt
xc(t) =

[
xc2(t)

axc1(t)− bxc1(t)|xc1(t)| − εζxc2(t)

]
+

[
0

εc sin(ωt)

]
.

First, in order to construct the TS fuzzy system, the nonlinear term
xc1(t)|xc1(t)| should be expressed as a convex sum of the state as follows:{

xc1(t)|xc1(t)| = Γ 1
1 (xc1(t))0 + Γ 2

1 (xc1(t))Mxc1(t)

Γ 1
1 (xc1(t)) + Γ 2

1 (xc1(t)) = 1 ,
(27)

where xc1(t) ∈ Uy ⊂ (−M,M). M is reasonably chosen as 2.5, from Fig. 3.
Solving (27) yields ⎧⎨⎩Γ

1
1 (xc1(t)) = 1− |xc1 (t)|

M

Γ 2
1 (xc1(t)) = |xc1 (t)|

M .

Next, since we consider only the autonomous dynamical system for IDR, it is
highly desirable that the sinusoidal function is included into the state vector.
Hence, the state of the system can be redefined as
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Fig. 3. Uncontrolled trajectory of the Duffing-like chaotic oscillator

xc(t) =
[
y(t), ẏ(t), sin(ωt), cos(ωt)

]T
.

Now, the analytic TS fuzzy system of (26) is given by

R1 : IF xc1(t) is about Γ 1
1 , THEN ẋc(t) = A1xc(t) ,

R2 : IF xc1(t) is about Γ 2
1 , THEN ẋc(t) = A2xc(t) ,

where

A1 =

⎡⎢⎢⎣
0 1 0 0
a −εζ εc 0
0 0 0 ω
0 0 −ω 0

⎤⎥⎥⎦ , A2 =

⎡⎢⎢⎣
0 1 0 0

a− bM −εζ εc 0
0 0 0 ω
0 0 −ω 0

⎤⎥⎥⎦ .
Since the mathematical equations of the original Duffing-like chaotic oscilla-
tor and its TS fuzzy system are the same, one can easily expect that their
trajectories are identical. For design of a suitable fuzzy-model-based control,
the input and output matrices are assumed to be

B1 = B2 =

⎡⎢⎢⎣
0
1
1
0

⎤⎥⎥⎦ , C =
[
1 0 0 0

]
,

which preserve the controllability of the system.
From Theorem 1 in [28] and [2], the well-constructed gain matrices for

the analog fuzzy control are obtained as follows:

K1
c = [−9.1263 − 2.6634 − 1.3199 0.0400], E1

c = 8.0019
K2

c = [−8.3869 − 3.5096 − 0.7655 − 0.3501], E1
c = 9.5146 .
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(a) and . (b) and .
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l

(c) and .

Fig. 4. Comparison of time responses of the controlled Duffing-like chaotic oscil-
lator for T = 0.1 (s) (control input is activated at time t = 1.2 (s)): analog (solid
line), proposed (solid line with circle), and simple digital implementation (dotted
line)

Applying Theorem 1 yields the intelligently redesigned digital fuzzy con-
trol gain matrices, for the sampling period T = 0.1 (s), as

K1
d =

[
−7.3545 −2.4996 −1.3297 −0.0844

]
, E1

d =
[
6.4246

]
K2

d =
[
−6.6661 −3.1038 −0.9149 −0.3562

]
, E1

d =
[
7.6389

]
.

To explicitly show the usefulness of the proposed method, we also simulate
with Ki

d = Ki
c, i ∈ IR, which signifies naive digital implementation of analog

control by simply inserting sample-and-hold devices into the original analog
control loop.

The initial value is xc(0) = xd(0) = x0 =
[
1, 0, 0, 1

]T and simulation time
is 6 (s). For the quantitative comparison of the performance of the proposed
method, the performance measure is defined as [16]

P =
4∑

i=1

(∫ 6

0

|xci
(t)− xdi

(t)|dt
)
.

Time response of the simulation is shown in Fig. 4. Control input is ac-
tivated at t = 1.2 (s). Before the control input is activated, yd(t) does not
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(c) and .

Fig. 5. Comparison of time responses of the controlled Duffing-like chaotic oscil-
lator for T = 0.3 (s) (control input is activated at time t = 1.2 (s)): analog (solid
line), proposed (solid line with circle), and simple digital implementation (dashed
line)

converge to r(t) =
[
1
]
. After the control input is activated, all output trajec-

tories are guided to r(t). Nevertheless, we see that our IDR method produces
a closer state-matching performance than the other one.

In Fig. 5 the excellence of the proposed method is shown. For T = 0.3 (s),
we intelligently redesign the digital control gains as follows:

K1
d =

[
−2.0022 −1.4249 −1.1689 −0.5963

]
, E1

d =
[
1.4470

]
K2

d =
[
−1.3277 −1.2906 −1.1066 −0.5905

]
, E2

d =
[
1.7318

]
.

It should be strongly stressed that the trajectory controlled by the proposed
method closely matches the original controlled trajectory, whereas the naive
simple digital implementation of analog fuzzy control yields a poor state-
matching. This is because the proposed method provides the global state-
matching of the overall TS fuzzy system.

Another relatively longer sampling period T = 0.6 (s) is chosen so as to
emphasize the superiority of the proposed method to the other in the angle
of the stabilizability and control performance. Based on Theorem 1, the gain
matrices for T = 0.6 (s) are obtained as follows:
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Fig. 6. Comparison of time responses of the controlled Duffing-like chaotic oscil-
lator for T = 0.6 (s) (control input is activated at time t = 1.2 (s)): analog (solid
line), proposed (solid line with circle), and simple digital implementation (dashed
line)

K1
d =

[
−2.0022 −1.4249 −1.1689 −0.5963

]
, E1

d =
[
1.4470

]
K2

d =
[
−1.3277 −1.2906 −1.1066 −0.5905

]
, E2

d =
[
1.7318

]
.

Figure 6 shows the time responses and the trajectories of two digitally con-
trolled systems. As shown in the figures, the intelligently redesigned digital
control by the proposed method not only drives y(t) to r(t) =

[
1
]
, but also

relatively well matches the trajectories of the original system. However, the
other digital control gives the deteriorated state-matching performance, and
even instability. The performance comparison of these is shown in Table 1.
It is noted that the proposed method guarantees the stability of the con-
trolled system in much wider range of sampling period than does the simple
digital implementation, which may fail to stabilize the system especially for
relatively longer sampling period; this is another major advantage of the pro-
posed method. This is because the proposed method incorporates the stability
criterion in the IDR condition, whereas the other approach does not.
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Table 1. Comparison of the performance P of the proposed method with that of
other method according to the various values of sampling period T

Sampling Period T (s)

Method 0.1 0.3 0.6

Simple digital implementation 0.160447 0.557474 Unstable
Proposed 0.039535 0.183141 0.456691

4.2 Chaotic Chua Circuit

The chaotic Chua circuit, as shown in Fig. 7, is a simple electronic system
that consists of one inductor (L), two capacitors (C1,C2), one linear resistor
(R), and one piecewise linear resistor (g). The circuit diagram is illustrated in
Fig. 8. Chua’s circuit has been shown to possess very rich nonlinear dynamics
such as bifurcations and chaos [33].

Fig. 7. Uncontrolled trajectory of the chaotic Chua’s circuit oscillator

The dynamic equations of Chua’s circuits are described by⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

v̇C1 =
1
C1

(
1
R

(vC2 − vC1)− g(vC1))
)

v̇C1 =
1
C2

(
1
R

(vC1 − vC2) + iL)
)

i̇L = − 1
L

(vC1 +R0iL) ,

(28)

where R0 is a constant and g denotes the nonlinear resistor, which is a func-
tion of the voltage across the terminals of C1 defined as follows:

g(vC1) = mbvC1 +
1
2
(ma −mb)(|vC1 + E| − |vC1 − E|) ,
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Fig. 8. Chua’s circuit

...........................................................

...
...

...
...

...
.

................

Fig. 9. Resistor characteristic with a piecewise linear function

where E is a constant voltage and ma and mb are negative, as shown in
Fig. 9, which can also be represented by the three-segment piecewise linear
function

g(vC1) =

⎧⎪⎨⎪⎩
mbvC1 + (ma −mb)E, vC1 � E

mavC1 , −E < vC1 < E

mbvC1 − (ma −mb)E, vC1 � E

(29)

We want to obtain a TS fuzzy system in the open-loop form (3) for Chua’s
circuit with characteristic (29). Assuming vC1 ∈ UvC1

⊂ R[−d,d], d > E, then
(29) can be represented by a nonlinear weighted sum of the form: χ(vC1) =
m(θ)vC1 , where m(θ) ∈ co {ma,mt} so that{

g(vC1) = m(θ)
θ1 + θ2 = 1

is fulfilled, wheremt = ma+(ma −mb)E/(d). Denote xc(t) =
[
vC1 , vC2 , iL

]T.
In order to build the intended fuzzy system, the parameter d must be chosen
properly. Taking the above θ1 and θ2 as membership functions of fuzzy sets
Γ 1

1 and Γ 2
1 , χ(vC1) can be viewed as a defuzzified output of a TS fuzzy system

for g(vC1) with supx∈UvC1
‖g(vC1)− χ(vC1)‖ � δ = 0. Then, the TS fuzzy

system for Chua’s circuit becomes
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R1 : IF vC1 is about Γ 1
1 THEN ẋc(t) = A1xc(t)

R2 : IF vC1 is about Γ 2
1 THEN ẋc(t) = A2xc(t) ,

where

A1 =

⎡⎢⎣−
1

C1R −
ma

C1

1
C1R 0

1
C2R − 1

C2R
1

C2

0 − 1
L −R0

L

⎤⎥⎦ , A2 =

⎡⎢⎣−
1

C1R −
mt

C1

1
C1R 0

1
C2R − 1

C2R
1

C2

0 − 1
L −R0

L

⎤⎥⎦ .
For set-point regulation purpose, we set the input and output matrices as

B1 = B2 = I3×3, C =
[
0 0 1

]
.

By borrowing the chaotic parameters as R = 10
7 , R0 = 0, C1 = 1, C2 =

19
2 , L = 19

14 ,ma = − 8
7 ,mb = − 5

7 , E = 1 [5], and applying [28, Th. 1] and [2],
and solving the correspinding LMIs, we obtain the following analog control
gain matrices:

K1
c =

⎡⎢⎣−21.6190 −5.1116 −0.0140
−4.8884 −19.3333 6.5199
0.0140 6.7658 −20.3333

⎤⎥⎦ , E1
c =

⎡⎢⎣ 1.4008
−7.2520
20.3333

⎤⎥⎦
K2

c =

⎡⎢⎣−18.5333 −5.0111 0.0215
−4.9889 −19.3333 6.5723
−0.0215 6.7134 −20.3333

⎤⎥⎦ , E2
c =

⎡⎢⎣ 1.4098
−7.2958
20.3333

⎤⎥⎦ .
Applying Theorem 1, the intelligently redesigned digital fuzzy control

gains are computed for T = 0.02 (s):

K1
d =

⎡⎢⎣−17.5693 −4.8727 −0.2709
−3.3367 −16.6930 4.2035
−0.1486 6.7931 −16.7295

⎤⎥⎦ , E1
d =

⎡⎢⎣ 1.4036
−5.0302
16.3731

⎤⎥⎦
K2

d =

⎡⎢⎣−15.3289 −4.7566 −0.2407
−3.5552 −16.3462 4.2349
−0.1892 6.8042 −16.3663

⎤⎥⎦ , E2
d =

⎡⎢⎣ 1.4129
−5.0668
16.3705

⎤⎥⎦ .
We set r(t) =

[
0.1

]
and measure the state-matching performance from

t = 0 to 0.4 (s). A naive digital implementation of analog fuzzy control is also
simulated. The initial states are set to be xc(0) = xd(0) = x0 =

[
0, 1, 0

]T.
The simulated trajectories and their time responses by both methods are
shown in Fig. 10. As one can immediately witness, the state trajectory by the
proposed method is almost identical to that by the original analog control and
iLd

is guided to r(t) =
[
0.1

]
. However, the compared method indeed heavily

deteriorates the state-matching performance. In the other set of simulation
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run, we take T = 0.04 (s). The simulation results are depicted in Fig. 11. It
is observed that the state-matching performances by the proposed method
somewhat degraded yet the state trajectories have a strong resemblance to
the original one, whereas the others do not.

Table 2. Comparison of the performance P of the proposed method with that of
other method according to the various values of sampling period T

Sampling Period T (s)

Method 0.02 0.04

Simple digital implementation 0.014287 0.031420
Proposed 0.003869 0.005697

5 Closing Remarks

In this chapter, a novel and reliable IDR methodology has been presented for
the digital set-point regulator for chaotic systems represented by TS fuzzy
systems. The developed technique formulated the concerned IDR problem as
constrained minimization problem and the related conditions are specified by
LMIs, so as to realize the global state-matching on the whole Ux of chaotic
systems as well as to preserve the GES by the intelligently redesigned digi-
tal set-point regulator through the proposed IDR algorithm. The simulation
results on chaotic systems convincingly demonstrated the advantage of the
developed method compared to the naive approach. It implies the reliable
digital implementation of chaos control.

Appendix

We now show that (21) and (22) ensure the GES of (15) in the sense of
Lyapunov. To this end, it suffices to prove that there exists a function
V (xd(kT )) = xd(kT )TPxd(kT ) such that it is indeed positive definite and
radially unbounded, and its incremental difference ∆V (xd(kT )) is negative
definite.

Clearly, V (0) = 0 and V (xd(kT )) > 0 and radially unbounded in any
neighborhood of xd(kT ) = xdeq =

[
0
]
n×1

. By (21), the rate of increases of
V (xd(kT )) is majorized by
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Fig. 10. Comparison of time responses of the controlled Chua’s circuit for T =
0.02 (s): analog (solid line), proposed (solid line with circle), and simple digital
implementation (dashed line)
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Fig. 11. Comparison of time responses of the controlled Chua’s circuit for T =
0.04 (s): analog (solid line), proposed (solid line with circle), and simple digital
implementation (dashed line)
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∆V (xd(kT )) = V (xd(kT + T ))− V (xd(kT ))

= xd(kT + T )TPxd(kT + T )− xd(kT )TPxd(kT )

=
r∑

i=1

r∑
j=1

r∑
h=1

r∑
g=1

θi(z(kT ))θj(z(kT ))θh(z(kT ))θg(z(kT ))

× xd(kT )T((Gi +HiKj)TP (Gh +HhKg)− P )xd(kT )

=
1
4

r∑
i=1

r∑
j=1

r∑
h=1

r∑
g=1

θi(z(kT ))θj(z(kT ))θh(z(kT ))θg(z(kT ))

× xd(kT )T((Gi +HiKj +Gj +HjKi)TP
× (Gh +HhKg +Gg +HgKh)− 4P )xd(kT )

� 1
4

r∑
i=1

r∑
j=1

θi(xd(kT ))θj(xd(kT ))xd(kT )T((Gi +HiK
j
d +Gj

+HjK
i
d)

T P (Gi +HiK
j
d +Gj +HjK

i
d)− 4P )xd(kT )

= 2
r∑

i�j

θi(xd(kT ))θj(xd(kT ))xd(kT )T

×

⎛⎝(
Gi +HiK

j
d +Gj +HjK

i
d

2

)T

× P
(
Gi +HiK

j
d +Gj +HjK

i
d

2

)
− P

)
xd(kT )

� −2
r∑

i�j

θi(xd(kT ))θj(xd(kT ))xd(kT )TPXijPxd(kT )

= −

⎡⎢⎢⎢⎣
θ1(z(kT ))xd(kT )
θ2(z(kT ))xd(kT )

...
θr(z(kT ))xd(kT )

⎤⎥⎥⎥⎦
T
⎡⎢⎢⎢⎢⎣
P 0 · · · 0

0 P
. . .

...
...

. . . . . . 0
0 · · · 0 P

⎤⎥⎥⎥⎥⎦

×

⎡⎢⎢⎢⎣
X11 X12 · · · X1r

X12 X22 · · · X2r

...
...

. . .
...

X1r X2r · · · Xrr

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
P 0 · · · 0

0 P
. . .

...
...

. . . . . . 0
0 · · · 0 P

⎤⎥⎥⎥⎥⎦

×

⎡⎢⎢⎢⎣
θ1(z(kT ))xd(kT )
θ2(z(kT ))xd(kT )

...
θr(z(kT ))xd(kT )

⎤⎥⎥⎥⎦ ,
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where at the second majorization the congruence transformation with
diag{P, I} and Schur complement are sequentially applied to (21), and we
let P = Q−1 and F i

d = Ki
dP

−1. Hence if (22) holds, ∆V (xd(kT )) is nega-
tive definite. Hence we conclude that (15) is GES in the sense of Lyapunov,
whenever (21) is satisfied.
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Anticontrol of Chaos for Takagi–Sugeno
Fuzzy Systems

Zhong Li, Guanrong Chen, and Wolfgang A. Halang

Abstract. The current study on anticontrol of chaos for both discrete-time and
continuous-time Takagi–Sugeno (TS) fuzzy systems is reviewed. To chaotifying
discrete-time TS fuzzy systems, the parallel distributed compensation (PDC)
method is employed to determine the structure of a fuzzy controller so as to make
all the Lyapunov exponents of the controlled TS fuzzy system strictly positive. But
for continuous-time ones, the chaotification approach is based on the fuzzy feed-
back linearization and a suitable approximate relationship between a time-delay
differential equation and a discrete map. The time-delay feedback controller, cho-
sen among several candidates, is a simple sinusoidal function of the delayed states
of the system, which can have an arbitrarily small amplitude. These anticontrol ap-
proaches are all proved to be mathematically rigorous in the sense of Li and Yorke.
Some examples are given to illustrate the effectiveness of the proposed anticontrol
methodologies.

1 Introduction

Nowadays, it is well known that most conventional control methods and many
special techniques can be used for chaos control [1], for which, no matter the
purpose is to reduce harmful or undesirable chaos or to introduce useful or
beneficial chaos, numerous control methodologies have been proposed, de-
veloped, tested, and applied. Similar to conventional systems control, the
concept of “controlling chaos” is first to mean ordering or suppressing chaos
in the sense of stabilizing chaotic system responses. In this pursuit, numerical
and experimental simulations have convincingly demonstrated that chaotic
systems respond well to these control strategies. These methods of ordering
chaos include the now-familiar OGY method [2, 3], feedback controls [4, 5],
and fuzzy control [6–9], to list just a few.

However, controlling chaos also encompasses many nontraditional tasks,
particularly those of enhancing or generating chaos when it is beneficial.
Thus, the process of chaos control is now understood as a transition between
chaos and order, depending on the application of interest. The task of pur-
posely creating chaos, sometimes called chaotification or anticontrol of chaos,
has attracted increasing attention in recent years due to its great potential in

Z. Li et al.: Anticontrol of Chaos for Takagi–Sugeno Fuzzy Systems, StudFuzz 187, 185–227
(2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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nontraditional applications such as those found within the context of physi-
cal, chemical, mechanical, electrical, optical, and particularly biological and
medical systems [10–12]. Recently, there have been some successful reports
on anticontrolling chaos [11–13]. Although these reports are essentially ex-
perimental or semianalytical, in the sense that no explicit and quantitative
computational formula are provided with rigorous mathematical justification,
especially for the continuous-time case, they are nevertheless interesting and
promising.

One simple yet mathematically rigorous control method from the engi-
neering feedback control approach has been developed [14–16], where a linear
state feedback controller with an uniformly bounded control-gain sequence
can be designed to make all Lyapunov exponents of the controlled system
strictly positive and arbitrarily assigned. Moreover, such a controller can be
designed for an arbitrarily given n-dimensional dynamical system that could
be originally nonchaotic or even asymptotically stable. The goal of chaoti-
fication is finally achieved with a simple modulus operation or a sawtooth
(or even a sine) function. The design criterion is to use the definition of
chaos given by Devaney [18] or Li–Yorke [19], where for the n-dimensional
case the Marotto theorem [20] was used for a proof. For the continuous-time
case, a general approach to make an arbitrarily given autonomous system
chaotic has also been proposed lately [21–24]. Here, the main tool to use is
time-delay feedback perturbation on a system parameter or as an exogenous
input [22].

The possible interactions between fuzzy logic and chaos theory have been
explored since the late 1990s. The explorations have been carried mainly on
linguistic descriptions [25, 26], fuzzy modeling of chaotic systems using the
Takagi–Sugeno (TS) model [6–8, 27–29], and fuzzy control of chaos via an
LMI-based fuzzy control system design [6, 7]. In these investigations, fuzzy
modeling of chaotic systems in a typical approach was carried out in a linguis-
tic manner based on the Mamdani fuzzy model. The stretching and folding
features of the flow are responsible for the sensitivity to initial conditions,
characterizing the chaotic behaviors. Besides, the TS fuzzy model was used to
precisely represent chaotic systems, based on which a fuzzy controller is de-
signed, and then the LMI-based design problems were defined and employed
to find feedback gains of the fuzzy controllers that can satisfy some specifica-
tions such as stability, decay rate, and constraints on the control input and
output of the overall fuzzy control systems.

In this chapter, the study of anticontrol of chaos for both continuous-
time and discrete-time TS fuzzy systems is reviewed. Briefly, these anticontrol
approaches are extensions of formerly developed methods for general systems
to TS fuzzy systems, and are proved mathematically rigorous in the sense of
Li and Yorke.
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2 Chaotifying Discrete-Time TS Fuzzy Systems

2.1 The TS Fuzzy System

The TS fuzzy model [7, 8, 29] is described by a set of fuzzy implications, which
characterize local relations of the underlying system in the state space. The
main feature of a TS model is to express the local dynamics of each fuzzy
implication (rule) by a linear state-space system model. The overall fuzzy
system is then built up by fuzzy “blending” of these local linear system
models.

A general discrete-time TS fuzzy system is described as follows:
Discrete-time TS fuzzy model:

Plant Rule i: IF x1(k) is Γ i
1 and . . . and xn(k) is Γ i

n ,

THEN x(k + 1) = Aix(k) +Biu(k) , (1)

where
xT (k) = [x1(k), x2(k), . . . , xn(k)] ,

uT (k) = [u1(k), u2(k), . . . , um(k)] ,

i = 1, 2, . . . , q, in which q is the number of IF–THEN rules, Γ i
j are fuzzy

sets, and the equation x(k + 1) = Aix(k) + Biu(k) is the output of the ith
IF–THEN rule.

Assume that Ai and Bi, i = 1, 2, . . . , q, are uniformly bounded; that is,
there are constants N and Q such that

sup
1≤i≤q

‖Ai‖ ≤ N <∞ and sup
1≤i≤q

‖Bi‖ ≤ Q <∞

where ‖ · ‖ denotes the spectral norm of a finite-dimensional matrix, that is,
the largest singular value of the matrix.

Now, given one pair of (x(k), u(k)), the final output of the fuzzy system
at step k is inferred as follows:

x(k + 1) =
1∑q

i=1
ωi(k)

q∑
i=1

ωi(k){Aix(k) +Biu(k)} , (2)

where

ωi(k) =
n∏

j=1

Γ i
j (xj(k)) .

in which Γ i
j (xj(k)) is the degree of membership of xj(k) in Γ i

j , with{∑q
i=1 ωi(k) > 0,

ωi(k) ≥ 0,
i = 1, 2, . . . , q .
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By introducing hi(k) = ωi(k)∑ q
i=1 ωi(k)

instead of ωi(k), (2) is rewritten as

x(k + 1) =
q∑

i=1

hi(k){Aix(k) +Biu(k)} . (3)

Note that ⎧⎨⎩
∑q

i=1
hi(k) = 1,

hi(k) ≥ 0,
i = 1, 2, . . . , q , (4)

in which {hi(k)}q
i=1 can be regarded as the normalized weight of the IF–

THEN rules.

2.2 Chaos in the Sense of Li–Yorke: The Marotto Theorem

Consider a general n-dimensional discrete-time autonomous system of the
form

x(k + 1) = g(x(k)) , (5)

where g is a C1 nonlinear map. Let gt denote the t times of compositions of
g with itself. A point x∗ is said to be a p-periodic point of g if gp(x∗) = x∗

but gt(x∗) �= x∗ for 1 ≤ t < p. If p = 1, that is, g(x∗) = x∗, then x∗ is called
a fixed point. Let g′(x) and det(g′(x)) be the Jacobian of g at point x and its
determinant, respectively, and let B(x; r) denote a closed ball in R

n of radius
r centered at the point x.

Definition 1. [20] A fixed point x∗ of (5) is said to be a snap-back repeller
if

1. There exists a real number r > 0 such that g is continuously differentiable
with all eigenvalues of g′(x) exceeding the unity in absolute value for all
x ∈ B(x∗; r);

2. There exists a point x0 ∈ B(x∗; r), with x0 �= x∗, such that for some
positive integer m � 2, gm(x0) = x∗ and det((gm)′(x0)) �= 0.

Based on the above definition of the snap-back repeller, Marotto derived
the following criterion [20].

Theorem 1. (Marotto Theorem) If g has a snap-back repeller then system
(5) is chaotic in the following generalized sense of Li–Yorke:

(i) There is a positive integer N such that for each integer p ≥ N , g has a
point of period p;

(ii) There is a scrambled set of g, i.e., an uncountable set S containing no
periodic points of g, such that
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(a) g(S) ⊂ S,
(b) for every x, y ∈ S with x �= y,

lim
k→∞

sup ‖gk(x)− gk(y)‖ > 0 ,

(c) for every x ∈ S and any periodic point yper of g,

lim
k→∞

sup ‖gk(x)− gk(yper)‖ > 0 ;

(iii) There is an uncountable subset S0 of S such that for every x, y ∈ S0:

lim
k→∞

inf ‖gk(x)− gk(y)‖ = 0.

Straightforwardly, the definition of a chaotic TS fuzzy model can be given
as follows.

Definition 2 (Chaotic TS Fuzzy Model [30]). The TS fuzzy model (3) is said
to be chaotic in the sense of Li and Yorke if it has a snap-back repeller.

2.3 Anticontrol of Chaos via
Parallel-Distributed Compensation (PDC)

2.3.1 Parallel-Distributed Compensation (PDC)

The parallel-distributed compensation (PDC) technique is employed to de-
termine the structure of a fuzzy controller for a given TS fuzzy model. Each
control rule in the PDC is constructed from the corresponding rule of the TS
fuzzy model. The designed fuzzy controller shares the same fuzzy sets with
the fuzzy model in the premise parts. The PDC provides the following fuzzy
control rule structure from the fuzzy model (1):

Control Rule i: IF x1(k) is Γ i
1 and . . . and xn(k) is Γ i

n ,
THEN ui(k) = −Fix(k), i = 1, 2, . . . , q . (6)

where {Fi}q
i=1 are constant-gain matrices to be designed.

The fuzzy control rules have linear state feedback laws in the consequent
parts. The overall fuzzy controller is represented by

u(k) = − 1∑q

i=1
ωi(k)

q∑
i=1

ωi(k)Fix(k) = −
q∑

i=1

hi(k)Fix(k) . (7)

To be practical, the control-gain matrices {Fi}q
i=1 are required to be uni-

formly bounded:

sup
1≤i≤q

‖Fi‖ ≤M <∞ , (8)
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for some positive constant M .
Substituting (7) into (3) yields

x(k + 1) =
q∑

i=1

q∑
j=1

hi(k)hj(k){Ai −BiFj}x(k) . (9)

System (9) can also be written as

x(k + 1) =
q∑

i=1

hi(k)hi(k){Ai −BiFi}x(k)

+ 2
q∑

i<j

hi(k)hj(k)
{Ai −BiFj}+ {Aj −BjFi}

2
x(k)

=
q∑

i=1

hi(k)hi(k)Giix(k)

+ 2
q∑

i>j

hi(k)hj(k)
{
Gij +Gji

2

}
x(k) , (10)

where Gij = Ai −BiFj for all i, j = 1, 2, . . . , q.

2.3.2 Anticontroller Design

For simplicity, assume that Bi = B, i = 1, 2, . . . , q, so that (10) can be
rewritten as

x(k + 1) =
q∑

i=1

hi(k){Ai −BFi}x(k) =
q∑

i=1

hi(k)Giix(k) . (11)

Then, one has the following result [8].

Lemma 1. The TS fuzzy system (3) is exactly linearizable via the PDC fuzzy
controller (6) if there exist feedback gains such that

{(A1 −BF1)− (Ai −BFi)}T × {(A1 −BF1)− (Ai −BFi)} = 0 , (12)

for i = 2, 3, . . . , q. The overall control system can be linearized as

x(k + 1) = Gx(k) , (13)

where G = Gii, i = 2, 3, . . . , q.
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The jth Lyapunov exponent of the orbit of the controlled system (13),
starting from the given x0, is defined by

λj = lim
k→∞

1
k

ln
∣∣µj(Gk)

∣∣ , j = 1, 2, . . . , n , (14)

where µj(Gk) is the jth singular value of matrix Gk.
In the controlled system (13), one is able to design the constant-gain

matrices {Fi}q
i=1, given in (6), such that the Lyapunov exponents of the

controlled system orbit {xk}∞k=0 can be arbitrarily assigned:

λj(x0) = σj , j = 1, 2, . . . , n , (15)

where {σj}n
j=1 are arbitrarily chosen by the user, which may be positive, zero,

or negative (but all finite).
A convenient choice for the matrix G in (13) is, simply,

G = diag{eσ1 , eσ2 , . . . , eσn} .

It is clear that the eigenvalues of G are all larger than 1 if σj > 0, j =
1, 2, . . . , n. The desired matrices Fi, i = 1, 2, . . . , q, can then be obtained.

2.3.3 Verification of the Anticontrol Design with Mod-Operation

Theorem 2. [30] The resulting overall controlled system (13), along with
the mod-operation,

x(k + 1) = Gx(k) (mod-1) , (16)

where G = diag{eσ1 , eσ2 , . . . , eσn} and σi > 0, i = 1, 2, . . . , n, is chaotic in
the sense of Li and Yorke.

Proof. The controlled system (13) is

x(k + 1) = Gx(k) (mod-1) ≡ g(x(k)) . (17)

It is now to prove that the fixed point x∗ = 0 of (13) is a snap-back
repeller. To do so, define two n-dimensional vectors, b = [1, 1, . . . , 1]T and

x0 = G−2b =

⎡⎢⎢⎢⎢⎢⎣
e−2σ1 0 · · · 0

0 0 · · · 0

...
...

. . .
...

0 0 · · · e−2σn

⎤⎥⎥⎥⎥⎥⎦ b �= 0 . (18)

Since σi > 0, i = 1, 2, . . . , n, ‖x0‖∞ < 1. Clearly, after two-step iterations
on (16) with x1 = g(x0) = G−1b, one has
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g2(x0) = g(x1) = 0 = x∗ . (19)

Let r be a given constant satisfying ‖x0‖∞ ≤ r ≤ 1. For any x ∈ Br ≡
{x ∈ R

n| ‖x‖∞ ≤ r}, it is also clear that all the eigenvalues of G exceed
unity. Therefore, the fixed point x∗ = 0 of (13) is a snap-back repeller. By
the Marotto theorem, the controlled system (11)–(13) is chaotic in the sense
of Li and Yorke. Thus, it completes the proof.

2.4 A Simulation Example

Consider a nonchaotic discrete-time TS fuzzy model given as follows:

Rule 1: IF x(k) is Γ1, THEN

[
x(k + 1)

y(k + 1)

]
= A1

[
x(k)

y(k)

]
+Bu(k) ,

Rule 2: IF x(k) is Γ2, THEN

[
x(k + 1)

y(k + 1)

]
= A2

[
x(k)

y(k)

]
+Bu(k) ,

where

A1 =

[
d 0.3

1 0

]
, A2 =

[
−d 0.3

1 0

]
,

x(k) ∈ [−d, d] and d > 0, with membership functions

Γ1 =
1
2

(
1− x(k)

d

)
and Γ2 =

1
2

(
1 +

x(k)
d

)
.

Without control, i.e., u ≡ 0, the system is stable as shown in Fig. 1.
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Fig. 1. The system orbit without control input
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Fig. 2. The chaotic orbit of the anticontrolled system

Here, we choose two desired Lyapunov exponents, σ1 = ln(1.9) =
0.6418539 and σ2 = ln(2.0) = 0.6931472.

For simplicity, we assume that B = [1 0
0 1 ] and d = 2. We completed the

design of the feedback controller by following the procedure described above.
We obtained the controlled system output as shown in Figs. 2 and 3. The
output trajectory is displayed in the phase plane after some mod-2 operations
(they are obviously equivalent to mod-1 operations for anticontrol), which has
the above-indicated Lyapunov exponents λ1 = σ1 and λ2 = σ2.
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Fig. 3. The phase portraits of (a) t − x(k); (b) t − y(k)
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3 Anticontrol of Chaos via Sinusoidal Function

For simiplicity, assume that Bi = I in the discrete TS fuzzy system (1), so
that (3) is in the form of

x(k + 1) =
q∑

i=1

hi(k){Aix(k) + u(k)}

=

[
q∑

i=1

hi(k)Ai

]
x(k) + u(k) . (20)

The chaotification problem is to design a control input sequence, {u(k)}∞k=0,
with an arbitrarily small magnitude, σ > 0, namely,

‖u(k)‖∞ ≤ σ, for all k = 1, 2, . . . , q , (21)

such that the controlled system (20) becomes chaotic.
For this purpose, among several possible candidates, the simple sinusoidal

function is used to construct the control input as follows [31]:

u(k) = Φ(βx(k))

≡ [ϕ(βx1(k)), ϕ(βx2(k)), . . . , ϕ(βxn(k))]T , (22)

where x(k) = [x1(k), x2(k), . . . , xn(k)]T, β is a constant, and ϕ : R → R is a
continuous sinusoidal function defined by (see Fig. 4)

ϕ(x) = σ sin
(π
σ
x
)
. (23)

Obviously, |ϕ(x)| ≤ σ for all x ∈ R, so that ‖u(k)‖ ≤ σ, where σ can be
arbitrarily small, as required by condition (21). Here, the sinusoidal function
actually serves as a smooth version of the modulus operation.

)(xϕ

xσ σ20σ−σ2−

σ

σ−

Fig. 4. The sinusoidal function used for chaotification
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Lemma 2 (Boundedness). The state vector of the controlled system (20),
under the control of the controller (22) and (23), are uniformly bounded by a
constant, σ(1− α)−1.

Proof. The solution of the controlled system (20) can be written as

x(k) =

[
q∑

i=1

hi(k)Ai

]k

x(0) +
k−1∑
j=1

[
q∑

i=1

hi(k)Ai

]k−1−j

u(j) .

Since max1≤i≤q{‖Ai‖} = α < 1 and ‖u(k)‖ ≤ ∞, one has a decreasing
sequence {x(k)}∞k=0 with

lim
k→∞

‖x(k)‖ ≤ lim
k→∞

{[∥∥∥∥∥
q∑

i=1

hi(k)Ai

∥∥∥∥∥
]k

‖x(0)‖

+
k−1∑
j=1

[∥∥∥∥∥
q∑

i=1

hi(k)Ai

∥∥∥∥∥
]k−1−j

‖u(j)‖
}

≤ lim
k→∞

αk‖x(0)‖+ lim
k→∞

k−1∑
j=1

αk−1−j‖u(j)‖

≤σ lim
k→∞

k−1∑
j=1

αk−1−j

=
1

1− ασ .

This means that the sinusoidal function folds an expanding trajectory back
toward the origin when the trajectory becomes too large in magnitude, thus
bounding the controlled system trajectory globally. On the other hand, it
will be shown in the next section that if β is chosen to be large enough, the
controller designed above can lead all eigenvalues of the controlled system
Jacobian, at every time step, to exceed the unity in absolute value. Conse-
quently, it can be proven that all the Lyapunov exponents of the controlled
system are strictly positive, so that the system trajectory is locally expanding
in all directions. The combination of these two effects, stretching and folding,
will then yield complex chaotic dynamics within the bounded region of the
controlled system trajectories.

In this case, the fuzzy control rule structure (6) is in the following form:

Control Rule i: IF x1(k) is Γ i
1 and . . . and xn(k) is Γ i

n ,

THEN u(k) = Φ(βx(k)), i = 1, 2, . . . , q . (24)

The fuzzy control rules have linear state-feedback laws in the consequent
parts. The overall fuzzy controller is represented by
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u(k) =
1∑q

i=1
ωi(k)

q∑
i=1

ωi(k)Φ(βx(k) = Φ(βx(k)) . (25)

In terms of the Marotto theorem, the theoretical result of the above con-
troller design is summarized as follows [31].

Theorem 3. Suppose that hi(k), i = 1, 2, . . . , q, are continuously differen-
tiable in the neighborhood of the fixed point, x∗ = 0, of the controlled sys-
tem (20). Then, there exists a positive constant β̄ such that if β > β̄ then the
controlled TS fuzzy system (20) and (22) is chaotic in the sense of Li and
Yorke.

Proof. The controlled system (20) and (22) is

x(k + 1) =
q∑

i=1

hi(k){Aix(k) + u(k)}

=

[
q∑

i=1

hi(k)Ai

]
x(k) + Φ(βx(k)) ≡ g(x(k)) . (26)

Obviously, x∗ = 0 is a fixed point of (26), which is now proven to be a
snap-back repeller. Differentiating (26) at this fixed point yields

‖g′(0)‖ =

∥∥∥∥∥
[

q∑
i=1

hi(k)Ai

]∣∣∣∣∣
0

+ πβI

∥∥∥∥∥ . (27)

If β > (1+α)
π , then ‖g′(0)‖ > 1. By the continuity of g′(x) in the neigh-

borhood of the fixed point, there exists a small positive constant r such that
when x ∈ B(x∗; r), ‖g′(x)‖ > 1.

Therefore, the Gerschgorin theorem [32] implies that all eigenvalues of
g′(x) exceed the unity in absolute value for all x ∈ B(x0; r).

Next, it is shown that there exists a point x0 ∈ B(x∗; r) such that g2(x0) =
0 = x∗ and (g2(x0))′ �= 0.

Indeed, it is easy to see that if β > 3α
2 , then there exist x1 = [ σ

2β , . . . ,
σ
2β ]T

and x2 = [3σ
2β , . . . ,

3σ
2β ]T, such that

g(x1) > 0 and g(x2) < 0 .

Therefore, by the Mean Value Theorem in Calculus, there exists a point
x1 < x

∗
1 < x2 such that g(x∗1) = 0.

Let x̃ = [r, r, . . . , r]T. It is clear that there exists a constant β1 > 0 such
that if β > β1 then

g(0) = 0 < x∗1 and g(x̃) > x∗1 .
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Using the Mean Value Theorem again, one concludes that there exists a
point x0 ∈ B(x∗; r) such that g(x0) = x∗1. Therefore,

g2(x0) = g(x∗1) = 0 .

On the other hand, there exists a constant β2 > 0 such that g′(x∗1) < 0,
for cos( π

σβx∗
1
) < 0. Therefore,

(g2)′(x0) = g′(x∗1)g
′(x0) �= 0 .

To conclude, if β > β̄ ≡ max{(1 + α)/π, (3σ)/2, β1, β2}, then x0 = 0 is a
snap-back repeller of the map g defined in (26), so the controlled system (20)
and (22) is chaotic in the sense of Li and Yorke.

3.1 A Simulation Example

To visualize the theoretical analysis and design, the same example as given
above is used for illustration.

The controlled TS fuzzy system is described as follows:

x(k + 1) =
q∑

i=1

hi(k){Aix(k) + u(k)} =
q∑

i=1

hi(k)Aix(k) + u(k)

=
q∑

i=1

hi(k)Aix(k) + σ sin
(π
σ
βx(k)

)
.

In the simulation, the magnitude of the control input is arbitrarily chosen
to be σ = 0.1. Thus, ‖u(k)‖ < ∞, and β can also be regarded as a control
parameter. Without control, the TS fuzzy model is stable, as shown in Fig. 1.
When β takes values of 0.25, 0.4, 0.45, 0.5, and 1.3, the phase portraits, time
evolutions, and bifurcation diagrams are shown in Figs. 5–11, respectively.
These numerical results verify the theoretical analysis and the design of the
chaos generator.

4 Anticontrol of Chaos for Continuous-Time TS Fuzzy
Systems via Discretization

4.1 Continuous-Time TS Fuzzy Systems

Similar to model (1), a continuous-time TS fuzzy system is described as
Continuous-time TS fuzzy model:

Plant Rule i: IF x1(t) is Γ i
1 and . . . and xn(t) is Γ i

n,
THEN ẋ(t) = Aix(t) +Biu(t) , (28)
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where
x(t) = [x1(t), x2(t), . . . , xn(t)]T ,

u(t) = [u1(t), u2(t), . . . , um(t)]T ,

i = 1, 2, . . . , q, in which q is the number of IF–THEN rules, Γ i
j are fuzzy sets,

and the equation ẋ(t) = Aix(t) + Biu(t) is the output of the ith IF–THEN
rule.
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Assume that Ai, i = 1, 2, . . . , q, are n × n Hurwitz stable matrices; that
is, their eigenvalues have negative real parts.

Now, given one pair of (x(t), u(t)), the final output of the fuzzy system is
inferred as follows:

ẋ(t) =
1∑q

i=1
ωi

q∑
i=1

ωi{Aix(t) +Biu(t)} , (29)

where

ωi =
n∏

j=1

Γ i
j (xj(t)) ,

in which Γ i
j (xj(t)) is the degree of membership of xj(t) in Γ i

j , with{∑q

i=1
ωi > 0,

ωi ≥ 0,
i = 1, 2, . . . , q .
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By introducing hi = ωi/
∑q

i=1
ωi instead of ωi, (29) is rewritten as

ẋ(t) =
q∑

i=1

hi{Aix(t) +Biu(t)}

=

[
q∑

i=1

hiAi

]
x(t) +

[
q∑

i=1

hiBi

]
u(t) . (30)

Note that ⎧⎨⎩
∑q

i=1
hi = 1,

hi ≥ 0,
i = 1, 2, . . . , q , (31)

in which {hi}q
i=1 can be regarded as the normalized weights of the IF–THEN

rules.
In order to make a nonchaotic or even stable continuous-time TS fuzzy

system chaotic, based on the above-proposed anticontrol approaches a nat-
ural and straightforward approach is to convert it to a discrete-time version,
that is, to discretize the continuous-time TS fuzzy system. Conversion of
the continuous-time controller to an equivalent digital controller is known
as digital redesign. Digital redesign techniques were first considered in [33],
and then developed by many others [27, 34–36]. Here, this digital redesign
technique is adopted for discretization of a continuous-time TS fuzzy system.

4.2 Discretization of the Continuous-Time TS Fuzzy Model

There are a few methods for discretizing a linear time-invariant (LTI)
continuous-time system. Unfortunately, these discretization methods cannot
be directly applied to the discretization of the continuous-time TS fuzzy
models, since the defuzzified system is not LTI but linear time-varying. It
is very difficult to obtain the state transition matrix for their discretization.
The following theorem gives a rigorous mathematical foundation for the dis-
cretization of a continuous-time TS fuzzy model [36, 37].

Theorem 4. (Discretization Theorem) The continuous-time TS fuzzy model
(28) can be converted to the following discrete counterpart:

Discretized TS fuzzy model:

Plant Rule i: IF x1(k) is Γ i
1 and . . . and xn(k) is Γ i

n ,

THEN x(k + 1) = Gix(k) +Hiu(k) , (32)
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where

Gi = exp(AiTs) = I +AiTs +A2
i

T 2
s

2!
+ . . . ,

Hi =
∫ Ts

0

exp(Aiτ)Bidτ ≡ (Gi − I)A−1
i Bi , (33)

and Ts is the sampling time.
Here, it should be noted that (33) is only a short-hand notation, in which

Ai does not have to be invertible.

Proof. The exact solution of (30) at t = kTs+Ts, where Ts > 0 is the sampling
period, is given by

x(kTs + Ts) = Φ

(
q∑

i=1

hi(kTs + Ts),
q∑

i=1

hi(kTs)

)
x(kTs)

+
∫ kTs+Ts

kTs

Φ

(
q∑

i=1

hi(kTs + Ts),
q∑

i=1

hi(τ)

)

×
[

q∑
i=1

(hiBi)

]
u(τ) dτ , (34)

where

Φ

(
q∑

i=1

hi(kTs + Ts),
q∑

i=1

hi(kTs)

)
= Ψ

(
q∑

i=1

hi(kTs + Ts)

)
Ψ

(
q∑

i=1

hi(kTs)

)

is the state transition matrix of (30), and Ψ is the fundamental matrix of the
uncontrolled TS fuzzy system (with u(t) = 0), and is nonsingular for all t.

For a sufficiently small Ts, the input u(t) can be regarded approximately
as piecewise constant over the integration interval; namely, u(t) = u(kTs) for
kTs ≤ t < kTs + Ts. Then, (34) can be rewritten as

x(kTs + Ts) = Ḡx(kTs) + H̄u(kTs) , (35)

where

Ḡ = Φ

(
q∑

i=1

hi(kTs + Ts),
q∑

i=1

hi(kTs)

)
,

H̄ =
∫ kTs+Ts

kTs

Φ

(
q∑

i=1

hi(kTs + Ts),
q∑

i=1

hi(τ)

)
×

[
q∑

i=1

(hiBi)

]
dτ .

The exact evaluation of the state transition matrix Φ(·, ·) is very difficult,
if not impossible, since the continuous-time TS fuzzy model (30) is time-
varying. To solve this problem, we select a set of discrete-time points, kTs,
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such that
∑q

i=1
hi(t)Ai and

∑q

i=1
hi(t)Bi can be approximated by constant

matrices
∑q

i=1
hi(kTs)Ai and

∑q

i=1
hi(kTs)Bi, respectively, over each inter-

val [kTs, kTs +Ts]. Then, a set of difference equations can be used to describe
the discrete-time TS fuzzy model at each kTs [38].

In the time interval kTs ≤ t < kTs + Ts, Ḡ and H̄ have the following
representations:

Ḡ(kTs) = exp

((
q∑

i=1

hi(kTs)Ai

)
Ts

)
,

H̄(kTs) =
∫ kTs+Ts

kTs

exp

((
q∑

i=1

hi(kTs)Ai

)

× (kTs + Ts − τ)
)(

q∑
i=1

hi(kTs)Bi

)
dτ

=

(
exp

((
q∑

i=1

hi(kTs)Ai

)
Ts

)
− I

)(
q∑

i=1

hi(kTs)Ai

)−1

×
(

q∑
i=1

hi(kTs)Bi

)
. (36)

For a sufficiently small sampling period Ts > 0, and by using a power
series expansion, one has

Ḡ(kTs) = exp

((
q∑

i=1

hi(kTs)Ai

)
Ts

)

=I +
q∑

i=1

hi(kTs)AiTs +O(T 2
s )

≈
q∑

i=1

hi(kTs)(I +AiTs)

≈
q∑

i=1

hi(kTs) exp(AiTs)

=
q∑

i=1

hi(kTs)Gi ,

and by using the short-hand notation (exp(x) − I)x−1 = I + (1/2!)x +
(1/3!)x2 + · · · , one also has
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H̄(kTs) =
∫ kTs+Ts

kTs

exp

((
q∑

i=1

hi(kTs)Ai

)
× (kTs + Ts − τ)

)

×
(

q∑
i=1

hi(kTs)Bi

)
dτ

=

(
exp

((
q∑

i=1

hi(kTs)Ai

)
Ts

)
I

)

×
(

q∑
i=1

hi(kTs)Ai

)−1 ( q∑
i=1

hi(kTs)Bi

)

=

[(
q∑

i=1

hi(kTs)Ai

)
Ts +O(T 2

s )

]

×
(

q∑
i=1

hi(kTs)Ai

)−1 ( q∑
i=1

hi(kTs)Bi

)

≈
q∑

i=1

hi(kTs)BiTs

=
q∑

i=1

hi(kTs)Hi ,

where

Gi = exp(AiTs) = I +AiTs +A2
i

T 2
s

2!
+ · · · ≈ I +AiTs

and

Hi = BiTs ≈
∫ Ts

0

exp(Aiτ) dτ = (Gi − I)A−1
i Bi .

Denoting kTs by k gives (33).

If the subsystems are stable in each local subspace, and hi(x(t)), i =
1, 2, . . . , q, are continuously differentiable in a neighborhood of the origin,
then the local stability of the overall system is guaranteed by the following
theorem.

Theorem 5 (Local Stability Theorem). In (28), if Ai, i = 1, 2, . . . , q, are
all n × n Hurwitz stable matrices, then the uncontrolled system (30) (with
u(t) = 0) and uncontrolled discretized system (33) (with u(k) = 0) are both
stable in the neighborhood of the origin.

Proof. We first note that Ai, i = 1, 2, . . . , q, are all n × n Hurwitz stable
matrices; that is, all of their eigenvalues have negative real parts.



Anticontrol of Chaos for Takagi–Sugeno Fuzzy Systems 205

1. For the uncontrolled system (30), the origin x0 = 0 is obviously the fixed
point of the uncontrolled system (30), and its Jacobian at the origin is∑q

i=1
hi(x0)Ai. The characteristic equation is∣∣∣∣∣λI −

q∑
i=1

hi(x0)Ai

∣∣∣∣∣ =

∣∣∣∣∣
q∑

i=1

hi(x0)(λI −Ai)

∣∣∣∣∣
=

q∑
i=1

hi(x0)
n∏

j=1

(λ− λij)

= 0 ,

where λij , j = 1, 2, . . . , n, are the eigenvalues of Ai, i = 1, 2, . . . , q, which
all have negative real parts. If λ ≥ 0, then |λI−∑q

i=1 hiAi| > 0. So |λI−∑q
i=1 hiAi| = 0 holds only when λ < 0. This means that

∑q
i=1 hi(x0)Ai

is a Hurwitz stable matrix, and hence the uncontrolled system (30) is
stable in a neighborhood of the origin.

2. For the uncontrolled discretized system (33): Since Ai, i = 1, 2, . . . , q,
are Hurwitz stable matrices, Gi = exp(AiTs) are Schur stable matrices,
that is, ρ(Gi) < 1, therefore, there exists a certain norm, ‖ · ‖, such that
‖Gi‖ < 1. From (31) and the convexity of the matrix norm, it follows
that ∥∥∥∥∥

q∑
i=1

hiGi

∥∥∥∥∥ ≤
q∑

i=1

hi‖Gi‖

≤
[

q∑
i=1

hi

]
max{‖Gi‖} ,

= max{‖Gi‖}
�α < 1 .

Thus,

‖x(k + 1)‖ ≤
∥∥∥∥∥

q∑
i=1

hiGi

∥∥∥∥∥ ‖x(k)‖ ≤ α‖x(k)‖ .
By the contraction mapping theorem, it is concluded that the uncon-
trolled discretized system (33) is stable in the neighborhood of the origin.

After converting the continuous-time TS fuzzy system to a discrete-time
counterpart, we can design a controller for the discretized TS fuzzy system
to make it chaotic. The anticontroller design and the verification of chaos in
the controlled TS fuzzy system are similar to that discussed in Sect. 4.1, so
they are omitted.
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4.3 A Simulation Example

Consider a continuous-time TS fuzzy system, which is the fuzzy model of the
Lorenz equation, given by

Rule 1: IF x1(t) is Γ1, THEN
d

dt

⎡⎣x1(t)
x2(t)
x3(t)

⎤⎦ = A1

⎡⎣x1(t)
x2(t)
x3(t)

⎤⎦
Rule 2: IF x1(t) is Γ2, THEN

d

dt

⎡⎣x1(t)
x2(t)
x3(t)

⎤⎦ = A2

⎡⎣x1(t)
x2(t)
x3(t)

⎤⎦
where

A1 =

⎡⎣−d d 0
r −1 −x1 min

0 x1 min −b

⎤⎦ and A2 =

⎡⎣−d d 0
r −1 −x1 max

0 x1 max −b

⎤⎦
and the membership functions are

Γ1 =
−x1 + x1 max

x1 max − x1 min
and Γ2 =

x1 − x1 min

x1 max − x1 min
,

where Γi, i = 1, 2, are positive semidefinite for all x1 ∈ [x1 min, x1 max], and
d, r, and b are parameters.

With the parameters (d, r, b) = (10, 28, 8/3) and initial values (0.1, 0.1, 0.1),
the trajectory of the TS fuzzy system of the Lorenz system is shown in
Fig. 12a.

In terms of Theorem 4, the discretized TS fuzzy model of the original
continuous-time TS fuzzy Lorenz system is obtained as follows:
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Fig. 12. Trajectories of the original (a) and discretized (b) TS fuzzy Lorenz system
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Rule 1: IF x1(k) is Γ1, THEN

⎡⎣x1(k + 1)
x2(k + 1)
x3(k + 1)

⎤⎦ = G1

⎡⎣x1(k)
x2(k)
x3(k)

⎤⎦
Rule 2: IF x1(k) is Γ2, THEN

⎡⎣x1(k + 1)
x2(k + 1)
x3(k + 1)

⎤⎦ = G2

⎡⎣x1(k)
x2(k)
x3(k)

⎤⎦
where

G1 =

⎡⎣1− dTs dTs 0
rTs 1− Ts −x1 minTs

0 x1 minTs 1− bTs

⎤⎦ and

G2 =

⎡⎣1− dTs dTs 0
rTs 1− Ts −x1 maxTs

0 x1 maxTs 1− bTs

⎤⎦ .

Figure 12b shows the trajectory of the discrete-time version of the
continuous-time TS fuzzy Lorenz model, with Ts = 0.004. It can be seen
that the overall shape of the trajectory is very similar to that in Fig. 12a.

When the parameters are chosen as d = 200, r = 40, and b = 200,
the eigenvalues of Ai are −132.1267, −68.8733, and −200.0000, and so they
are Hurwitz stable matrices. Hence, by Theorem 5, the continuous-time and
the corresponding discretized TS fuzzy Lorenz system are both stable. The
anticontroller is designed as described in (22)–(23). The controlled TS fuzzy
Lorenz system is described as follows:

x(k + 1) =
q∑

i=1

hi{Gix(k) + u(k)}

=
q∑

i=1

hiGix(k) + u(k)

=
q∑

i=1

hiGix(k) + σ sin
(π
σ
βx(k)

)
.

In the simulation, the magnitude of the control input is arbitrarily chosen
to be σ = 0.1. Thus, ‖u(k)‖ < σ, and β can also be regarded as a control pa-
rameter. For β values of 0.6 and 2.1, the time evolutions, phase portraits, and
bifurcation diagrams are shown in Figs. 13–16, respectively. These numeri-
cal results verify the theoretical analysis and the design of the chaotifying
controller developed above.
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Fig. 13. Period-doubling bifurcations at β = 0.6
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5 Anticontrol of Chaos for Continuous-Time TS Fuzzy
Systems via Time-Delay Feedback

A new technique was proposed for chaotification, which is general and yet
by nature very different from the aforementioned approaches [39]. It can
make an arbitrarily given continuous-time TS fuzzy system chaotic via fuzzy
feedback linearization, differential geometric control theory, and time-delay
feedback perturbations [40–42]. In this approach, asymptotic analysis is used
to establish an approximate relationship between a time-delay differential
equation and a discrete chaotic map, so that a time-delay feedback control
term can be constructed to make the controlled TS fuzzy system chaotic,
where the generated chaos is in the sense of Li and Yorke [19]. Systems
with time-delay are inherently infinite-dimensional; therefore, it is possible
to produce complicated dynamics such as bifurcation and chaos, even in a
very simple first-order system [43].

Specifically, consider a general single-input TS fuzzy system in the fol-
lowing form:
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Fig. 16. Chaotic phase portrait at β = 2.1

Plant Rule i: IF x1(t) is Γ i
1 . . . and xn(t) is Γ i

n,
THEN ẋ(t) = Aix(t) +Biu(t) , (37)

where x(t) ∈ R
n, u(t) ∈ R, Ai ∈ R

n×n, Bi ∈ R
n, i = 1, 2, . . . , q, in which r

is the number of IF–THEN rules, Γ i
j are fuzzy sets, and the equation ẋ(t) =

Aix(t) +Biu(t) is the output from the ith IF–THEN rule.
Similarly, by using µi = ωi/

∑r

j=1
ωj instead of ωi, for a given pair of

(x(t), u(t)), the final output of the fuzzy system is inferred by

ẋ(t) =
1∑r

i=1
ωi

r∑
i=1

ωi{Aix(t) + Biu(t)}

=
q∑

i=1

µi {Aix(t) +Biu(t)}

=

[
q∑

i=1

µiAi

]
x(t) +

[
q∑

i=1

µiBi

]
u(t)

=Āx(t) + B̄u(t) , (38)

where Ā =
∑q

i=1
µiAi and B̄ =

∑q

i=1
µiBi.
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Definition 3 (Local and Global Controllability). If (Ai, Bi), i = 1, 2, . . . , q,
are controllable pairs, then the fuzzy model (38) is called locally controllable.
If (Ā, B̄) is a controllable pair, then the fuzzy model (38) is called globally
controllable.

For a special kind of locally controllable TS fuzzy systems and a more
general type of TS fuzzy systems, fuzzy feedback linearization technique,
nonlinear control theory, and the PDC with time-delay can be employed to
make them chaotic.

5.1 PDC Controller for Locally Controllable TS Fuzzy Systems

The PDC controller discussed in Sect. 2.3.1 is employed here to deter-
mine the structure of a fuzzy controller from a given TS fuzzy model [6,
44–47]. The PDC provides the following fuzzy-control rule structure from
the fuzzy model (38):

Control Rule i : IF x1(t) is Γ i
1 . . . and xn(t) is Γ i

n,

THEN u(t) = −Kix(t) + ν, i = 1, 2, . . . , q , (39)

where Ki are feedback control gains and ν is a time-delay feedback term of
the form

ν(t− τ) = ω(h(x(t− τ))) ,
in which h is a scalar function needed to be further determined.

The fuzzy control rules have linear state feedback laws and a scalar func-
tion in the consequent parts. The overall fuzzy controller is represented by

u(t) =− 1∑q

i=1
ωi

q∑
i=1

ωi (Kix(t) + ν)

=−
q∑

i=1

µiKix(t) + ν . (40)

Chaotifying the TS fuzzy system (38) is generally a very difficult task.
However, in some special cases, this can be done. Consider the case of a
common B in (38), i.e., B1 = B2 = · · · = Bq = B.

Definition 4. The TS fuzzy system (38) is called exactly linearizable via the
feedback controller (40) if there exist feedback gains Ki such that

Ai −BKi = G , (41)

for i = 2, 3, . . . , q.



212 Z. Li et al.

Notice that having a common G might not always be possible even if
(Ai, Bi), i = 1, 2, . . . , q, are controllable.

If the locally controllable TS fuzzy system (38) is exactly linearizable,
one can choose Ki such that Ai − BKi = G for i = 1, 2, . . . , q, where G
is a Hurwitz stable matrix with desired eigenvalues of µ1, µ2, . . ., µn, and
(G,B) is also controllable. Thus, the global fuzzy model (38) is reduced to
the following form:

ẋ(t) = Gx(t) +Bν . (42)

The feedback control law (40) can then be designed by using conventional
linear system theory [40] so that the eigenvalues of Ai − BKi are the spec-
ified ones. The feedback gain Ki can be obtained by using the Ackerman’s
formula [40], in the case of a single-input system, as follows:

Ki = [0 0 · · · 0 1]
[
B |AiB | · · · |An−1

i B
]−1

φ(Ai) , (43)

where φ(Ai) = An
i +a1A

n−1
i + · · ·+an−1Ai +anI, i = 1, 2, . . . , q, are Hurwitz

stable polynomials, and a1, a2, . . . , an are coefficients of the characteristic
polynomial

|λI −G| = (λ− µ1)(λ− µ2) · · · (λ− µn)

= λn + a1λ
n−1 + · · ·+ an−1λ+ an . (44)

Define a transformation matrix T by

T = MW , (45)

where M is the controllability matrix of the form

M =
[
B |GB | . . . |Gn−1B

]
and

W =

⎡⎢⎢⎢⎢⎢⎣
an−1 an−2 · · · a1 1
an−2 an−3 · · · 1 0

...
...

. . .
...

...
a1 1 · · · 0 0
1 0 · · · 0 0

⎤⎥⎥⎥⎥⎥⎦ .
Also define a new state vector x̂ by

x = T x̂ .

The rank of the controllability matrix M is n because (G,B) is control-
lable. Then, the inverse of matrix T exists and (43) can be modified to

˙̂x = T−1GTx̂+ T−1Bν , (46)
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where

T−1GT =

⎡⎢⎢⎢⎢⎢⎣
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−αn −αn−1 −αn−2 · · · −α1

⎤⎥⎥⎥⎥⎥⎦
and

T−1B =

⎡⎢⎢⎢⎢⎢⎣
0
0
...
0
1

⎤⎥⎥⎥⎥⎥⎦ ,
with

ν = ω(x̂1(t− τ)) = ω((T−1x)1(t− τ)) , (47)

in which x̂1 means the first component of vector x̂.
This will be further determined in the following.

5.2 Controller Design for General TS Fuzzy Systems

Two different approaches are employed to study the problem of chaotification
for a more general TS fuzzy system.

5.2.1 Approximate Linearization Approach

Obviously, the origin is an equilibrium of the uncontrolled system (38) with
u = 0 therein, and by Theorem 5 it is asymptotically stable within its suffi-
ciently small neighborhood if the subsystems (37) is stable.

In a small neighborhood of the origin, system (38) can be represented by
its linearization, evaluated at the origin, as follows:

ẋ(t) = Ā0x(t) + B̄0u(t) . (48)

Suppose (Ā0, B̄0) is controllable, a feedback control law similar to the
above-proposed formula (45) can be used to convert it to the controllable
canonical form (46).

5.2.2 Globally Exact Linearization Approach

To achieve the intended chaotification, differential geometric control theory
can be applied [41, 48, 49]. Assume that y = h(x) is a scalar output of
system (38), where h is a smooth function satisfying h(x) = 0. Combined
with (38), it can be described as a SISO affine nonlinear system as follows:
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ẋ(t) = Āx(t) + B̄u(t) := f(x) + g(x)
y = h(x) . (49)

Let Li
fh(x) denote the ith Lie derivative of the smooth function h(x)

with respect to a vector field f(x), and adi
fg(x) the ith Lie bracket of the

two smooth vector fields f(x) and g(x).

Definition 5. The SISO affine system (49) is said to have a relative degree
r at x∗ if there exists a neighborhood U of x∗ such that

LgL
k
fh(x

∗) = 0,∀ x ∈ U, 0 ≤ k < r − 1 ;

LgL
r−1
f h(x) �= 0 .

Definition 6. (Involutive Distributions) A distribution ∆ = span
{f1, . . . , fm} is called involutive if for any two vector fields τ1, τ2 ∈ ∆, their
Lie bracket adτ1τ2 ∈ ∆.

The following result is well known [41].

Lemma 3. The SISO system (49) has relative degree n at x∗ if and only if
there exists a neighborhood U of x∗ such that

(i) rank [g(x), adfg(x), . . . , adn−1
f g(x)] = n for all x ∈ U ,

(ii) span {g(x), adfg(x), . . . , adn−2
f g(x)} is involutive in U .

Definition 7. The SISO system (49) is called globally feedback linearizable if
it has relative degree n at x∗.

In this case, the output y = h(x) is a solution to the following partial
differential equation:

∂h(x)
∂x

[
g(x), adfg(x), . . . , adn−2

f g(x)
]

= 0 .

If the output y = h(x) results in a relative degree of n, then one may use

y = Φ(x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

h(x)
Lfh(x)
L2

fh(x)
...

Ln−1
f h(x)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(50)
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and the control law

u(x) =
1

LgL
n−1
f h(x)

(−Ln
fh(x) + ν) (51)

to yield the linear system

ẏ =

⎡⎢⎢⎢⎢⎢⎣
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0
0 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎦y +

⎡⎢⎢⎢⎢⎢⎣
0
0
...
0
1

⎤⎥⎥⎥⎥⎥⎦u , (52)

where y =
[
y, ẏ, . . . , y(n−1)

]T
, and

u =
1

LgL
n−1
f

(
−Ln

fh(x) + ω(y(t− τ))
)

=
1

LgL
n−1
f

(
−Ln

fh(x) + ω(h(x(t− τ)))
)
, (53)

in which the time-delay term also remains to be further determined in the
following.

5.2.3 Verification of Chaos

The controlled TS fuzzy system (48) with time-delay term (52) can be recast
in the following n-dimensional state-space form:

ẋ(t) = Gx(t) +Bν , (54)

where G and B are in the controllable canonical form, namely,

G =

⎡⎢⎢⎢⎣
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
−αn −αn−1 · · · −α1

⎤⎥⎥⎥⎦ and B =

⎡⎢⎢⎢⎢⎢⎣
0
0
...
0
1

⎤⎥⎥⎥⎥⎥⎦ .

SinceG is a Hurwitz stable matrix and ν(t) is uniformly bounded, the solution
of (54) is bounded for any bounded initial condition and can be computed
iteratively on each τ -time interval (mτ, (m+ 1)τ ] for m = 0, 1, . . ..

Denote x(t) ≡ x(mτ + t̂) ≡ x(m, t̂) for t ≡ mτ + t̂, t̂ ∈ (0, τ ]. It follows
that

x(t) = x(m, t̂) = eGt̂x(m− 1, t̂) +
∫ t̂

0

eG(t̂−t′)Bω(x1(m− 1, t′))dt′ . (55)
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Lemma 4. Let δ(t − t0) be the scalar-valued Dirac distribution centered at
t0 ≥ 0, and let dξ(t, t0) = eG(t0−t) dt be a matrix-valued measure defined on
[0, τ ]. If it is imposed that dξ(t, t0) = C(t, t0)δ(t − t0) dt, then C(t, t0) ≈
−G−1eG(t0−t) for a sufficiently large τ > 0. Moreover, C(t, t0) → −G−1 as
t→ t0.

Proof. See [22, 50].

Lemma 5. For a sufficiently large τ and a large t̂ ∈ (t0, τ ],

x1(m, t̂) ≈ ω(x1(m− 1, t̂)) and xi(m, t̂) ≈ 0 , (56)

for m = 0, 1, . . . and i = 2, . . . , n.

Proof. Note that for any given bounded initial condition, x(t) is uniformly
bounded and eGt̂x(m−1, t̂) tends to 0 rapidly as t̂→∞. Therefore, it follows
from (49) that

x(t) ≈
∫ t̂

0

eG(t̂−t′)Bω(x1(m− 1, t′)) dt′

≈
∫ t̂

0

C(t′, t̂)δ(t′ − t̂)Bω(x1(m− 1, t′)) dt′

≈ C(t′, t̂)Bω(x1(m− 1, t̂))
≈ −G−1ω(x1(m− 1, t′)) .

Since

G−1 =

⎡⎢⎢⎢⎢⎢⎢⎣
−α1

α0
−α2

α0
· · · −αn−1

α0
− 1
α0

1 0 · · · 0 0

0 1
. . . 0 0

0 0 · · · 0 0
0 0 · · · 1 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

one has
x(m, t̂) ≈

(
α−1

0 ω(x1(m− 1, t̂)), 0, . . . , 0
)T

.

The proof is thus completed.

Lemma 5 establishes an asymptotically approximate relationship between the
time-delay equation (54) and the difference equation (56). Although there is
an essential difference between the dynamics of a time-delay equation and
that of its associated difference equation [51], it is reasonable to expect that
the first state component of the time-delay equation (54) is chaotic if ω(·) is
a bounded chaotic map and the delay time is sufficiently large. This implies
that one can use time-delay feedback to drive system (54) to be chaotic.
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Theorem 6. If ω(·) is a bounded chaotic map and if the delay time is suf-
ficiently large, then the TS fuzzy system (38) controlled by the time-delayed
feedback control law is chaotic.

Proof It follows directly from Lemma 5.

There are many well-known chaotic maps, such as the Logistic map,
Henon map, Baker’s map, which can be used to construct the time-delay
feedback ω(·), thus making the controlled TS fuzzy system (38) chaotic. One
simple choice is

ν(t) = ω(x1(t− τ)) = σ sin
(π
σ
βx1(t− τ)

)
, (57)

which is shown in Fig. 4.
Obviously, | ν(t) |≤ σ for all x1 ∈ R, which can be arbitrarily small.
As mentioned above, if the map (57) is chaotic, then one can expect that

the time-delay PDC will make the TS fuzzy system (38) chaotic, provided
that the delay time τ is sufficiently large. Mathematically, we can show that
the map (57) is indeed chaotic in the sense of Li and Yorke by arguments
similar to that given in [18, 19]. The bifurcation diagram of map (57) is shown
in Fig. 17, with σ = 0.1, which reveals the chaotic nature of the map (57).

5.3 Simulation Examples

To visualize the theoretical analysis and design, two examples are included
here for illustration.

0 0.5 1 1.5 2 2.5 3
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0.08

0.1

beta

v

Fig. 17. Bifurcation diagram of map (57) with σ = 0.1
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Example 1. Consider the fuzzy system

Rule 1: IF x2(t) is Γ1, THEN ẋ = A1x+Bu ,
Rule 2: IF x2(t) is Γ2, THEN ẋ = A2x+Bu ,

where

A1 =
[

1 −0.5
1 0

]
, A2 =

[
−1 −0.5
1 0

]
, and B =

[
1
0

]
.

Figure 18 shows the membership functions of Γ1 and Γ2.

• •

•

a b

1

0
x2(t)

Γ1 Γ2

Fig. 18. Membership functions of Example 1

Since A1 and A2 are stable, the linear subsystems are stable, and the
overall system is stable in a neighborhood of the origin by Theorem 5. Em-
ploying the feedback controller (40) and choosing the closed-loop eigenvalues
as [−0.35, −0.5], we obtain

K1 = [1.85, −0.325], K2 = [−0.15, −0.325] ,

and

A1 −BK1 = A2 −BK2 = G =
[
−1.85 −0.175

1 0

]
.

The closed-loop system becomes

ẋ = Gx+Bν .

Define a transformation matrix, T = MW = [0 1
1 0 ], and a new state

vector x̂ by x = T x̂, where M = [1 −0.85
0 1 ] and W = [0.85 1

1 0 ]. One has

˙̂x =
[

0 1
−0.175 −0.85

]
x̂+

[
0
1

]
ν ,
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Fig. 19. Time response of the controlled TS fuzzy system (the first component is
chaotic)

where

ν=σ sin
(π
σ
βx̂1(t− τ)

)
=σ sin

(π
σ
β(T−1x)1(t− τ)

)
=σ sin

(π
σ
βx2(t− τ)

)
.

When σ = 1, β = 141, and τ = 1, and the control starts at t = 3, the
time response and chaotic attractor of the controlled TS fuzzy system are
obtained as shown in Figs. 19 and 20, respectively.

Example 2. Consider a continuous-time TS fuzzy system, the fuzzy model of
Chen’s system [36], given by

Rule 1: IF x1(t) is Γ1, THEN
d

dt

⎡⎣x1(t)
x2(t)
x3(t)

⎤⎦ = A1

⎡⎣x1(t)
x2(t)
x3(t)

⎤⎦ +Bu

Rule 2: IF x1(t) is Γ2, THEN
d

dt

⎡⎣x1(t)
x2(t)
x3(t)

⎤⎦ = A2

⎡⎣x1(t)
x2(t)
x3(t)

⎤⎦ +Bu ,

where

A1 =

⎡⎣ −a a 0
c− a c −x1 min

0 x1 min −b

⎤⎦ , A2 =

⎡⎣ −a a 0
c− a c −x1 max

0 x1 max −b

⎤⎦ ,
with membership functions
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Fig. 20. Chaotic attractor of the controlled TS fuzzy system (phase portrait)

Γ1 =
−x1 + x1 max

x1 max − x1 min
and Γ2 =

x1 − x1 min

x1 max − x1 min
,

where Γi, i = 1, 2, are positive semidefinite for all x1 ∈ [x1 min, x1 max] =
[−30, 30], and a, b, and c are parameters.

We fixed a = 35, b = 3, and let c vary. For c < 12.8, the origin of the
uncontrolled subsystems is a globally exponentially stable equilibrium point.
For 17.5061 ≈ cH1 < c < 20, the uncontrolled Chen’s system has two lo-
cally exponentially stable equilibrium points given by the following formula:
P± =

(
±
√
b(a− 2c), ±

√
b(a− 2c), a− 2c

)
, and the system is chaotic only

if c > cH2 ≈ 37.9868 or 12.8 < c < cH1 ≈ 17.5061.

5.3.1 Approximate Linearization Approach

In the simulation, we took c = 10, so the origin of the uncontrolled overall
system is locally stable. Its linearization is as follows:

ẋ =

⎡⎣−35 35 0
−25 10 0
0 0 −3

⎤⎦x+

⎡⎣1
1
1

⎤⎦u .
Feedback gain K = [−20.2, −1.8, 0] can be chosen to make the system

have the desired eigenvalues −1, −2, and − 3. The system becomes
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ẋ =

⎡⎣−14.8 36.8 0
−4.8 11.8 0
20.2 1.8 −3

⎤⎦x+

⎡⎣1
1
1

⎤⎦ ν .
Define a transformation matrix T by

T =

⎡⎣−54.69 22.6 1
−18.69 7.6 1
411.51 19.6 1

⎤⎦ ,

and define a new state vector x̂ by

x = T x̂ .

The controller is designed as

u =Kx+ σ sin
(π
σ
β(T 1x)1(t− τ)

)
=Kx+ σ sin

(
π

σ
β(−0.00170x1(t− τ)− 0.0004x2(t− τ)

+ 0.0022x3(t− τ))
)
.

In the simulation, we fixed τ = 1. Figure 21 shows the chaotic attractor
of the controlled Chen’s TS fuzzy system, with σ = 1 and β = 31.

-6 -4 -2 0 2 4 6 8
-3

-2

-1

0

1

2

3

x1(t)

x2
(t

)

Fig. 21. Chaotic attractor of the controlled Chen’s TS fuzzy system
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5.3.2 Globally Exact Linearization Approach

In the simulation, we took c = 19. In this setting, the uncontrolled TS
fuzzy model of Chen’s system has two locally exponentially stable equilib-
rium points. Here, we use c as a control parameter, and denote c = c0 + δc.
The controlled Chen’s TS fuzzy system becomes

ẋ =

⎡⎣ a(x2 − x1)
(c− a)x1 − x1x3 − cx2

x1x2 − bx3

⎤⎦ +

⎡⎣ 0
x1 + x2

0

⎤⎦ δc
with

adfg =

⎡⎣ −a(x1 + x2)
ax2 − 2ax1 − x1x3

−x1(x1 + x3)

⎤⎦ .
We still fixed a = 35, b = 3, and c = 19, but let 0 < δc < 1.48. It can

be verified that conditions (i) and (ii) in Lemma 3 are satisfied for all x �= 0,
and so the relative degree of the system at the nontrivial equilibrium points
is 3. It follows from (50) that

∂h

∂x
g(x) =

∂h

∂x2
(x1 + x2) = 0 ,

∂h

∂x
adfg(x) = 0 ,

so that
∂h

∂x2
= 0, a

∂h

∂x1
+ x1

∂h

∂x3
= 0 .

The solution is given by

y = h(x) = 0.5x2
1 − ax3 .

Therefore, we may take

δc = σ sin
(π
σ
β
(
0.5x2

1(t− τ)− ax3(t− τ)
))
.

In the simulation, we fixed τ = 1. For σ = 1 and β = 31, the controlled
system has two separated chaotic attractors; each is near to one of the two
originally stable fixed points, as shown in Figs. 22 and 23, respectively.

For σ = 5, Fig. 24 shows that the two separated attractors merge into one
chaotic attractor with β unchanged, and its corresponding 3-D phase portrait
is shown in Fig. 25.
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Fig. 22. One separated chaotic attractor of the controlled Chen’s TS fuzzy system
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Fig. 23. Another separated chaotic attractor of the controlled Chen’s TS fuzzy
system
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Fig. 24. Projection of the chaotic attractor of the controlled Chen’s TS fuzzy
system on x1 − x2 plane
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Fig. 25. The 3-D chaotic attractor of the controlled Chen’s TS fuzzy system
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5.4 A Remark on the Time-Delay Anticontrol Approach

Although the fundamental idea of the anticontrol algorithm used in this sec-
tion to chaotify continuous-time TS fuzzy systems is correct and insightful,
the time-delay differential equation is only approximated by a related dis-
crete map. Inspired by this fundamental idea, [23] improved the technical
contents by deriving a similar yet rigorous design method for chaotification,
which may be modified to apply to the TS fuzzy systems setting.

6 Concluding Remarks

The study on anticontrol of chaos for both discrete-time and continuous-time
Takagi–Sugeno (TS) fuzzy systems has been reviewed in this chapter. The
anticontrol approaches are proved to be mathematically rigorous and the
chaos generated by this method has been proved to be in the sense of Li
and Yorke. An open problem is how to generate a chaotic attractor, which
has preferred features such as multiscroll attractors. The Mamdani fuzzy
modeling and control approaches may be able to provide a possible solution,
which needs to be further studied in the future.
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Chaotification of the Fuzzy Hyperbolic Model

Huaguang Zhang, Zhiliang Wang, and Derong Liu

Abstract. In this chapter, the problem of chaotifying the continuous-time fuzzy
hyperbolic model (FHM) is studied. We first use impulsive and nonlinear feedback
control methods to chaotify the FHM and we show that the chaos produced by the
present methods satisfy the three criteria of Devaney. We then design a controller
based on inverse optimal control and adaptive parameter tuning methods to chaotify
the FHM by tracking the dynamics of a chaotic system. Computer simulation results
show that for any initial value the FHM can track a chaotic system asymptotically.

1 Introduction

As an intersection of chaos theory and control theory, chaos control has at-
tracted more and more attention since the seminal work by Ott et al. [1].
In the past decade, many researchers have studied control methods with the
purpose of either reducing “bad” chaos or introducing “good” chaos [2]. Due
to its great potential in nontraditional applications such as those found in the
fields of physical, chemical, mechanical, electrical, optical, and particularly,
biological and medical systems [3–5], making a nonchaotic system chaotic or
maintaining existing chaos, known as “chaotification” or “anticontrol,” has
attracted increasing attention in recent years. The process of chaos control
is now understood as a transition from chaos to order and sometimes from
order to chaos, depending on the purposes of different applications. Studies
have shown that discrete maps can be chaotified in the sense of Devaney or
Li–York by a state feedback controller with a control sequence of uniformly
bounded gain designed to make all Lyapunov exponents of the controlled sys-
tem strictly positive or arbitrarily assigned [6–11]. Even though there are also
some research works showing that certain continuous stable systems can be
chaotified [12–18], the problems of how to chaotify unlinearizable nonlinear
systems as well as how to make nonchaotic systems produce expected chaotic
states, are still open problems.

In this chapter, we make an effort to solve the above problems. Instead
of directly chaotifying a nonlinear system, we will first design a controller
to chaotify a fuzzy hyperbolic model (FHM), which is used to describe the
original nonlinear system. After that, we impose the designed controller on
the original nonlinear system. Due to the universal approximation property of

H. Zhang et al.: Chaotification of the Fuzzy Hyperbolic Model, StudFuzz 187, 229–257 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006



230 H. Zhang et al.

the FHM, it is reasonable to believe that chaos will emerge when controlling
the original nonlinear system. There are two approaches used in this chapter
for the chaotification of the FHM. First the impulsive control method will
be investigated, which is shown to produce chaos in the sense of Devaney
when controlling the FHM. Next, inverse optimal control theory will be used
to design a chaotifying controller for the same model. Finally, we apply the
controllers designed for the chaotification of the FHM to the chaotification of
a piecewise-linear continuous system to show the effectiveness of the present
chaotifying controllers.

2 Chaotification of the Fuzzy Hyperbolic Model
by Impulsive Control Method

Commonly speaking, a system’s trajectory can have three kinds of states:
convergent, periodic, and divergent. To make a continuous nonchaotic sys-
tem chaotified, one intuitive idea is to make the system’s trajectory contain
irregular jumps or oscillations. Furthermore, if the system’s trajectory with
such jumps or oscillations can be kept in a bounded region, it is reasonable
to infer that the system maybe in a chaotic state. To verify the inference, we
must prove that the system indeed does move in a chaotic manner. In this
section, we take Devaney’s definition of chaos as our theoretical foundation
and use the FHM to test the above idea.

2.1 Preliminaries

First, we review Devaney’s definition of chaos.

Definition 1. (cf. [19]) A map φ : S → S, where S is a set, is chaotic if

(i) φ has sensitive dependence on initial conditions, in that for any x ∈
S and any neighborhood N of x in S, there exists a δ > 0 such that
‖φm(x)− φm(y)‖ > δ for some y ∈ N and m > 0, where φm is the
mth-order iteration of φ, i.e., φm∆=φ ◦ φ ◦ · · · ◦ φ (m times).

(ii) φ is topological transitive, in that for any pair of subsets U, V ⊂ S, there
exists an integer m > 0 such that φm(U) ∩ V �= ∅.

(iii) the periodic points of φ are dense in S.

Remark 1. Definition 1 is for discrete-time systems. For continuous-time sys-
tems, we need to construct Poincaré section to get a Poincaré map. Details
will be provided later.

In this chapter, we use FHM to refer to the fuzzy hyperbolic model as well
as the generalized fuzzy hyperbolic model introduced in previous chapters.
We will concern ourselves primarily with the kind of FHM defined as follows.
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Definition 2. Given a plant with n input variables x = (x1, . . . , xn)T and
the output ẋ, we call the fuzzy rule base “hyperbolic type fuzzy rule base” if it
satisfies the following conditions:

(i) Every fuzzy rule has the following form:

Rl : IF x1 is Fx1 , x2 is Fx2 , . . ., and xn is Fxn
,

THEN ẋj = ±cx1 ± cx2 ± · · · ± cxn
, j = 1, . . . , n, l = 1, . . . , 2n,

where Fxi
(i = 1, . . . , n) are fuzzy sets of xi, which include Pxi

(positive)
and Nxi

(negative), cxi
(i = 1, . . . , n) are positive constants correspond-

ing to Fxi
, and ± stands for either the plus or the minus sign. The actual

signs in the THEN part are determined in the following manner: If in
the IF part the term characterizing Fxi

is Pxi
, then in the THEN part

cxi
appears with a plus sign; otherwise, cxi

appears with a minus sign.
(ii) The constant terms cxi

in the THEN part correspond to Fxi
in the IF

part; i.e., if there is an Fxi
term in the IF part, cxi

must appear in the
THEN part. Otherwise, cxi

does not appear in the THEN part.
(iii) There are 2n fuzzy rules in the rule base; i.e., there are a total of 2n

possible Pxi
and Nxi

combinations of input variables in the IF part, or
a total of 2n sign combinations of constants in the THEN part.

The following theorem explains how a fuzzy hyperbolic model is con-
structed.

Theorem 1. (cf. [20]) Given a hyperbolic type rule base, if we define the
membership function of Pxi

and Nxi
as

µPxi
(xi) = e−

1
2 (xi − kxi

)2 , µNxi
(xi) = e−

1
2 (xi + kxi

)2 ,

where kxi
> 0, then we can always derive the following model:

ẋ = A tanh(Kx) , (1)

where K = diag[kx1 , . . . , kxn
] and A is a constant matrix.

Definition 3. (cf. [21]) A matrix A is said to be a Hurwitz diagonally stable
matrix if there exits a diagonal matrix Q > 0 such that ATQ+QA < 0.

We use the notation Q > 0 to indicate that Q is a positive definite matrix
and we use Q < 0 to indicate that Q is a negative definite.

Lemma 1. (cf. [21]) For system (1), if A is a Hurwitz diagonally stable ma-
trix, then the equilibrium x = 0 of (1) is globally and asymptotically stable.
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2.2 Stabilization of the Fuzzy Hyperbolic Model

Consider the following control system:

ẋ = Af(x) +Bu , (2)

where x ∈ R
n, f(x) = tanh(Kx) is a n-dimensional vector function, u =

u(x(t)) ∈ R
m is a vector function of state x, and A ∈ R

n×n and B ∈ R
n×m

are both constant matrices.

Assumption 1 (A,B) is completely controllable.

Under this assumption, we have the following lemma.

Lemma 2. For system (2), if the controller u is chosen as

u(x(t)) = L tanh(Kx(t)) , (3)

where L ∈ R
m×n is a constant matrix such that (A+BL) is a Hurwitz diag-

onally stable matrix, then the origin of the closed-loop system (2) is globally
asymptotically stable.

Proof. The result can directly be obtained from Lemma 1 by replacing A in
Lemma 1 with A+BL.

Remark 2. System (1) and the closed-loop system (2) can be regarded as
recurrent neural networks. They are also special cases of Lur’e systems [22].

Remark 3. Lemma 2 implies that solutions of the control system (2) are de-
fined in a bounded region D ⊂ R

n.

Remark 4. If we let Ã = A+BL, system (2) becomes

ẋ = Ãf(x) . (4)

Because of the form of f(x), there exits a constant γ such that for all different
x, y ∈ D, the following inequality holds:

‖f(y)− f(x)‖ ≤ γ ‖y − x‖ . (5)

That is to say, f(x) is a Lipschitz function over D. From the theory of ordi-
nary differential equations, we know that system (2) has a unique continuous
solution φ(t, t0, x0) through a given initial point, (t0, x0), which is also con-
tinuously dependent on x0 [23, 24].
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2.3 Chaotification of the Closed-Loop Fuzzy Hyperbolic Model

Now, let us consider the following impulsive control system:⎧⎪⎨⎪⎩
ẋ = Ãf(x), t �= τk

∆x = Ik(x(t)), t = τk, k = 1, 2, 3, . . .
x(t0+) = x0, t0 ≥ 0

(6)

where Ã is defined in (4), Ik(x(t)), k = 1, 2, 3, . . . , is impulsive control defined
in D ⊂ R

n, t0 = τ0 < τ1 < · · · < τk, τk − τk−1 = T , lim τkk→+∞ = +∞,
∆x = x(τk+) − x(τk−), and x(τk+) and x(τk−) are the right and left limit
of x(t) at t = τk.

For system (6), we have the following lemma.

Lemma 3. If Ik(x(t)) is chosen as

Ik(x(t)) = yk − x(t−), t = τk, k = 1, 2, 3, . . . (7)

where yk = g(yk−1) and g : Y → Y, Y ⊂ D. Then, when g(·) is chaotic and
satisfies the Devaney’s three criteria, the control system (6) is also chaotic
and satisfies the Devaney’s criteria.

Proof. First, it should be emphasized that for system (6) to display chaotic
dynamics, its phase space must be a finite region, i.e., there exists an M > 0
such that the trajectory of system (6), φ(t, t0, x0), satisfies ‖φ(t, t0, x0)‖ ≤M
for all t in the domain. In fact, for t ∈ (τ0, τ1), system (6) is under the action
of Ãf(x). By Lemma 1, its trajectory, φ(t, t0+, x0), is asymptotically stable.
When t = τ1, Ãf(x) turns off and I1(x(τ1)) acts on system (6). The trajectory
of system (6) jumps from φ(τ1−, t0+, x0) to x1

0. We denote the trajectory at
each instant τk as xk

0 , k = 0, 1, 2, . . . , where x0
0 = x0. Since I1(x(τ1)) is a finite

impulse, x1
0 is also finite. For t ∈ (τ1, τ2), I1(x(τ1)) turns off and Ãf(x) turns

on with initial point (τ1+, x1
0). The trajectory of system (6) in this time span

is also asymptotically stable, denoted by φ(t, τ1+, x1
0). The analysis in other

time spans, (τk, τk+1), k = 2, 3, 4, . . . , are the same as that in (τ1, τ2), and
situations at other time instants, τk, k = 2, 3, 4, . . ., are analogous to that at
τ1. It is easy to see that although the trajectory may be discontinuous at τk,
k = 1, 2, 3, . . . , the whole trajectory is indeed in a bounded region.

In the following we will prove that system (6) is chaotic and satisfies
Devaney’s three criteria.

To prove that a continuous system is chaotic, one method is to show
that its Poincaré map is chaotic [24]. Suppose that φ(t, t0+, x0) is a solu-
tion of system (4) with initial value x(t0+) = x0. According to Remark 4,
φ−1(t, t0+, x0) exists. Define a set of Poincaré sections Sk as

Sk = {(t, x) | x ∈ D, t = τk}, k = 1, 2, 3, . . . .

The Poincaré map is defined as
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P : V → V, P = ψ ◦ g ◦ ψ−1 ,

where V = ψ(Y ) and

ψ(x) = φ(τk + T, τk, x) = φ(τ0 + T, τ0, x) .

We will first prove that P is extremely sensitive to initial values, i.e., for
any proper constant ε > 0 and any two points x0, x̄0 ∈ V , there exists an
N > 0, such that ∥∥PN (x0)− PN (x̄0)

∥∥ > ε . (8)

Since
PN = (ψ ◦ g ◦ ψ−1) ◦ · · · ◦ (ψ ◦ g ◦ ψ−1)︸ ︷︷ ︸

Nth−order iteration of P

= ψ ◦ gN ◦ ψ−1 , (9)

to prove that (8) holds is equivalent to prove that∥∥ψ(gN (y0))− ψ(gN (ȳ0))
∥∥ > ε (10)

holds, where y0 = ψ−1(x0) and ȳ0 = ψ−1(x̄0).
If (10) does not hold, i.e., for all n ≥ 0, there exists an ε0 > 0 such that

‖ψ(gn(y0))− ψ(gn(ȳ0))‖ ≤ ε0 ,

from the fact that ψ(x) is continuous we know that for the above ε0, there
exists a δ0 such that

‖gn(y0)− gn(ȳ0)‖ < δ0 for any n ≥ 0 .

But this contradicts the fact that g is a chaotic map satisfying Devaney’s
definition. Therefore, P satisfies the first criterion of Devaney.

Next, we show that P is topologically transitive; that is, for any pair of
subsets E,F ⊂ V , there exists an integer N > 0 such that

PN (E) ∩ F �= ∅ . (11)

It is known that for any two subsets ψ−1(E), ψ−1(F ) ⊂ Y , there exists a
number N > 0 such that

gN [ψ−1(E)] ∩ ψ−1(F ) �= ∅ . (12)

Acting on both sides of (12) by ψ, we get

ψ{gN [ψ−1(E)]} ∩ F �= ∅ .

Noticing (9), we therefore proved (11).
Finally, we will prove that the periodic points of P are dense in V. Denote

the set of periodic points of a map f as Per(f). Since Per(g) = Y and ψ is
one to one, we have Per(P ) = V .

Thus, we have proved the lemma.



Chaotification of the Fuzzy Hyperbolic Model 235

Summarizing the results above, we have the following theorem.

Theorem 2. For the following system⎧⎪⎨⎪⎩
ẋ = Af(x) +Bu, t �= τk

∆x = Ik(x(t)), t = τk, k = 1, 2, 3, . . .
x(t0+) = x0, t0 ≥ 0

(13)

if u is designed according to (3) and Ik(x(t)) is chosen as in (7), the system
(13) will display chaotic dynamics and satisfies the three criteria of Devaney.

Remark 5. The conclusion of Theorem 2 can also be kept if the impulsive
control is chosen as Ik(x(t)) = h(yk) − x(t−), where h : Y → Y is a home-
omorphism. A special case is to choose h as a constant diagonal matrix
Λ = diag[λ1, . . . , λn] with λi > 0, i = 1, . . . , n, which means that we can
chaotify the original system with arbitrarily small impulsive energy.

2.4 Simulation Results

Suppose that we have the following fuzzy rule base:

IF x1 is Px1 and x2 is Px2 , THEN ẋ3 = Cx1 + Cx2;
IF x1 is Nx1 and x2 is Px2 , THEN ẋ3 = −Cx1 + Cx2;
IF x1 is Px1 and x2 is Nx2 , THEN ẋ3 = Cx1 − Cx2;
IF x1 is Nx1 and x2 is Nx2 , THEN ẋ3 = −Cx1 − Cx2;

IF x1 is Px1 and x3 is Px3 , THEN ẋ2 = Cx1 + Cx3;
IF x1 is Nx1 and x3 is Px3 , THEN ẋ2 = −Cx1 + Cx3;
IF x1 is Px1 and x3 is Nx3 , THEN ẋ2 = Cx1 − Cx3;
IF x1 is Nx1 and x3 is Nx3 , THEN ẋ2 = −Cx1 − Cx3;

IF x2 is Px2 and x3 is Px3 , THEN ẋ1 = Cx2 + Cx3;
IF x2 is Nx2 and x3 is Px3 , THEN ẋ1 = −Cx2 + Cx3;
IF x2 is Px2 and x3 is Nx3 , THEN ẋ1 = Cx2 − Cx3;
IF x2 is Nx2 and x3 is Nx3 , THEN ẋ1 = −Cx2 − Cx3.

Here, we choose fuzzy membership functions Pxi
and Nxi

as follows:

µPxi
(x) = e−

1
2 (xi − ki)

2

, µNxi
(x) = e−

1
2 (xi + ki)

2

.

Then we have the following three-dimensional model:

ẋ = Af(x) = A tanh(Kx) (14)

where x = [x1 x2 x3]
T
, A =

⎡⎣ 0 Cx2 Cx3

Cx1 0 Cx3

Cx1 Cx2 0

⎤⎦ =

⎡⎣0 1 3
2 0 3
2 1 0

⎤⎦, and K =

diag [k1 k2 k3] = diag [2 3 1]. According to Theorem 2, the control system
is
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Fig. 1. The bifurcation diagram of the logistic map

⎧⎪⎨⎪⎩
ẋ = (A+BL)f(x), t �= τk

∆x = Ik(x(t)), t = τk, k = 1, 2, 3 , . . .
x(t0+) = x0, t ≥ 0 .

(15)

We select B = [1 1 1]T and L = [−2 −1 −2]. It is easy to verify that ma-
trix A+BL is Hurwitz diagonally stable by choosing Q = diag [q1 q2 q3] =
diag [2 2 2]. The initial value is chosen as x0 = [5 2 −1]T and the impulsive
control is

Ik(x) = Λg(yk−1)− x(t−),

where Λ = diag[λ1 λ2 λ3] and g(yk−1) = [g1(y1
k−1) g2(y2

k−1) g3(y3
k−1)]

T

with gi(·) the logistic map:

yi
k = gi(yi

k−1) = ayi
k−1(1− yi

k−1), i = 1, 2, 3 .

When a = 4.0, the logistic map is chaotic; see Fig. 1 for an illustration.
Without impulsive control, the following system

ẋ = (A+BL)f(x) (16)

is globally and asymptotically stable; its trajectories are shown in Fig. 2.
With impulsive control and T = τk − τk−1 = 0.01, from Figs. 3–6, we can

see that the control system is chaotic for different Λ. These results verify the
claim of Theorem 2 and Remark 5.
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Fig. 2. State trajectories of (16): (a) the state x1; (b) the state x2; (c) the state x3
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Fig. 3. State trajectories of system (15) when Λ = diag[0.8 0 4]: (a) the state
x1; (b) the state x2; (c) the state x3

3 Chaotification of the Fuzzy Hyperbolic Model
by Inverse Optimal Control Method

We have shown that with impulsive control a FHM can be chaotified. But
in some applications, we want to control a nonchaotic system to produce
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Fig. 5. State trajectories of system (15) when Λ = diag[0.8 0.2 4]: (a) the state x1;
(b) the state x2; (c) the state x3

specified chaos. It is reasonable to believe that to achieve this goal, the con-
troller must have more complex structure than that proposed in the previ-
ous section, and the amplitude of control signals should also be increased.
However, due to actuator saturation, the power and energy of control ac-
tions should be always limited to certain range in practice. The goal of this
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Fig. 6. The phase diagram of system (15) when Λ = diag[0.8 0.2 4]

section is to develop a method that utilizes finite energy to make a nonchaotic
system produce specified chaos. In this section, we develop a method under
the framework of inverse optimal control theory to design such a controller
for the fuzzy hyperbolic model.

3.1 Problem Formulation

Suppose that there exists a chaotic system having the following form:

ẋr = fr(xr), xr ∈ R
n, fr(·) ∈ R

n . (17)

Consider the following fuzzy hyperbolic model

ẋ = Af(x) = A tanh(Kx) , (18)

where x is the state and A = [aij ]n×n is a matrix. Because of the hyperbolic
tangent form of f(x), we know that fT(x)x ≥ 0 for all x, f(x) = 0 only at
x = 0, and lim

‖x‖2→∞
fT(x)x = +∞. Therefore, there exist positive constants

γ1 and γ2 such that γ1‖x‖22 ≤ fT(x)x ≤ γ2‖x‖22 [24].
The idea here is to design a controller u such that the controlled fuzzy

hyperbolic model
ẋ = Af(x) + u (19)

can track the dynamics of system (17), i.e.,

lim
t→∞ ‖e(t)‖2 = lim

t→∞ ‖x(t)− xr(t)‖2 = 0 .



240 H. Zhang et al.

Suppose that u has the form of u(x, t) = v(x) +w(x, t), where v(x) = Λx
is the state feedback, Λ = −diag[λi]n×n ∈ R

n×n with λi (i = 1, . . . , n) real
numbers, and w(x, t) is to be designed. Then, (19) becomes

ẋ = Λx+Af(x) + w(x, t) . (20)

From (17) and (20), we obtain

ė = Λx+Af(x) + w(x, t)− fr(xr) , (21)

where e = [e1, e2, . . . , en]T. In practical control applications, since Λ is the
state feedback matrix and A is determined by fuzzy rules, they may be af-
fected by some uncertain factors such as parameter uncertainty and mod-
elling errors, and therefore, the parameters of system (20), Λ and A , would
include some uncertainties. On the other hand, ki (i = 1, . . . , n) can be fixed
since they are determined by the fuzzy membership functions chosen during
modeling. Once the fuzzy membership functions are fixed, ki (i,= 1, . . . , n)
are determined. In this section, we assume Λ and A are tunable, and ki

(i = 1, . . . , n) are constants.
For system (20) to track the system (17), the following solvability assump-

tion is needed [26].

Assumption 2. There exist functions ρ(t) and α(t) such that

ρ̇(t) = Λ0ρ(t) +A0f(ρ(t)) + α(t) ,
ρ(t) = xr(t) ,

where A0 = [a0ij ]n×n and Λ0 = −diag[λ0i]n×n are known constant matrices
and λ0i are positive real numbers for i = 1, . . . , n.

From (17) and Assumption 2, the following equation can then be derived:

Λ0xr +A0f(xr) + α(t) = fr(xr) . (22)

Substituting (22) into (21), we have

ė =Λ0e+A0[f(e+ xr)− f(xr)] + [w − α(t)] + Λ̃x+ Ãf(x) , (23)

where Λ̃ = Λ−Λ0 = −diag[λi−λ0i]n×n and Ã = A−A0 = [aij − a0ij ]n×n =
[ãij ]n×n. Let φ(e, xr) = f(e + xr) − f(xr) and ũ = w − α(t). Then (23) can
be rewritten as

ė = Λ0e+A0φ(e, xr) + Λ̃x+ Ãf(x) + ũ . (24)

Remark 6. It is clear that φ(e, xr) = 0, if e = 0. Moreover, f(e + xr) =
A tanh(K(e+ xr)) is monotonically increasing (or decreasing) for each com-
ponent ei of e. Since ei > 0 (or ei < 0 ) implies that ei + xri > xri (or
ei + xri < xri) for all xri, fi(ei + xri) > fi(xri) (or fi(ei + xri) < fi(xri)).
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This means that φT(e, xr)e = (f(e + xr) − f(xr))Te > 0. Therefore, there
exist positive constants γ1, γ2, and Lφ such that

γ1‖e‖22 ≤ φT(e, xr)e ≤ γ2‖e‖22 (25)

and
‖φ(e, xr)‖2 < Lφ‖e‖2 . (26)

Therefore, φ(e, xr) is Lipschitz with respect to e.

3.2 Controller Design

We first state the following lemma that is required in our controller design.

Lemma 4. For matrices X, Y ∈ R
n×k and Q ∈ R

n×n with Q = QT > 0 ,
the following inequality holds:

XTY + Y TX ≤ XTQX + Y TQ−1Y .

Proof. Set G1 = Q−1/2Y −Q1/2X, then the lemma can be obtained directly
from GT

1G1 ≥ 0.

Theorem 3. For system (18), if the controller is chosen as

w =− (AT
0A0 + I)φ(e, xr)− Λ0xr

−A0f(xr) + fr(xr)

and the parameter adaptive update laws are chosen as

λ̇i = −φi(e, xr)xi ,
ȧij = −φi(e, xr)fj(x) ,

(27)

for i = 1, . . . , n, j = 1, . . . , n, where φi(e, xr) and xi are the ith component
of φ(e, xr) and x, respectively, and fj(x) is the jth component of f(x), then
the system (24) is globally asymptotically stable, i.e.,

lim
t→∞ ‖e(t)‖2 = 0 .

Proof. Using (22), we can get α(t) = fr(xr)− Λ0xr −A0f(xr). Thus,

ũ = w(x, t)− α(t) = −(AT
0A0 + I)φ(e, xr) . (28)

Define

ε
∆=
[
eT(t), θT(t)

]T
=
[
eT(t), λ̃1(t), . . . , λ̃n(t), ã11(t), . . . , ã1n(t), ã21(t), . . . , ãnn(t)

]T
.

We choose a Lyapunov function as follows:
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V (ε) =
n∑

i=1

∫ ei

0

φi(η, xr)dηi +
1
2

n∑
i=1

λ̃2
i +

1
2

n∑
i=1,j=1

ã2
ij , (29)

where ηi is the ith element of η.
Because of (25), we know that V (ε) is radially unbounded, i.e., V (ε) > 0

for all ε and V (ε) → ∞ as ‖ε‖2 → ∞. Along the solutions of (23), the
time-derivative of V (ε) is derived as follows:

V̇ (ε) = φT(e, xr)(Λ0e+A0φ(e, xr) + Λ̃x+ Ãf(x) + ũ)

+
n∑

i=1

λ̃iλ̇i +
n∑

i=1,j=1

ãij ȧij

= φT(e, xr)Λ0e+ φT(e, xr)A0φ(e, xr) + φT(e, xr)(Λ̃x+ Ãf(x))

+ φT(e, xr)ũ+
n∑

i=1

λ̃iλ̇i +
n∑

i=1,j=1

ãij ȧij

∆= Lf̄V + (LgV )ũ , (30)

where

Lf̄V
∆= φT(e, xr)Λ0e+ φT(e, xr)A0φ(e, xr) + φT(e, xr)(Λ̃x+ Ãf(x))

+
n∑

i=1

λ̃iλ̇i +
n∑

i=1,j=1

ãij ȧij , (31)

and
LgV

∆=φT(e, xr) . (32)

Applying Lemma 4 with Q = I, we obtain

V̇ (ε) = φT(e, xr)Λ0e+
1
2
φT(e, xr)φ(e, xr) +

1
2
φT(e, xr)AT

0A0φ(e, xr)

+ φT(e, xr)ũ+ φT(e, xr)(Λ̃(t)x+ Ã(t)f(x))

+
n∑

i=1

λ̃iλ̇i +
n∑

i=1,j=1

ãij ȧij

= φT(e, xr)Λ0e+
1
2
φT(e, xr)φ(e, xr) +

1
2
φT(e, xr)AT

0A0φ(e, xr)

+ φT(e, xr)ũ+
n∑

i=1

λ̃i(λ̇i + φi(e, xr)xi)

+
n∑

i=1,j=1

ãij(ȧij + φi(e, xr)fj(x)) .

Substituting (27) into the above equality and using inequalities (25) and (26),
we obtain
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V̇ (ε) ≤−
(
λ∗γ1 −

1
2
L2

φ

)
‖e‖22 +

1
2
φT(e, xr)AT

0A0φ(e, xr) + φT(e, xr)ũ ,

(33)

where λ∗ = min{λ0i; i = 1, . . . , n}.
If we let R−1(ε) =

1
β

(AT
0A0 + I), where β ≥ 2 is a constant, we have

−βR−1(ε)(LgV )T = ũ = −(AT
0A0 + I)φ(e, xr) . (34)

In general, R−1(ε) is a function of ε, but for our purpose it is chosen as
a constant matrix. The motivation for this operation will be seen from the
inverse optimization problem to be discussed later.

Substituting (28) into (33), we get

V̇ (ε) ≤−
(
λ∗γ1 −

1
2
L2

φ

)
‖e‖22 −

1
2

∥∥AT
0A0

∥∥L2
φ ‖e‖22 − L2

φ ‖e‖22

=−
(
λ∗γ1 +

1
2

∥∥AT
0A0

∥∥L2
φ +

1
2
L2

φ

)
‖e‖22 ≤ 0 . (35)

By LaSalle’s invariance principle [27], we know that the invariant set of (24)
and (27), IS , has the following form:

IS = {ε | V̇ = 0} = {ε|(0, θT)} .

This completes the proof of the theorem.

To avoid the heavy computation burden that the Hamilton–Jacobi–
Bellman (HJB) equation imposes upon the problem of optimal control of
nonlinear systems, inverse optimal control theory has been developed re-
cently. The difference between the traditional optimal control and inverse
optimal control is that, the former seeks a controller that minimizes a given
cost, while the latter is concerned with finding a controller that minimizes
some “meaningful” cost.

According to literature [26, 28], for the inverse optimal control problem
of system (24) to be solvable under the control of (27) and (28), we need to
find a positive real-valued function R(ε) and a positive definite function l(ε)
such that the following cost functional

J(ũ) = lim
t→∞

{
2βV (ε(τ)) +

∫ T

0

(l(ε(τ))

+ ũ(τ)TR(ε(τ))ũ(τ)) dτ

}
, β ≥ 2 (36)

is minimized.
In the following, we will show that the controller we have designed can

indeed solve the inverse optimal control problem.
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Theorem 4. If we choose

l(ε) =−2βLf̄V + 2β(LgV )R−1(ε)(LgV )T

+ β(β − 2)((LgV )R−1(ε)(LgV )T)

=−2βLf̄V + β(LgV )(βR−1)(ε)(LgV )T (37)

and
R(ε) = β(AT

0A0 + I)−1, β ≥ 2 , (38)

the cost functional (36) for system (24) under the parameter update laws (27)
and the state feedback law (28) will be minimized.

Proof. To prove this theorem, first we should prove that R(ε) is positive and
symmetric, and l(ε) is radially unbounded, i.e., R(ε) = RT(ε) > 0 and
l(ε) > 0 for all ε �= 0 and l(ε) → +∞ as ε→∞. It is clear that R(ε) chosen
according to (38) satisfies this requirement. Using (27), (28), (31), (32), and
(38), we obtain

l(ε) = 2βφT(e, xr)Λ0e− 2βφT(e, xr)A0φ(e, xr)

+ βφT(e, xr)(AT
0A0 + I)φ(e, xr) . (39)

Applying Lemma 4 to the second term on the right-hand side of (39) with
X = φ(e, xr) and Y = A0φ(e, xr), we get

l(ε) ≥ 2βλ∗φT(e, xr)e− βφT(e, xr)φ(e, xr)

− βφT(e, xr)AT
0A0φ(e, xr)

+ βφT(e, xr)(AT
0A0 + I)φ(e, xr)

≥ 2βλ∗φT(e, xr)e .

This means that l(ε) is radially unbounded. Substituting (34) into (30), we
get

V̇ = Lf̄V + (LgV )(−βR−1(ε))(LgV )T .

Multiplying it by −2β, we obtain

−2βV̇ (ε(t)) = −2βLf̄V + 2β2(LgV )R−1(ε)(LgV )T .

Considering (34) and (37), we get

l(ε) + ũTR(ε)ũ = −2βV̇ (ε(t)) . (40)

Substituting (40) into (36), we have

J(ũ) = lim
t→∞

{
2βV (ε(t)) +

∫ t

0

−2βV̇ (ε(τ)) dτ
}

= lim
t→∞

{
2βV (ε(t))− 2βV (ε(t)) + 2βV (ε(0))

}
= 2βV (ε(0)) .
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Thus, the minimum of the cost functional is J(ũ) = 2βV (ε(0)) for system
(24) with the control law (28) and parameter update law (27). This completes
the proof of the theorem.

We now summarize the results presented above in the next theorem.

Theorem 5. If we choose feedback control law u = v + w in which v =
Λx is the linear state feedback with Λ a diagonal constant matrix and w =
−(AT

0A0 + I)φ(e, xr) − Λ0xr − A0f(xr) + fr(xr) is the nonlinear feedback,
and at the same time we choose parameter update laws for Λ and A according
to (27), the controlled fuzzy hyperbolic model (19) will be chaotified through
minimizing the cost functional (36).

Remark 7. We note that the designed controller is not unique since we have
freedom to select Λ0 and A0. In fact, it is necessary to select proper Λ0 and
A0 so that the controller’s energy satisfies requirements in practical applica-
tions. Once Λ0 and A0 are fixed, the controller is optimal in minimizing some
“meaningful” cost. Theorem 5 also indicates that we can use as a general
device to produce various chaotic dynamics.

3.3 Simulation Results

In this section, we take model (14) as our example and rewrite it as follows:

ẋ = Af(x).

Then the controlled system is

ẋ = Af(x) + u = Λx+Af(x) + w , (41)

where Λ = diag [λ1, λ2, λ3]. Here, because of the special form of A, only
three parameter updating laws will be required.

Suppose that the chaotic system we want to track is the Lorenz system:

ẋr = fr(xr) , (42)

where xr = [x1r, x2r, x3r]
T and

fr(xr) = [a(x2r − x1r), cx1r − x1rx3r − x2r, x1rx2r − bx3r]T .

When a = 10, b = 8/3, and c = 28, the Lorenz system has a chaotic attractor
shown in Fig. 7.

In this example, we choose

Λ0 = diag [−2, −2, −2]T , Λ(0) = diag [−1, −1, −2]T ,

A0 =

⎡⎣0 3 4
3 0 4
3 3 0

⎤⎦ , A(0) =

⎡⎣ 0 2.8 3.7
2.8 0 3.7
2.8 2.8 0

⎤⎦ ,
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Fig. 7. Lorenz’s chaotic attractor

[k1, k2, k3]
T = [2, 3, 1]T, xr(0) = [2, 1, 3]T, and x(0) = [0, 0, 0]T. We

choose these matrices in our simulation according to the following guidelines:
(1) Λ0 is a diagonal matrix with negative diagonal elements; (2) Λ(0) is a
perturbation of Λ0; (3) from the process of fuzzy modelling, we know that
each element of matrix A0 is either positive or zero; (4) A(0) is a perturbation
of A0.

The simulation results are shown in Figs. 8–12. From these figures, we can
see that the controlled system (41) produces chaotic dynamics that have the
same topological structure as system (42) and the two systems’ states become
indistinguishable after a short period of time. Figures 11 and 12 show that
the parameters also approach some constants, which is in accordance with
Remark 7.

4 Chaotification of the Original System

In this part, we want to verify our conjecture, i.e., the control method pro-
posed in the preceding sections can make the original system chaotic. Before
establishing our main theorem of this section, the following lemma is needed:

Lemma 5. (cf. [25]) If u(t), v(t) and c(t) ≥ 0 on [0, t], c is differentiable and

v(t) ≤ c(t) +
∫ t

0

u(s)v(s) ds ,

then
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Fig. 8. The phase diagram of system (41) when the tracking object is system (42)
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Fig. 9. State trajectories of system (41) when tracking object is system (42). The
solid lines are the trajectories of system (41) and the dashed lines are the trajectories
of system (42)
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Fig. 10. (a) The trajectory of x1 − xr1; (b) the trajectory of x2 − xr2; (c) the
trajectory of x3 − xr3
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Fig. 11. (a) The plot of Cx1 −C0
1 ; (b) the plot of Cx2 −C0

2 ; (c) the plot of Cx3 −C0
3
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Fig. 12. (a) The plot of λ1 − λ10; (b) the plot of λ2 − λ20; (c) the plot of λ3 − λ30

v(t) ≤ c(0) exp
(∫ t

0

u(s) ds
)

+
∫ t

0

c′(s)
[
exp

(∫ t

s

u(τ) dτ
)]

ds .

Now we consider systems

ẋ = f1(x) + u(x)
�
= F1(x), x(0) = x0 (43)

and
ẏ = f2(y) + u(y)

�
= F2(y), y(0) = y0 , (44)

where x, y ∈ D ⊂ R
n and f1, f2 : R

n → R
n are maps. If f1 is integrable

in the sense of Lebesgue, u and f2 satisfy Lipschitz’s condition, i.e., for any
x, y ∈ D,

‖f2(x)− f2(y)‖ ≤ L1‖x− y‖
and

‖u(x)− u(y)‖ ≤ L2‖x− y‖ ,
then we have the following theorem.

Theorem 6. If ‖f2 − f1‖ < ε1 and ‖x0 − y0‖ < ε2, then for any t ∈ [0, T ],
there exists a constant M(T,L1, ε1, ε2) > 0 such that

‖x(t)− y(t)‖ < M(L, T, ε, ε2) , (45)

where L = L1 + L2.
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Proof. From (43) and (44),we have

‖x(t)− y(t)‖ =
∥∥∥∥x0 − y0 +

∫ t

0

[F1(x(s))− F2(y(s))] ds
∥∥∥∥

≤ ‖x0 − y0‖+
∥∥∥∥∫ t

0

[f1(x(s))− f2(x(s))]ds
∥∥∥∥

+
∥∥∥∥∫ t

0

[f2(x(s))− f2(y(s))] ds
∥∥∥∥+

∥∥∥∥∫ t

0

[u(x(s))−u(y(s))] ds
∥∥∥∥

< ε2 +
∫ t

0

‖f1(x(s))− f2(x(s))‖ds

+
∫ t

0

‖f2(x(s))− f2(y(s))‖ds+
∫ t

0

‖u(x(s))− u(y(s))‖ds

< ε2 + ε1t+ (L1 + L2)
∫ t

0

‖x(s)− y(s)‖ds .

Using Lemma 5, we get

‖x(t)− y(t)‖ <
(ε1
L

+ ε2
)
eLt − ε1

L

<
(ε1
L

+ ε2
)
eLt

<
(ε1
L

+ ε2
)
eLt

Thus, letting M(T,L, ε1, ε2) = (ε1/L+ ε2)eLt, the theorem is proved.

Remark 8. From Theorem 6, we can conclude that the original system can
produce almost the same state as that of the model as long as the modeling
error is small enough.

Next, we will verify our claims by computer simulations. Suppose the
original system has the following form:

ẋ = p(x) =

{
Ax, if ‖x‖ < 1 ;
Asign(x), if ‖x‖ ≥ 1 .

(46)

Here, x ∈ R
3, sign(x) = [sign(x1) sign(x2) sign(x3)]T, and

A =

⎡⎣0 1 3
2 0 3
2 1 0

⎤⎦ .
It is easy to know that the system’s trajectories are divergent. System

(46) can be modeled using the FHM (14). The state trajectories of system
(46) and system (14) are shown in Figs. 13 and 14. From these two figures
we can conclude that model (14) can describe system (46) quite well.
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Fig. 13. The state trajectories of system (46): (a) the state x1; (b) the state x2;
(c) the state x3

0 10 20 30 40 50
0

100

200

0 10 20 30 40 50
0

200

400

0 10 20 30 40 50
0

100

200

t (sec)

(a)

(b)

(c)

Fig. 14. The state trajectories of system (14): (a) the state x1; (b) the state x2;
(c) the state x3



252 H. Zhang et al.

4.1 Impulsive Control Method

We first chaotify the FHM. Since A is not a Hurwitz matrix, a feedback
controller is needed. Choose B = [1, 1, 1]T. It is easy to see that (A,B) is
controllable. The feedback controller can be designed as

u = BL tanh(x) , (47)

where L = [−2 −1 −2]T. From Theorem 2, we know that the controlled
FHM (15) ⎧⎪⎨⎪⎩

ẋ = (A+BL) tanh(x), t �= τk

∆x = Ik(x(t)), t = τk, k = 1, 2, 3, . . .
x(t0+) = x0, t0 ≥ 0

(48)

can produce Devaney’s chaos, where Ik(x) = Λ(yk) − x,Λ = diag[0.8 0.2 1],
g(yk) = [g1(y1

k) g2(y2
k) g3(y3

k)]T, and gi(·) is the logistic map. Initial values
are chosen as g(0) = [0.1 0.3 0.8]T, x0 = [2 2 1]T.

We next apply the same control to system (46), we can see from Figs. 15–
18 that controlled original system⎧⎪⎨⎪⎩

ẋ = p(x) +BL tanh(x), t �= τk

∆x = Ik(x(t)), t = τk, k = 1, 2, 3, . . .
x(t0+) = x0, t0 ≥ 0

(49)

also produces similar state to that of the controlled FHM.
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Fig. 15. The state trajectories of controlled FHM (48): (a) the state x1; (b) the
state x2; (c) the state x3
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Fig. 16. The phase diagram of controlled FHM (48)
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Fig. 17. The state trajectories of controlled original system (49): (a) the state x1;
(b) the state x2; (c) the state x3

4.2 Inverse Optimal Control Method

Although the system (46) can produce chaos under the state feedback and
impulsive control, in some special cases we want the nonchaotic system to
produce an attractor in some degree analogous to a predesigned chaotic
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Fig. 18. The phase diagram of the original system (49)

attractor. Here, as an example, we want to make system (46) produce Chen
attractor-like behavior. It has been proved that Chen attractor is not topo-
logically equivalent to Lorenz attractor [29]. The attractor is produced by the
following differential equations:

ẋ = fs(x) , (50)

where

fs(x) =

⎧⎪⎨⎪⎩
35(x2 − x1) ,
(28− 35)x1 − x1x3 + 28x2 ,

x1x2 − 3x3 .

Figure 19 shows the diagram of Chen attractor. Without considering the
parameter disturbances, we apply the control scheme designed in Sect. 3.3 to
system (46) and system (14), respectively, to obtain

ẋs = p(xs) + u , (51)

ẋm = A tanh(xm) + u . (52)

From Fig. 20, we can see that state errors between Chen system (50) and
model (52) are convergent. Figure 21 shows the phase diagram of controlled
model (52), which shows that the FHM (52) is indeed chaotified and produces
an attractor similar to the Chen attractor.
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Fig. 19. The phase diagram of system (50)
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Fig. 20. The error trajectories of states between system (52) and system (50),
where emi = xmi − xi, i = 1, 2, 3
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Fig. 21. The phase diagram of system (52)

5 Summary

In this chapter, we made efforts to the chaotification of nonlinear systems
with unknown models. We first used a FHM to model a nonlinear system, and
then designed a controller to chaotify the fuzzy model. Due to the universal
approximation property, it is reasonable to expect the real nonlinear system
can be chaotified under the same controller. We have proposed two kinds of
controllers to realize this goal: one is designed according to impulsive control
theory and the other according to inverse optimal control theory. Theoretical
analysis and simulation results show that the methods are effective.
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Fuzzy Chaos Synchronization via Sampled
Driving Signals

Juan Gonzalo Barajas-Ramı́rez

Abstract. In this chapter the Tagaki–Sugeno fuzzy model representation of a
chaotic system is used to find an alternative solution to the chaos synchroniza-
tion problem. One of the advantages of the proposed approach is that it allows to
express the synchronization problem as a fuzzy logic observer design in terms of
linear matrix inequalities, which can be solved numerically using readily advailable
software packages. Also, given the linear nature of this fuzzy representation, it is
possible to use sophisticated methodologies to consider the more practical problem
of digital implementation of a synchronization design. In particular, in this contri-
bution the problem of a master–slave chaos synchronization design from sampled
drive signals is considered and a solution is proposed as the state-matching digital
redesign of the fuzzy logic observer designed to solve the continuous-time syn-
chronization problem. The effectiveness of the proposed synchronization method is
illustrated through numerical simulations of three well-known benchmark chaotic
system, namely, Chua’s circuit, Chen’s equation, and the Duffing oscillator.

1 Introduction

Fuzzy logic was develop as a way to mimic the capacity of the human mind to
operate with vague concepts and approximated reasoning. Therefore, one of
the most significant advantages of using fuzzy logic in practical applications
is the capacity to describe a systems in a way that tolerates imprecision
and uncertainty. Using fuzzy logic a real-world system can be modeled in
terms of linguistic variables, fuzzy sets, and membership functions, this adds
the expert knowledge from human operators to the modeling process. The
resulting “intelligent”model is an alternative representation of the original
system, which usually is much simpler in structure than a model obtained
using a conventional approach.

It has been shown that with a sufficiently large number of fuzzy sets and
associated membership functions any bounded nonlinearity can be approxi-
mated to an arbitrary accuracy [1]. This is particularly significant in the case
of chaotic systems given that they evolve on bounded area of state space,
namely their strange attractor, which makes then very well suitable for this
type of representation.

In this chapter, the fuzzy representation of a chaotic system is used as
bases for an alternative solution to the chaos synchronization problem. Since

J.G. Barajas-Ramı́rez: Fuzzy Chaos Synchronization via Sampled Driving Signals,
StudFuzz 187, 259–283 (2006)
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the appearance of the seminal paper by Pecora and Carol [2] in 1990, chaos
synchronization has attracted increasing attention from the scientific com-
munity, as evidenced by the large numbers of research results published in a
variety of journals, conferences [3–6], as well as many excellent books on the
subject [7–10].

Significant advances on the study of synchronization of nonlinear dynam-
ical systems has come from the reformulation of the synchronization problem
in terms of well-established results from classical control theory, see for ex-
ample the works of Nijmeijer et al. [11, 12], Mogül [13], and many others [14,
15]. In general terms, an effective and systematic solution to the master–slave
synchronization problem can be found by expressing the synchronization ob-
jective as an observer design problem, where the output of the master system
is interpreted as the driving signal and the objective is to design the slave
system such that the observation error vanish at least asymptotically.

From the control theory point of view, some attractive results have been
reported using alternative representations of chaotic systems. A particularly
convenient representation to solve the synchronization problem is the Takagi–
Sugeno (TS) fuzzy model, where the nonlinear dynamics are represented by
local linear subsystems coupled nonlinearly, from which a fuzzy observer can
be designed using linear techniques to achieve chaos synchronization [16–21].

Unlike most of the previously cited references, where synchronization de-
sign is carried out either in continuous or discrete-time, in this chapter the
case of a hybrid configuration is considered. The motivation for this hybrid
expression of the synchronization problem comes from the fact that most an-
alyzers and controllers of complex analog systems are physically implemented
by digital computers, which means that at least one part of the synchronized
system is discrete-time in nature. In particular, the case of two continuous-
time chaotic systems connected unidirectionally through a digital system is
considered, that is, a master–slave configuration where the driving signal is
a sampled version of the output from the master system.

A common practice when dealing with digital implementations is to follow
the argument that with a sufficiently small sampling period the performance
of the continuous-time design will be maintained in the digital device. Un-
fortunately, this is not always possible, since sampling affects the stability of
the resulting system and there are physical limits to the sampling frequency
for real systems. Furthermore, even if these restrictions are not present, the
CPU time consumption in implementing a very small sampling period can
be costly in many cases, so the idea becomes impractical in applications.

The problem of digital implementation is further complicated in the case
of chaotic systems due to the extreme sensibility of chaotic dynamics to
small changes. Nevertheless, some advances in this topic have been achieved,
as can be found in the works of Shieh and his collaborators [22–24] where
the discrete-time controller is derived from the continuous-time design via
state-matching. This is called digital redesign, and it works well for many
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chaotic systems. Digital redesign consists in deriving a digital controller for
a continuous-time plant by first designing a continuous-time controller to
satisfy a set of control specifications, and then converting it to an equivalent
digital controller such that the states of the continuous and discrete-time
controlled systems are matched at least at each sampling instant. Digital
redesign was originally proposed by Kuo [25] in 1980. During the last decades,
Shieh et al. have thoroughly investigated this topic and developed several
digital redesign methods that allow for (sub)-optimal control performance
even for relatively large sampling periods, while at the same time requiring
a significantly smaller control energy [22, 26, 27].

In what follows, the methodologies for digital redesign of controllers avail-
able in the literature are used, via the dual-system approach, to redesign a
TS fuzzy observer designed to synchronize two chaotic systems through a
sampled driving signal.

2 Fuzzy Modeling of Dynamical Systems

The fuzzy model representation of a dynamical system is an inference ma-
chine that relates inputs to outputs as a set of fuzzy If–Then rules, with the
following general structure:

System rule i : i = 1, 2, . . . , r
If z1(t) is Mi,1 and · · · and zp(t) is Mi,p Then χr(t) is Ψr (1)

where r is the number of rules in the model, z(t) are the permise variables,
p is the number of premise variables, χ(t) are the conclusion variables, and
“z1(t) is M” is a short form notation of “z1(t) belongs to the fuzzy set M ,
with a value µM (z1(t)) given by the associated membership function µM .”

In the fuzzy If–Then rule set (1) the premise and conclusion variables
represent inputs, states, and outputs of the dynamical system defined in terms
of their corresponding fuzzy sets. The process of redefining these variables in
terms of fuzzy sets and membership functions is called fuzzification.

The results of the logical operations on the fuzzy variables are significant
only within the fuzzy model representation of the system; to express the
conclusions of the inference machine in terms of the original input, output,
and state variables of the system, it is necessary to find the overall result of
the fuzzy model, which is obtained converting the fuzzy conclusion variables
to their crisp or clear value—a process called defuzzification.

Depending on the method used for defuzzification of the inferred overall
result, fuzzy models can be additive or nonadditive. In the Mamdani model
[28], which corresponds to the nonadaptive approach, one assumes that no
explicit model of the systems is available either because the system is partially
unknown or too complex, and is necessary to model the system from informal
knowledge available from human experts on the system’s operation. Then,
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the overall result is inferred directly from the fuzzy rules activated at each
instance in a min–max format.

Two types of fuzzy logic models correspond to the additive approach:
standard-additive-model (SAM) [29] and Takagi–Sugeno (TS) models [17]. In
the SAM model, the overall result is inferred from all the fuzzy rules activated
by a given instance of the fuzzy variables, summing all the conclusion values
using the center of gravity formula. The most significant characteristic of
the TS fuzzy model is that in this representation, the dynamical system is
expressed as a rule set, where each rule defines a region of action for a linear
differential/difference algebraic representation of a local subsystem.

2.1 Takagi–Sugeno Fuzzy Model

The TS model was originally proposed for the fuzzy representation of systems
with an explicit mathematical model [30] in 1985. Later Sugeno and Kang ex-
tended it to practical systems requiring identification [31]. It has been shown
that with a sufficiently large number of fuzzy rules, the TS model serves as a
universal approximator for an arbitrary continuous function defined on a com-
pact set [1]. In particular, for chaotic systems that evolve within a bounded
region of the state space, the TS fuzzy model can represent “exactly”the
nonlinear dynamics by a small set of linear subsystems coupled by linguist
variables [19].

A dynamical system can be expressed by a TS fuzzy model with the form

System rule i : i = 1, 2, . . . , r
If z1(t) is Mi,1 and · · · and zp(t) is Mi,p (2)

Then
ẋ(t) = Aix(t) +Biu(t)
y(t) = Cix(t)

whereMi,j represents the fuzzy sets; x(t) ∈ Rn, u(t) ∈ Rm, and y(t) ∈ Rq are
the state, input, and output variables of the system, respectively; Ai, Bi, and
Ci are constant matrices of appropriate dimensions; and z1(t), z2(t), . . . , zp(t)
are the premise variables, which may be functions of the states, external dis-
turbances and/or time (but here for simplicity they are assumed independent
of the input).

The overall result of the fuzzy representation in (2) for a given instance
is found using

ẋ(t) =
r∑

i=1

hi(z(t)) [Ai x(t) +Bi u(t)] (3)

y(t) =
r∑

i=1

hi(z(t)) Ci x(t) (4)

with hi(z(t)) = ωi(z(t))∑ r
i=1 ωi(z(t)) , where ωi(z(t)) =

∏p
j=1Mi,j(zj(t)) and z(t) =

[z1(t), . . . , zp(t)].



Fuzzy Chaos Synchronization via Sampled Driving Signals 263

As usual, the term Mi,j(zj(t)) is the grade of membership of the premise
variable zj(t) belonging to the fuzzy set Mi,j , and its value is given by the
associated membership function, µMi,j

, defined for each fuzzy set.
For a fuzzy If–Then rule set to be an appropriate model of a dynamical

system it must satisfy the 3C’s principle: It must be complete, that is, all
the possible conditions from the premise variables must be present; it must
be consistent, logical contradictions must be avoided; and it must be concise,
with no redundant rules on the set of conditions. In particular, the TS fuzzy
model in (2) is well-defined if it satisfies the 3C’s principle and the following
conditions:

r∑
i=1

ωi(z(t)) > 0 and ωi(z(t)) ≥ 0 for i = 1, 2, . . . , r (5)

r∑
i=1

hi(z(t)) = 1 and hi(z(t)) ≥ 0 for i = 1, 2, . . . , r (6)

3 Fuzzy Logic Controller Design

The design of controllers for systems described in terms of fuzzy If–Then
rule sets is important from the point of view of control engineering practice,
because this representation allows inclusion of knowledge from human experts
in modeling and control of complex systems.

A natural connection between fuzzy logic and control theory is accom-
plished using the TS fuzzy representation, which make it possible to use con-
ventional linear techniques to design controllers and observers for dynamical
systems from their fuzzy representation.

Two basic approaches can be taken when designing a fuzzy logic controller
(FLC): replacement and combination. In the first approach, the idea is to
replace a conventional controller by an inference machine designed in terms
of a fuzzy logic description of the system, the most representative example
of this approach is the Mamdani controller, which is the oldest and most
widely used FLC design method for practical applications [28]. In the latter
approach, fuzzy logic is used to extend or somehow improve a conventional
controller, and examples of this complementary or combinatorial approach
to FLC design are the parallel distributed compensator and the fuzzy-PID
controllers [32].

3.1 Parallel Distributed Compensation

The simplest most intuitive manner to construct a controller for a system
described by a fuzzy TS model is to designed a linear controller for each
linear subsystem of the conclusion parts of the rule set. In 1986, Sugeno and
Kant proposed, without stability analysis, the control of a fuzzy model by the
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design of a static state feedback controller for each linear subsystem in the
model [33]. Then, in [34] the basic stability analysis was introduced and the
procedure began to be called parallel distributed compensation (PDC) in
[35]. In later publications the PDC controller design was extended to the
tracking problem for sampled-data systems [36] and its stability analysis was
expressed as an LMI problem in [17, 37].

A PDC controller is composed of the same rule set of the TS fuzzy model
of the system, and shares the same premise variables and fuzzy sets. For the
TS fuzzy model in (2) the PDC controller will have the form

Controller rule j : j = 1, 2, . . . , r
If z1(t) is Mj,1 and · · · and zp(t) is Mj,p Then u(t) = −Kjx(t) (7)

where Kj are the controller gain matrices to be designed with conventional
linear control techniques like pole placement, optimal, or robust control.

The overall fuzzy controller is given by

u(t) =−
r∑

j=1

hj(z(t))Kjx(t) (8)

Substituting (8) into (3), we find the overall closed-loop system as

ẋ(t) =
r∑

i=1

r∑
j=1

hi(z(t))hj(z(t)) [Ai −Bi Kj ]x(t) (9)

Defining Gi,j := Ai −Bi Kj , the closed-loop system can be rewriten as

ẋ(t) =
r∑

i=1

hi(z(t))hi(z(t))Gi,ix(t) (10)

+ 2
r∑

i=1

r∑
i<j

hi(z(t))hj(z(t))
[
Gi,j +Gj,i

2

]
x(t)

where the second term on the right side is formed by all pairs (i, j) such that
hi(z(t)) hj(z(t)) �= 0. That is, where the fuzzy sets hi(z(t)) and hj(z(t)) do
not overlap: hi(z(t)) ∩ hj(z(t)) �= ∅, for i �= j.

The stability of system (9) can be determined using the direct Lyapunov
method, which for the zero input case result in the following.

Theorem 1 (Stability of TS Fuzzy Systems). The zero equilibrium of
the TS fuzzy system

ẋ(t) =
r∑

i=1

hi(z(t))Aix(t) (11)

is globally asymptotically stable if there exists a common positive definite
matrix P = PT > 0 such that
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AT
i P + P Ai < 0 for i = 1, 2, . . . , r (12)

is satisfied.

This result comes directly from the choice of a quadratic Lyapunov can-
didate function V (x(t)) = x(t)T P x(t), and is usually referred to as the
quadratic stability theorem for fuzzy systems.

An important remark is that the condition of a common matrix P > 0 is
necessary and cannot be relaxed. It can be shown that simply requiring that
all linear subsystems in (11) be stable is not sufficient to have stability of the
overall fuzzy system. Furthermore, if no such common P matrix exists, the
fuzzy system is unstable at least for a set of initial conditions [17, 37].

Applying the quadratic stability theorem to the closed-loop system (10)
yields the following result.

Theorem 2 (Stability of Controlled TS Fuzzy Systems). The zero
equilibrium of the continuous-time controlled TS fuzzy system (10) is globally
asymptotically stable if there exists a common positive definite matrix P =
PT > 0 such that

AT
i P + P Ai < 0 for i = 1, 2, . . . , r (13)(
Gi,j +Gj,i

2

)T

P + P
(
Gi,j +Gj,i

2

)
< 0

for i < j where hi ∩ hj = ∅ (14)

are both satisfied.

A particularly interesting simplification of the above result is obtained if
all Bi matrices are identical. In this case, the conditions of Theorem 2 reduce
to the following:

Corollary 1. Assume B1 = B2 = · · · = Br = B in (10). Then, the zero
equilibrium point of the Controlled TS Fuzzy System is globally asymptotically
stable if there exists a common positive definite matrix P = PT > 0 such that

(Ai −B Ki)
T
P + P (Ai −B Ki) < 0 (15)

is satisfied for i = 1, 2, . . . , r.

The main problem to design a fuzzy PDC controller such that the condi-
tions on (13) and (14) be satisfied is finding a common P matrix. Different
methods can be used to solve this problem, the simplest approach is trail and
error, but is difficult to find a solution this way, especially if the model has
a large number of rules. A constructive method to design a stable fuzzy con-
troller can be derived by expressing the inequalities of the stability theorems
as a LMI problems. The LMI approach has the advantage that a solution
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can be found using numerical methods that are readily available. Also, it is
possible to determine if a fuzzy controller exists, by simply determining the
feasibility of the LMI problem.

The conditions of Theorem 1 and Theorem 2 cannot be solved as LMIs
directly for P and Ki since they are not jointly convex. To express these
conditions as LMIs, the inequalities on (13) and (14) can be multiplied by P−1

on both sides, and then defining the new variablesX = P−1 andNi = Ki P
−1

the controller gains are found from the solutions of the LMI problem:

X AT
i +Ai X −NT

i B
T
i −Bi Ni < 0

X AT
i +Ai X +X AT

j +Aj X

−NT
i B

T
i −Bi Nj −NT

i B
T
j −Bj Ni ≤ 0

(16)

with X = XT > 0, for i = 1, 2, . . . , r, where hi ∩ hj = ∅.

3.2 Fuzzy H∞ Robust Controller Design

Consider the following TS fuzzy system with an extra input ν(t) ∈ Rd which
represents the disturbances and noise affecting the system:

Disturbed system rule i : i = 1, 2, . . . , r
If z1(t) is Mi,1 and · · · and zp(t) is Mi,p (17)

Then
ẋ(t) = Aix(t) +Biu(t) + Ei ν(t)
y(t) = Cix(t)

where Ei ∈ Rn×d is a constant input matrix for the disturbance.
The objective of the fuzzy H∞ robust controller design is to attenuate

the effects of the disturbance input ν(t) on the overall system output y(t) to
a prescribed level in terms of the H∞ norm of the transfer function from the
disturbance input to the overall output Ty,ν(s).

In time-domain this condition can be described more precisely in the
following manner:

Fuzzy H∞ Controller Problem Given the fuzzy TS system (17),
find a PDC controller (7), which in closed-loop makes the overall
controlled fuzzy system internally stable and satisfy the performance
index

sup
‖ν(t)‖2 =0

‖y(t)‖2
‖ν(t)‖2

≤ γ (18)

for a prescribed constant bound γ > 0.

A solution to the above H∞ disturbance attenuation problem can be
derived from the quadratic Lyapunov stability conditions by requiring that
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V̇ (x(t)) + yT(t) y(t)− γ2ν(t)Tν(t) ≤ 0 (19)

where the Lyapunov function is given by V (x(t)) = xT(t) P x(t), with P =
PT > 0.

This can be verified by integrating (19), which gives

V (x(t)) +
∫ τ

0

[
yT(t) y(t)− γ2ν(t)Tν(t)

]
dt ≤ 0 (20)

From the stability condition (18) for the overall results of the disturbed
TS fuzzy system (17) with the PDC controller (7) the design can be express
in the following result:

Theorem 3 (Fuzzy H∞ Robust Controller). The controller gain matri-
ces Ki of the PDC controller (7) that solve the Fuzzy H∞ Controller Problem
are obtained from the solutions of the LMI problem

Minimize γ2 > 0,

subject to X = XT > 0⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1
2

⎛⎜⎜⎜⎜⎝
X AT

i +Ai X

+X AT
j +Aj X

−NT
j B

T
i −Bi Nj

−NT
i B

T
j −Bj Ni

⎞⎟⎟⎟⎟⎠ − 1
2 (Ei + Ej) 1

2X (Ci + Cj)
T

− 1
2 (Ei + Ej)

T
γ2I 0

1
2 (Ci + Cj) X 0 I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≤ 0 (21)

for i = 1, 2, . . . , r, where hi ∩ hj = ∅

then, the controller gains are finally given by Ki = X−1Ni.

4 Fuzzy Logic Observer Design

An observer for the TS fuzzy system (2) can be designed following the same
procedure as for the PDC controller design. That is, designing, in terms of
the same premise variables and the same fuzzy sets as the TS representation
of the system, a linear observer for each fuzzy rule. This yields the following
results:

Observer rule j : j = 1, 2, . . . , r
If ẑ1(t) is Mj,1 and · · · and ẑp(t) is Mj,p (22)

Then
˙̂x(t) = Aj x̂(t) +Bju(t) + Lj [y(t)− ŷ(t)]
ŷ(t) = Cj x̂(t)
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where Lj ∈ Rn×q are the observer gain matrices, which must be designed
such that the observation error, e(t) = x(t)− x̂(t), be asymptotically stable.

The overall state dynamics and output of the fuzzy TS observer are in-
ferred as before by

˙̂x(t) =
r∑

j=1

hj(ẑ(t)) [Aj x̂(t) +Bj u(t) + Lj (y(t)− ŷ(t))] (23)

ŷ(t) =
r∑

j=1

hj(ẑ(t))Cj x̂(t) (24)

The error dynamics are obtained from (23) and (3) as

ė(t) = ẋ(t)− ˙̂x(t)

=
r∑

i=1

r∑
j=1

hi(z(t)) hj(ẑ(t)){[Aix(t) +Bi u(t)]

− [Aj x̂(t) +Bj u(t) + Lj (y(t)− ŷ(t))]} (25)

For simplicity, assume that input and output matrices are equal, that is,
Bi = Bj = B and Ci = Cj = C. Then, the error dynamics become

ė(t) =
r∑

i=1

r∑
j=1

hi(z(t)) hj(ẑ(t)){[Ai − Lj C]x(t)− [Aj − LjC] x̂(t)} (26)

Similarly, assuming that ẑ(t) is independent of the observer states, one
has z(t) = ẑ(t) and the error dynamics are reduced to

ė(t) =
r∑

j=1

hj(z(t)) [Aj − Lj C] e(t) (27)

Under these conditions, the observer gains Lj can be designed as a PDC
fuzzy controller for the dual system of (27), with Ai = AT

j and B = CT,
using the results presented above, the fuzzy observer design is found from
the solutions to the following LMI problem:

Theorem 4 (TS Fuzzy Observer Design: Common B and C). The
error dynamics of the TS fuzzy observer (22) for the TS fuzzy system (2),
where Bi = Bj = B, Ci = Cj = C, and z(t) = ẑ(t), are given by (27) and
will be globally asymptotically stable if there exist a common possitive matrix
X = XT > 0 and the matrices Nj that satisfy the LMI

X Aj +AT
j X −NjCj − CT

j N
T
j < 0 (28)

The final observer gains are given by Lj = NjX
−1, for j = 1, 2, . . . , r.
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In the case of the disturbed TS fuzzy system (17) a fuzzy observer can be
designed with the same structure of (22) and if the the assumptions stated
above still hold, the overall error dynamics will be given by

ė(t) =
r∑

j=1

hj(z(t)) {[Aj − Lj C] e(t) + Ej ν(t)} (29)

An observer design that attenuates the effects of the disturbance input
ν(t) on the error dynamics e(t) to a prescribed level ρ > 0 can be achieved
by requiring that the error dynamics be internally stable and

sup
‖ν(t)‖2 =0

‖e(t)‖2
‖ν(t)‖2

≤ γ (30)

Following a similar reasoning as above the observer design that satisfy the
H∞ robust criterion (30) can be found by solving the following LMI problem:

Theorem 5 (H∞ Robust TS Fuzzy Observer Design: Common B
and C). The observer gains Lj for the TS fuzzy observer (22), which make
the error dynamics (29) with respect to the perturbed TS fuzzy system (17)
internally stable and satisfies the H∞ disturbance attenuation performance
index (30) under the conditions that Bi = Bj = B, Ci = Cj = C, and
z(t) = ẑ(t), are given by Lj = NjP

−1, where P = PT > 0 and Nj are the
solutions to the LMI problem

Minimize ρ2 > 0,
subject to P = PT > 0[
AT

j P + P Aj − CTNT
j −Nj C + I P Ej

ET
j P −ρ2 I

]
≤ 0 (31)

for i = 1, 2, . . . , r .

5 Chaos Synchronzation Via Fuzzy Observer Design

The first step in solving the chaos synchronization problem using fuzzy logic
is to find an alternative representation for the chaotic system in terms of
fuzzy If–Then rules. In particular, letting the consequence part of each rule
be a linear subsystem the TS fuzzy model is obtained. There are two basic
approaches to construct a TS fuzzy model for a dynamical system, one is
to identify the model from input–output data and the other is to derive the
fuzzy representation from the system equations.

The identification of a TS fuzzy model is a two part process, first the struc-
ture and number of rules are determined and then the parameters adjusting
each local linear subsystem are identified. More details of this approach can
be found in [32, 34]. When the system equations are available, the TS fuzzy
model can be derived using the sector nonlinearity approach.
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5.1 Fuzzy Modeling of Chaotic Systems

The basic idea of the sector nonlinearity approach is to find, from the non-
linear components of the system equation, a sector in state space where the
nonlinearities can be expressed as simple product of the premise variable z1(t)
and a function of the state variables η(x(t)), in the form

ẋ(t) = f (x(t)) = η (x(t)) z(t) ∈ [−d, d] (32)

To illustrate the sector nonlinearity modeling procedure, consider the fol-
lowing chaotic benchmark systems:

5.1.1 Chua’s Circuit

The following ordinary differential equations form the dimensionless version
of Chua’s circuit [4]:

ẋ1(t) = α [x2(t)− x1(t)− Γ (x1(t))]
ẋ2(t) = x1(t)− x2(t) + x3(t) (33)
ẋ3(t) = −βx2(t)

where the so-called Chua’s diode Γ (t) is a piecewise linear function given by

Γ (x1(t)) = m0x1(t) +
1
2

[m1 −m0] [|x1(t) + 1| − |x1(t)− 1|]

As illustrated in Fig. 1, Γ (x1(t)) can be divided in two sections from
which two fuzzy sets can be defined with the following linguistic descriptions:
M1 =“Close to the origin”and M2 =“Far from the origin.”Then, using the
sector nonlinearity approach a TS model can be obtained for (33), defining
the extra function

g(x1(t)) =

{
Γ (x1(t))

x1(t)
if x1(t) �= 0

m0 if x1(t) = 0
(34)

and chosing the premise variable to be z1(t) = x1(t) ∈ [−d, d], with the fuzzy
sets described by the membership functions:

M1(z1(t)) =
1
2

[
1 +

g(x1(t))
d

]
(35)

M2(z1(t)) =
1
2

[
1− g(x1(t))

d

]
(36)
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Fig. 1. Chua’s diode characteristics
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Fig. 2. Membership functions for Chua’s circuit

As shown in Fig. 2 the overall value of x1(t) will by given by

x1(t) = z1(t) = d M1(z1(t))− d M2(z1(t))

From the numerical simulation of (33) for the parameter set α = 9.0,
β = 100/7, m0 = − 5/7 and m1 = −8/7, the interval of values for the
premise variable z1(t) is found to be [−3, 3].
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Then, the chaotic Chua’s circuit (33) can be represented by the TS fuzzy
model:

Chua′s circuit rule 1 : If z1(t) is M1 Then ẋ(t) = A1x(t) (37)
Chua′s circuit rule 2 : If z1(t) is M2 Then ẋ(t) = A2x(t) (38)

where A1 =

⎡⎣α (−1 + d) α 0
1 −1 1
0 −β 0

⎤⎦, A2 =

⎡⎣α (−1− d) α 0
1 −1 1
0 −β 0

⎤⎦ and x(t) =

[
x1(t) x2(t) x3(t)

]T
In linguistic terms, the rule set can be interpreted as:

Rule 1 : If the premise variable z1 is “Close to the origin”, then the system
is described by ẋ(t) = A1 x(t) .

Rule 2 : If the premise variable z1 is “Far from the origin”, then the system
is described by ẋ(t) = A2 x(t).

It is easy to verify that the TS fuzzy model of Chua’s circuit is well
defined, that is it satisfies the 3C’s, and M1(z1) > 0, M2(z1) > 0 with
M1(z1) +M2(z1) = 1. Then, the overall result of the fuzzy system (37)–(38)
is infered by

ẋ(t) = M1(z1) A1 x(t) +M2(z1) A2 x(t) (39)

5.1.2 Chen’s Equation

The chaotic system described in the following ordinary differential equations
was proposed by Chen and Ueta in 1999 [38], as the result of the chaotification
of a stable solution of Lorenz system [39]. However, Chen’s equation has a
chaotic attractor that is not a topological equivalent of Lorenz attractor, and
it has been shown they are distint elements of a family of chaotic systems
[40]

ẋ1(t) = a [x2(t)− x1(t)]
ẋ2(t) = (c− a) x1(t)− x1(t) x3(t) + c x2(t) (40)
ẋ3(t) = x1(t) x2(t)− b x3(t)

Since the only nonlinearities on (40) are quadratic terms and both have
x1(t) in them, choosing the premise variable as z1(t) = x1(t) the TS fuzzy
model of Chen’s equation can be constructed in terms of two fuzzy sets
with the linguistic description, M1 =“Positive value” and M2 =“Negative
value,”with the associated membership functions

M1(z1(t)) =
1
2

[
1 +

z1(t)
d

]
(41)

M2(z1(t)) =
1
2

[
1− z1(t)

d

]
(42)
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Then, the TS fuzzy model of Chen’s equation will be given by

Chen′s equation rule 1 : If z1(t) is M1 Then ẋ(t) = A1x(t) (43)
Chen′s equation rule 2 : If z1(t) is M2 Then ẋ(t) = A2x(t) (44)

where A1 =

[ −a a 0
(c− a) c −d

0 d −b

]
and A2 =

[ −a a 0
(c− a) c d

0 −d −b

]
.

From the numerical simulations of (40) for the parameter set a = 35,
b = 3, and c = 28 the premise variable z1(t) is found to be contained within
the interval [−25, 25]. While the overall output of the fuzzy model is given
by (39)

5.1.3 Duffing Oscillator

This chaotic system is form by a mass-damper-spring system with a forcing
term, represented by the following equation [41]:

ẍ(t) + p1ẋ(t) + p2x(t) + p3x3(t) = τ(t) (45)

where p1, p2, and p3 are constant parameters and the forcing term is given
by, τ(t) = q cos(ωt) with q a constant gain and ω a constant frequency.

The Duffing oscillator can be rewritten as

ẋ1(t) = x2(t)
ẋ2(t) = −p2 x1(t)− p3 x3

1(t)− p1 x2(t) + τ(t) (46)

The cubic term in the Duffing oscillator can be express in terms of the premise
variable z1(t) = x1(t) and the new function φ(t) = x2

1(t), using two fuzzy sets
M1 =“Near zero”and M2 =“Far from zero”with the associated membership
functions

M1(z1(t)) =
1
2

[
1 +

φ(t)
d

]
(47)

M2(z1(t)) =
1
2

[
1− φ(t)

d

]
(48)

A TS fuzzy model of the Duffing oscillator will be given by

Duffing oscillator rule 1 : If z1(t) is M1 Then ẋ(t) = A1x(t) +B τ(t) (49)
Duffing oscillator rule 2 : If z1(t) is M2 Then ẋ(t) = A2x(t) +Bτ(t) (50)

where A1 =
[

0 1
[−p2 − p3 d] −p1

]
, A2 =

[
0 1

[−p2 + p3 d] −p1

]
, B =

[0, 1]T, and x(t) = [x1(t), x2(t)]
T.
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From the numerical simulation of (46) for the parameter set p1 = 0.4,
p2 = −1.1, p3 = 1.0, ω = 1.8, and q = 1.8, the interval of values for the
premise variable z1(t) is found be [−2, 2].

The crisp value of the TS fuzzy model (49)–(50) is infered by

ẋ(t) = h1(z(t)) [A1 x(t) +B τ(t)] + h2(z(t)) [A2 x(t) +B τ(t)] (51)

with hi(z) as describe in (3).

5.2 Fuzzy Chaos Synchronization: Numerical Example

If the output of the chaotic Duffing oscillator (46) is given by

y(t) = C x(t) = [1, 0] x(t) = x1(t) (52)

A slave system that synchronizes to the chaotic Duffing oscillator (46) can
be constructed as an observer for its TS fuzzy model in the following form:

Slave duffing system rule 1 : If z1(t) is M1

Then ˙̂x(t) = A1x̂(t) +Bτ(t) + L1 [y(t)− x̂1(t)] (53)
Slave duffing system rule 2 : If z1(t) is M2

Then ˙̂x(t) = A2x̂(t) +Bτ(t) + L2 [y(t)− x̂1(t)] (54)

Then, the overall error dynamics will be given by

ė(t) = h1(z(t)) (A1 − L1 C) e(t)
+ h2(z(t)) (A2 − L2 C) e(t) (55)

using the results presented in Theorem 4, the observer gains can be designed
solving the corresponding LMI problem.

In Fig. 3, the results of numerical simulations of the synchronization be-
tween (46) and the TS Fuzzy system (53)–(54) are presented. Here the chaotic
master and slave systems are on free evolution at the begining, and at t = 15
the TS fuzzy observer is activated.
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Fig. 3. Fuzzy chaos synchronization results for the Duffing system
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6 Digitally Redesigned Takagi–Sugeno Fuzzy Observers

In this section, the case of a hybrid, analog-digital chaos synchronization
problem is investigated; the problem originates from the consideration that
a digital device is used in the connection between the master and slave sys-
tems, resulting on a sampled-data driving signal between two continuous-time
chaotic systems.

The proposed solution is the redesign of the TS fuzzy observer designed for
continuous-time chaos synchronization. In its original version, digital redesign
is a methodology to find a discrete-time controller from a continuous-time
controller designed to satisfied a set of control objectives, such that the states
of the digitally and the continuous-time controlled closed-loop systems match
at least at every sampling instant [26].

6.1 Digital Redesign of Linear Feedback Controllers

Consider a controllable and observable linear system of the form

ẋC(t) = A xC(t) +B uC(t), xC(0) = x0 (56)
yC(t) = C xC(t)

where xC(t), uC(t), and yC(t) are the state, input, and output variables
defined for (2), with the subindex (·)C used to indicated that these are the
continuous-time variables. A, B, and C are constant matrices of appropriate
dimensions.

Let the controller uC(t) be

uC(t) = −KC xC(t) + EC r(t) (57)

where the feedback KC ∈ Rm×n and feedforward EC ∈ Rm×m gains are
obtained to satisfy a given set of control objectives, and r(t) is an m × 1
reference input.

The continuous-time closed-loop system is given by

ẋC(t) = (A−B KC) xC(t) +B EC r(t), xC(0) = x0 (58)

Now, consider a piecewise-constant control law ud(t) satisfying

ud(t) = ud(k T ) for kT ≤ t < (k + 1) T (59)

with T > 0 being the sampled-hold period. Here the subindex (·)d indicates
that this variable is digital, that is, it can be consider the output of a zero-
order hold device when the input is a discrete-time signal ud(k T ).

In particular, assume that ud(k T ) has the form

ud(k T ) = −Kd xd(k T ) + Ed r
∗(k T ) (60)
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where Kd ∈ Rm×n and Ed ∈ Rm×m are the feedback and feedforward digital
gains, respectably, and r∗(k T ) is a piecewise-constant reference determined
in terms of r(k T ) for tracking purpose.

The closed-loop digitally controlled system becomes

ẋd(t) = A xd(t) +B [−Kd xd(k T ) + Ed r
∗(k T )] , xd(0) = x0 (61)

The digital redesign for the feedback controller (57) consists in finding the
digital gains (Kd, Ed) in (60), from the continuous-time controller gains
(KC , EC) in (57) such that the closed-loop continuous-time controlled states
xC(t) in (58) closely match the closed-loop digitally controlled states xd(t)
in (61), at every sampling instant throughout the whole process.

Different methods to determine appropriate values for (Kd, Ed) from
(KC , EC) have been proposed in the last couple of decades, mainly by Shieh
et al., see for example [26,27]. Of them, a particularly suitable methodology
for the digital redesign of observers is the prediction-based method [22, 24],
which is derived as follows.

Consider the state solution of (58), xC(t), at a future time given by t =
tυ = k T + υ T ,

xC(tυ) = expA(tυ−kT )xC(kT ) +
∫ kT+υT

kT

expA(kT+υT−τ)B uC(τ) dτ (62)

where υ is a tuning parameter, 0 ≤ υ ≤ 1.
Let the controller uC(tυ) be piecewise constant and the solution (62) can

be reduced to
xC(tυ) = G(υ)xC(k T ) +H(υ)uC(tυ) (63)

where G(υ) = expυAT and H(υ) =
∫ tυ

kT
expA(tυ−τ)B dτ =

∫ υT

0
expAτB dτ =(

G(υ) − I
)
A−1B.

The shorthand notation (G(υ) − I)A−1B of H(υ) does not requires the
invertiability of A, since the series expansion of (G(υ) − I) has a common
factor A that cancels A−1.

Under the same assumptions as above, the predicted solution of the digi-
tally controlled system, xd(tυ) is given by

xd(tυ) = G(υ)xd(k T ) +H(υ)ud(k T ) (64)

Thus, it follows that to satisfy the state matching requirement for the
predicted states xC(tυ) and xd(tυ) under the assumption that xC(tkT ) =
xd(tkT ), it is necessary to have uC(tυ) = ud(k T ), which leads to the
prediction-based digital controller:

ud(k T ) = −KC xC(tυ) + EC r(tυ)
= uC(tυ) = −KC xd(tυ) + Ed r(tυ) (65)
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Using (63) on (65) and solving for ud(k T ), one gets the predicted digital
controller as

ud(k T ) = [I +KC H
(υ)]−1(−KC G

(υ)xd(k T ) + EC r(tυ))

= K
(υ)
d xd(kT ) + E(υ)

d r∗(k T ) (66)

A way to ensure the prerequisite xC(k T ) = xd(k T ) is to set the tunning
the parameter to one, υ = 1. Then, the prediction-based digital redesigned
gains are obtained as

Kd = [I +KC H]−1KC G (67)
Ed = [I +KC H]−1EC (68)

where G = expA T , H = (G− I)A−1B, and the discrete-time tracking refer-
ence is given by r∗ = r(k T + T ).

6.2 Digitally Redesigned Observer: Sampled Driving Signal

Let a continuous-time observer for system (56) be the system

˙̂xC(t) = A x̂C(t) +B uC(t) + LC [yC(t)− ŷC(t)] , x̂C(0) = x̂0 (69)
ŷC(t) = C x̂C(t)

which results in the continuous-time error dynamics

ėC(t) = A eC(t)− LC [yC(t)− C x̂C(t)] (70)

From the dual system approach, (70) can be written as

ε̇C(t) = AT εC(t) + CT
[
−LT

CεC(t)
]

(71)

where εC(t) = eTC(t) and the term −LT
CεC(t) can be consider a static feedback

controller for the system (71).
Let the output from (69) yC(t) be sampled at a constant frequency such

that one gets

yd(t) = yd(k T ) = C xC(k T ) for k T ≤ t < (k + 1) T (72)

If this sampled output signal is used to construct a continuous-time observer,
the resulting hybrid error dynamics ed(t) can be expressed as the feedback
control system

ε̇d(t) = AT εd(t) + CT [−Ldεd(k T )] (73)

where εd(k T ) = xT
d (k T ) − x̂T

d (k T ) represents the sampled error dynamics
and Ld can be chosen such that the hybrid error dynamics and the continuous-
time error dynamics match at least at every sampling instant eC(t)|t=kT ≈
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ed(t)|t=kT . In other words, Ld can be obtained as the digital redesign of the
observer gain LT

C in (71).
Using the prediction-based digital redesign results (67), the digital ob-

server gain Ld that makes the hybrid error dynamics in (73) match the
continuous-time error dynamics in (70) is given by

Ld =
[(
I + LT

CH̄
)−1

LT
CḠ

]T

(74)

where Ḡ = expATT and H̄ =
[
Ḡ− I

] (
AT

)−1
CT.

6.3 Sampled-Data TS Fuzzy Observer

To solve the chaos synchronization problem when the slave system is driven
by a sampled signal yd(t), the results presented above can be used in order
to design a digitally redesigned TS fuzzy observer.

Then a slave system that synchronizes to (2) with a sampled-data driving
signal (72) will have the following form:

Sampled Driven Slave System Rule j : j = 1, 2, . . . , r
If z1(t) is Mj,1 and · · · and zp(t) is Mj,p (75)

Then
˙̂xd(t) = Aj x̂d(t) +Bjud(t) + Ld,j [yd(k T )− ŷd(k T )]
ŷd(t) = C x̂d(t)

where the observer gains Ld,j are the digitally redesigned versions of the
continuous-time observer gains LC,j , obtained solving the LMI problems pre-
sented above, for each rule of the TS fuzzy model.

The block diagram shown in Fig. 4 visualizes the overall fuzzy hybrid
chaos synchronization scheme.

6.4 Fuzzy Hybrid Chaos Synchronization: Numerical Examples

6.4.1 Chen’s Equation

An observer for synchronization of the chaotic Chen’s equation (40) through
a sampled driving signal

yd(t) = yd(k T ) = xd,1(k T ) (76)

can be designed from the TS fuzzy model (43)–(44) as

Digitally Redesigned
Slave Chen’s system rule 1: If z1(t) is M1 Then ˙̂x(t) = A1x̂(t)

+Ld,1 [yd(k T )− x̂d,1(k T )] (77)

Slave Chen’s system rule 2: If z1(t) is M2 Then ˙̂x(t) = A2x̂(t)
+ Ld,2 [yd(k T )− x̂d,1(k T )] (78)
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Fig. 4. Block diagram of the sampled-data TS fuzzy synchronization system

with Ld,j given by (74) from the values of LC,j obtained from solving the
LMIs in (28).

In Fig. 5, the results of numerical simulations of the synchronization
between (40) and the digitally redesigned TS fuzzy system (77)–(78) are
presented. Here the continuous-time chaotic master is simulated using a
Dormand–Prince intergration algorithm with a fixed integration step of
Tf = 0.001 while driving signal y(k T ) was sampled with a sampled-hold
period of Ts = 0.025. Both systems are allow to evolve freely until t = 5, then
the TS fuzzy observer is activated.
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6.4.2 Chua’s Circuit

Consider that the Chua’s circuit (33) is affected by a disturbance input ν(t),
such that the disturbed system is given by⎡⎣ ẋ1(t)

ẋ2(t)
ẋ3(t)

⎤⎦ =

⎡⎣α [x2(t)− x1(t)− Γ (x1(t))]
x1(t)− x2(t) + x3(t)
−βx2(t)

⎤⎦ + E ν(t) (79)

Here the disturbance input matrix E is set to be E = [1, 1, 1]T and the
disturbances are represented by a high frequency sinuosoidal function, ν(t) =
0.1 sin(2π 500 t).

The disturbed Chua’s circuit (79) can be represented by the TS fuzzy
model

Disturbed Chua′s circuit rule 1 :
If z1(t) is M1 Then ẋ(t) = A1x(t) + E ν(t) (80)

Disturbed Chua′s circuit rule 2 :
If z1(t) is M2 Then ẋ(t) = A2x(t) + E ν(t) (81)

where z1(t), M1, M2, A1, and A2 are as defined in (37) and (38).
Now, let the disturbed Chua’s circuit (79) be a continuous-time master

system and let the driving signal be a sampled version of its output given by

yd(t) = yd(k T ) = xd,1(k T ) (82)

A slave system that synchronizes to the master system such that the error
dynamics be internally stable and satisfies the performance index ‖Te,ν(s)‖∞
can be constructed using the results presented above in the form

Digitally redesigned H∞ robust
Slave chua′s system rule 1 : If z1(t) is M1 (83)

Then ˙̂x(t) = A1x̂(t) + Ld,1 [yd(k T )− x̂d,1(k T )]
Slave Chua′s system rule 2 : If z1(t) is M2

Then ˙̂x(t) = A2x̂(t) + Ld,2 [yd(k T )− x̂d,1(k T )] (84)

where the digitally redesigned observer gains Ld,j are obtained from the
continuous-time TS fuzzy observer design found from the solutions to the
LMI problem (31).

The simulation results of the robut hybrid synchronization between (79)
and the digitally redesigned TS Fuzzy system (83) and (84) are presented
in Fig. 6. The continuous-time chaotic master system was simulated using
a Dormand–Prince fixed step intergration algorithm with Tf = 0.001 and a
sampled-hold period of Ts = 0.1. The observer was activated after t = 5.
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Fig. 6. Robust Fuzzy Hybrid Chaos Synchronization Results for Chua’s circuit

7 Concluding Remarks

In this collaboration, the TS fuzzy model is used as an alternative represen-
tation of a chaotic system to solve the synchronization problem. In particu-
lar, the case of a sampled-data driving signal was investigated. The solution
proposed is in the same lines of the basic observer-based solution to the
synchronization problem. It is shown that using the fuzzy model represen-
tation an H∞ observer can be designed, using the dual system approach in
a PDC format, to synchronize two continuous-time chaotic systems, where
the gains are determined from the solution to an LMI minimization problem.
To take into consideration the effects of sampling on the driving signal, the
design is expressed as hybrid feedback control problem; in this setting the
corresponding observer gains are digitally redesigned from the original TS
fuzzy observer design. Simulations of three well-known benchmark chaotic
systems are used to confirm the effectiveness of the proposed fuzzy hybrid
chaos synchronization algorithm.

The use of fuzzy logic controllers to represent nonlinear systems has
many advantages, among them, as illustrated in this chapter and the ref-
erenced works, is the simplification of the representation and in the case of
the TS fuzzy model, the possibility of using well-establish linear techniques
to designed controllers and observers for nonlinear/chaotic systems. How-
ever, some limitations can be pointed out; the most significant one being
the so-called curse of dimensionality. When modeling a nonlinear system, it
is important to choose appropriately the structure of the rule set, because
if the rule set is poorly chosen a controller may not be found, even using
the LMI approach [42]. This is generally because as the number of rules in-
creases the difficulty in finding a feasible solution also increases. In recent
years, significant research efforts have been dedicated to develop methods to
cope with the issue of dimensionality in fuzzy design. One approach consists
simply using relaxed stability conditions on the fuzzy controller design [16].
Other approaches consists on constructing the most efficient model possible
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by minimizing the number of rules [43–45] or concentrating the attention on
appropriately choosing the inference variables and membership functions [19].
In this chapter, the latter approach is taken to construct the corresponding
fuzzy models; however, the complexity of the fuzzy model does not affect
the basic structure of the results presented. The proposed methodology is
suggested as a viable alternative to conventional digital redesign to the chaos
synchronization problem from a sampled driving signal.
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Bifurcation Phenomena
in Elementary Takagi–Sugeno Fuzzy Systems

Federico Cuesta, Enrique Ponce, and Javier Aracil

Abstract. The relevance of bifurcation analysis in Takagi–Sugeno (T-S) fuzzy sys-
tems is emphasized mainly through examples. It is demonstrated that even the most
simple cases can show a great variety of behaviors. Several local and global bifurca-
tions (some of them, degenerate) are detected and summarized in the corresponding
bifurcation diagrams. It is claimed that by carefully making this kind of analysis
it is possible to overcome some criticism raised regarding the blind use of fuzzy
systems.

1 Introduction

Fuzzy systems are nonlinear systems and, consequently, they can exhibit mul-
tiple equilibria, periodic orbits, and even chaotic attractors. To understand
such richness of possible behaviors, the qualitative theory and, in particular,
the bifurcation theory are two valuable tools to be known and adequately
exploited. Following the ideas already introduced in a preliminary work [1],
we aim at this chapter to illustrate by means of elementary examples how
these tools can be useful in the analysis of fuzzy systems. Throughout the
chapter, some basic bifurcation phenomena will also be introduced.

Dealing with nonlinear systems, one must be aware not only of possible
complex dynamical behaviors but, more importantly, also of the influence
of changes in parameters or in their structure. Through these changes, even
small in magnitude, it is possible to observe drastic qualitative changes in
their behavior modes (see [2]). This is the realm of bifurcation theory, which
supplies tools to study the points where these changes are produced and
the archetypical forms of the state portrait changes in these points. Some
comprehensive works for a thorough introduction in the subject are [3–7].

As mentioned before, the bifurcation theory can be a valuable tool for
understanding the behavioral richness of nonlinear systems. Roughly speak-
ing, when system parameters are moved and as a result a qualitative change
in the system response (to be deduced from a phase portrait, for instance) is
observed, it is said that the system undergoes bifurcation phenomena. These
phenomena can lead to a change in the number of stationary solutions (equi-
librium points), to the appearance of oscillations, or even to more complex
behavior (chaos, for instance). Thus, from a certain point of view, possible bi-
furcations are related to issues of robustness, since the system only displays

F. Cuesta et al.: Bifurcation Phenomena in Elementary Takagi–Sugeno Fuzzy Systems,
StudFuzz 187, 285–315 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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behaviors that are structurally stable [3–5, 8, 9] far from the bifurcation
points.

It should be remarked that the bifurcation theory makes it possible to
determine not only the values of the parameters for which the qualitative
behavior of the system changes but also the kind of behavior that the system
will exhibit after such changes.

Even if there are no real parameters in the system to study, it is interesting
from the point of view of bifurcation analysis to assume that some parameters
are involved and, by studying the possible bifurcations that may arise, it is
possible to obtain valuable information about the behavior corresponding to
the actual values of parameters. In any case, after a bifurcation analysis it
is also possible to split the parameter space on several regions with different
asymptotic dynamics, see for instance [10].

These questions are quite relevant for fuzzy systems in which, through
the fuzzification–defuzzification process, some “plastic” changes can occur,
depending on the specific method used in that process. The changes could
be associated to bifurcations, whose consequences should be known by the
system user and, maybe, have not attracted enough attention yet (but see
[11, 12]). It should be clearly understood that through the fuzzification–
defuzzification process a fuzzy system with a component of linguistic rules
has been converted into a mathematical object with well-known properties
which one should not forget when using such a system. As will be seen in this
chapter, some of the qualitative characteristics of these complex behaviors
can be captured through a bifurcation analysis.

2 Fuzzy Systems and Bifurcation Theory

Throughout the chapter we will consider affine Takagi–Sugeno (T-S) systems.
Such systems are composed, in general, by M rules of the form

Ri : if x1 is F 1
i and x2 is F 2

i , . . . , and xn is Fn
i then ẋ = Aix + Ci

for i = 1, . . . ,M , where F j
i are fuzzy sets, n is the dimension of vector x, and

Ai, Ci are constant matrices of adequate dimensions. Taking all the rules in
mind, we get the nonlinear dynamical system

ẋ =
M∑
i=1

wi(x)(Aix + Ci) , (1)

where

wi(x) =

∏n
j=1 µF j

i
(xj)∑M

i=1

∏n
j=1 µF j

i
(xj)

(2)

are nonlinear functions of the state vector x ∈ R
n, representing the weight

or contribution of each rule Ri to the dynamics of the system. The functions
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µF j
i
(xj) represents the membership degree of the variable xj to the fuzzy set

F j
i .

The mathematical object of (1) belongs to the class of the nonlinear dy-
namic systems ẋ = f(x, p), where p ∈ P stands for the parameters of the
system. In a fuzzy dynamic system, the parameter space P is formed, among
other things, by the parameters appearing in the membership functions Li

and the consequents.
As indicated in the introduction, the main concern of the bifurcation

theory is the analysis of the qualitative changes which take place in the
behavior modes of a nonlinear dynamical system as the parameters are varied.
Thus, since in fuzzy systems parametric functions are involved, bifurcation
theory is well suited to analyze the parametric robustness of fuzzy systems.

The first point to take into account when dealing with nonlinear dynamic
systems is that they can have more than one attractor. As each attractor has
its own attraction basin, the landscape of such systems can be very complex,
with several basins bounded by separatrices. The shape of this landscape can
suffer qualitative changes for some critical values of the parameters. These
values are called bifurcation points. Elementary bifurcations give the simplest
ways in which the qualitative structure of the state portrait changes. Fortu-
nately, with a few of these elementary bifurcations many practical situations
can be dealt with.

Bifurcation phenomena can be classified into two main classes, namely lo-
cal and global ones. Roughly speaking, local bifurcations are due to changes
in the dynamics of a small region of the phase space, typically, a neighbor-
hood of an equilibrium point. When all the eigenvalues of the linearization of
the system at one equilibrium point have real parts different from zero, the
equilibrium is called hyperbolic. As is well known, hyperbolic equilibria whose
eigenvalues have negative real parts are asymptotically stable, while if there
is some eigenvalue with positive real part, then the equilibrium is unstable.
Thus, starting for instance from a stable equilibrium, a crossing of certain
eigenvalues through the imaginary axis will lead to a local bifurcation. The
most basic bifurcations are those corresponding to a zero eigenvalue (saddle-
node, pitchfork, and transcritical bifurcations) or to a pair of pure imaginary
eigenvalues (Hopf bifurcation) [3, 5]. For instance, through a supercritical
(also called soft [5]) Hopf bifurcation a stable limit cycle is born from a point
attractor which becomes unstable. Hopf bifurcations can also be detected by
means of harmonic balance [13, 14].

Furthermore, there can be global bifurcations. In that case, the bifurca-
tion is produced in such a way that it involves phenomena not reducible
to locality. That occurs, for instance, when the interaction of a limit cycle
with a saddle point is produced. In such a case, an attractor can suddenly
appear or disappear. Apart from the quoted situation, which is called a ho-
moclinic or saddle connection, and its analog involving two equilibria (het-
eroclinic connection) [3, 5], other global bifurcations are, for instance, the
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saddle-node bifurcation of periodic orbits (two periodic orbits of different
stability character collide to disappear or vice versa) and the Hopf bifur-
cation from infinity, where a periodic orbit of great amplitude comes from
(goes to) infinity [15]. Global bifurcations cannot be detected by local analy-
sis and normally need numerical or approximate global methods. Again, the
harmonic balance method can help [16–18].

The relevance of qualitative analysis and bifurcations in T-S systems has
already been pointed out (see [19], and the references therein). However, their
complicated structure from the mathematical point of view explains the lack
of theoretical results up to this moment.

To lessen the mentioned difficulties, it is possible to resort to piecewise
linear membership functions with local support. These functions clearly in-
duce a partition in the state space of T-S systems (see Fig. 1). Thus, the
state space is divided into operating regions Xi, where only one rule and the
corresponding affine dynamic is active, and interpolation regions in between
them, where several dynamics are present. Nevertheless, the problem remains
nontrivial to analyze (bifurcation theory normally assumes a high degree of
smoothness for the system).

Fig. 1. State space partition induced by piecewise linear membership functions

For the sake of simplicity, in this chapter, the simplest T-S systems are
considered, that is, x ∈ R

2 and only x1 with two fuzzy sets will be considered
in the antecedents, yielding two rules (M = 2 in (2)). As indicated before,
in order to facilitate the analysis, normalized piecewise linear membership
functions will be assumed; even for this case nontrivial behaviors will be
found. To be more precise, all the examples analyzed in this chapter have the
following structure:
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Fig. 2. Membership functions

if x1 is N then ẋ = A1x + C1 ,

if x1 is P then ẋ = A2x + C2 ,
(3)

where the linguistic terms N and P are represented by the normalized trape-
zoidal membership functions shown in Fig. 2, resulting in the following dy-
namical system:

ẋ = w1(x)(A1x + C1) + w2(x)(A2x + C2) , (4)

where

w1(x) = µN (x1) =

⎧⎪⎨⎪⎩
1 for x1< −1
1
2 − 1

2x1 for |x1| ≤ 1

0 for x1> 1

,

w2(x) = µP (x1) =

⎧⎪⎨⎪⎩
0 for x1< −1
1
2x1 + 1

2 for |x1| ≤ 1

1 for x1> 1

.

(5)

Note that µN (x1)+µP (x1) = 1, for all x1, and that two operating regions
and only one interpolating region will appear.

Expressions (3)–(5) define a dynamical system in R
2, which is governed

by a piecewise smooth vector field (it is only of class C0 for x1 = 1 and
x1 = −1). Of course, the system is well posed and for every initial condition
it is possible to assume the existence and uniqueness of solutions.

Therefore, the dynamic system is equivalent to

ẋ = A1x + C1, for x1 < −1 ,
(6)

ẋ = A2x + C2, for x1 > 1 ,
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and gives rise to a quadratic system in the interpolation region, that is, for
|x1| < 1.

In this setting, the bifurcation analysis can take advantage of the state
space partition induced by the membership functions. From the point of
view of the dynamics which are intrinsic to every operating region, there is
no special difficulties in the analysis. In fact, since in every operating region
the system becomes purely affine, all that has to be done is to characterize
the corresponding linearization, which is given by the matrix Ai, i = 1, 2,
and to locate the possible equilibrium points. It should be noticed that even
virtual equilibria, that is, solutions of Aix + Ci = 0, i = 1, 2, which are not
in the corresponding region, do govern the dynamics in the region. In the
interpolating region, the analysis of its intrinsic dynamics is more complex,
as it is a quadratic system, but no special difficulties are to be expected.
The problem arises when the regional dynamics are merged into a unique
state space. For instance, the merging of only two affine regions is enough to
produce limit cycles (see [20]), which is impossible for each separate region.
The interaction of trajectories in different regions can produce interesting
global phenomena, in spite of the linear nature of the two systems involved
[21].

As will be seen, these elementary T-S systems can display local and global
bifurcations, some of them due to the structure of the regions and others orig-
inated by the lack of differentiability. In this last case (low differentiability)
we speak of degenerate bifurcations. It should be emphasized that these de-
generate bifurcations might not persist after some smoothing of the piecewise
linear membership functions, even when the perturbations are small. That is
not the case for the rest of the bifurcations found in the following examples;
the first two have homogeneous consequents and the last one is composed of
affine consequents.

Finally, to facilitate the analysis of periodic orbits the Poincaré section
method will be used. This technique reduces the problem to the study of
discrete dynamics on a space of dimension n − 1, where n is the dimension
of the original system.

If γ is a periodic orbit of ẋ = f(x) with period T > 0, and Φ is the flow of
the system, then Φt+T (x) = Φt(x) for x ∈ γ and t ∈ R arbitrary. Moreover,
given a local transversal section of S at x ∈ γ, it can be shown that there is
an open set U of x in S and a unique differentiable function ρ : U → R, so
that

ρ(x) = T, Φρ(y)(y) ∈ S, ∀y ∈ U . (7)

where ρ(y) is the time required by the orbit starting at point y ∈ U to reach
the section S at a point P (y) (see Fig. 3a).

Thus, there exists an application P : U → S, defined by

P (y) = Φρ(y)(y), y ∈ U . (8)
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Fig. 3. (a) Poincaré section in a three-dimensional state space. (b) Resulting
Poincaré map in a bi-dimensional space

where P is the Poincaré map or first return map associated to the flow in a
neighborhood of the closed periodic orbit γ. Therefore, P (x) = x, with x ∈ γ,
is a fixed point of the Poincaré map.

The linear approximation of P in x is DxP (x), and it can be shown [22]
that the eigenvalues of DxP (x) are independent on the point x ∈ γ chosen
for tracing the section and on the section S itself. Therefore, it is possible
to analyze the stability of a periodic orbit from the eigenvalues of DxP (x),
which in case of dimension 2 (n = 2) are given by the slope of the curve P (x)
at x (see Fig. 3b).

3 Examples

3.1 System with Linear Consequents

As a first example, consider the fuzzy system

if x1 is N then ẋ =

[
1 − 1

2

1 0

]
x ,

if x1 is P then ẋ =

[
−β − 1

2

β 0

]
x ,

(9)

where β is the parameter which can vary (i.e., the bifurcation parameter).
The linguistic terms N and P are represented by normalized trapezoidal
membership functions (see Fig. 2).

As indicated before, the phase space can be partitioned into two operating
regions and one interpolating region according to the membership functions,
so that
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ẋ =

[
1 − 1

2

1 0

]
x, for x1 < −1,

ẋ =
1− x1

2

[
1 − 1

2

1 0

]
x +

1 + x1

2

[
−β − 1

2

β 0

]

x =

[
1−β

2 x1 − 1+β
2 x1

2 − 1
2x2

1+β
2 x1 − 1−β

2 x1
2

]
, for |x1| ≤ 1,

ẋ =

[
−β − 1

2

β 0

]
x, for x1 > 1.

(10)

The global dynamics in the phase space is the composition of the three
regional dynamics. Therefore, all the trajectories can be determined by gluing
together (not only continuously but also with a continuous derivative) trajec-
tories in each region. To start with, it is easily concluded that the dynamics
in the left operating region (x1 < −1) is a linear dynamics, independent of
the bifurcation parameter. For this region the origin is the only equilibrium
governing the dynamics (in fact, one unstable focus), but note that it is out
of the region and so it constitutes a virtual equilibrium. Trajectories enter
this region from the middle region at x1 = −1 for x2 > −2, and they always
return to the middle region at x1 = −1 for x2 < −2.

Now, considering the right operating region, the corresponding dynamics,
which is also linear, depends on the value of β. Again, for β �= 0, the only
equilibrium governing the dynamics is the origin (a virtual equilibrium) and
by linear analysis it is possible to make the following assertions:

• for β < 0 the virtual equilibrium at the origin is a saddle.
• for β = 0 there appears a continuum of equilibria at the x1-axis. For
x1 ≥ 1 these points are actual equilibrium points and the dynamics is
rather degenerate as all trajectories are horizontal straight lines (entering
the region for x2 < 0 and leaving it for x2 > 0).

• for 0 < β < 2 the dynamics is of a stable focus type. Trajectories enter the
region at x1 = 1 for x2 < −2β and always return to the middle region at
x1 = 1 for x2 > −2β.

• for β = 2 the dynamics is governed by an improper stable node. Trajec-
tories enter the right region at x1 = 1 for x2 < −4 and always return to
the middle region at x1 = 1 for x2 ∈ (−4,−1). At x1 = 1 for x2 ≥ −1
trajectories leave the region coming from the point at infinity.

• for β > 2 the dynamics is governed by a stable node with a behavior of
trajectories similar to that of the previous case.

The analysis of the middle (interpolating) region dynamics is somehow
more complex as it is a quadratic system. First of all, apart from the
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equilibrium point at the origin (now, an actual equilibrium) if β �= 1, there
is another equilibrium point at

x̄1 =
1 + β
1− β , x̄2 = −4β(1 + β)

(1− β)2
, (11)

which is a virtual equilibrium for β > 0, and an actual one for β ≤ 0.
Note that for the complete system the value β = 0 clearly represents a

bifurcation value since the dynamics changes at this value. When β > 0, the
system has one equilibrium point. At β = 0 there appears a half straight line
of equilibrium points (x1 ≥ 1, with x2 = 0) from which the system inherits
one new equilibrium point at (x̄1, x̄2) for β < 0. This bifurcation can be
thought of as a degenerate saddle-node bifurcation (DSN).

The linearization of the equilibrium point at the origin is

J(0, 0) =

⎡⎣ 1−β
2 − 1

2

1+β
2 0

⎤⎦ , (12)

so that
trace J(0, 0) =

1− β
2

, det J(0, 0) =
1 + β

2
. (13)

For β < −1 the origin is unstable (a saddle point). For β = −1 it is
an unstable nonhyperbolic equilibrium (which is a necessary condition for a
bifurcation to occur; the character of this bifurcation will be analyzed later).
The origin is also unstable (node or focus) for −1 < β < 1, becoming stable
for β > 1. Again, when β = 1, this equilibrium is nonhyperbolic, since its
linearization has a pair of pure imaginary eigenvalues, which might be asso-
ciated to a Hopf bifurcation. To detect the character of this Hopf bifurcation,
an additional analysis is required. This can be performed by means of the
Poincaré map for different values of β around β = 1 (see Fig. 6). From this
it is concluded that for β = 1 there is a global nonlinear center (GC) that
for |β − 1| �= 0, and |β − 1| small, does not give rise to any periodic orbit.
Notice that this can also be concluded from a mathematical analysis of the
global system equations [1] as shown in the appendix. From this appendix it
is concluded that for β = 1 there is a global nonlinear center (GC) that for
|β − 1| �= 0, and small, does not give rise to any periodic orbit.

To study the character of the second equilibrium point, it suffices to com-
pute from (10) the corresponding linearization, namely,

J(x̄1, x̄2) =

⎡⎣ (1−β)
2 − (1 + β)x̄1 − 1

2

(1+β)
2 − (1− β)x̄1 0

⎤⎦

=

⎡⎣− 1+6β+β2

2(1−β) − 1
2

− 1+β
2 0

⎤⎦ ,
(14)
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Fig. 4. Bifurcation diagram of Example 1 (HC = homoclinic connection; Hsub =
subcritical Hopf; T = transcritical; DSN = degenerate saddle node; GC = global
center)

and it should be remarked that

trace J(x̄1, x̄2) = −1 + 6β + β2

2(1− β)
, detJ(x̄1, x̄2) = −1 + β

4
. (15)

Thus, the point(x̄1, x̄2) is a saddle point for β > −1. When β = −1 the
system undergoes a bifurcation, since this equilibrium and the equilibrium at
the origin coalesce.

Analyzing the sign of the trace in (15), it can be concluded that it is
positive both for β > 1 and for β ∈ (β1, β2), where β1, β2 are the roots of
the quadratic 1 + 6β + β2 = 0, that is

β1 = −3− 2
√

2, β2 = −3 + 2
√

2 . (16)

With this information it is not difficult to see that at β = −1 a trans-
critical bifurcation takes place (two equilibrium points collide, interchanging
their stability properties).

Also, another bifurcation arises when β = β1, since the trace changes its
sign with a positive determinant. In fact, the system undergoes a subcritical
Hopf bifurcation (to be denoted as Hsub), as the point (x̄1, x̄2) (an unstable
focus for β > β1) becomes a stable focus for β < β1, with one unstable limit
cycle around it. As predicted by the bifurcation theory, the amplitude of this
limit cycle evolves with the bifurcation parameter and it can be approximated
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by an expression that is O(|β−β1|
1
2 ) for |β−β1| small. Therefore, the unstable

limit cycle will remain in the interpolating region for β < β1 if |β − β1|
is sufficiently small, stating the attraction basin of the point (x̄1, x̄2) (see
Fig. 5a).

Letting |β−β1| to be larger (with β < β1), the above unstable limit cycle
begins to enter the left operating region, also approaching the origin from its
righthand side. Then, for certain value of β, a global bifurcation appears when
the limit cycle becomes a loop connecting one branch of the unstable manifold
at the origin with one branch of its stable manifold (saddle connection or
homoclinic bifurcation HC). After this critical value, the relative positions of
these two manifold branches change, giving as a result the disappearance of
the limit cycle. Now, the attraction basin of the point (x̄1, x̄2) is no longer
bounded and, depending on the situation of the initial conditions with respect
to the stable manifold of the origin, trajectories go to infinity or to the stable
point (x̄1, x̄2).

Clearly, for β > 1 the system exhibits a standard behavior, with no sensi-
tivity to initial conditions and only one equilibrium, which is globally stable.
When β < β1, the system also possesses a stable equilibrium, but it can be
said that it is not robust, since its attraction basin is limited. For the inter-
mediate values of β, that is, in the range [β1, 1], the system is unstable, and
so it can be considered useless.

Thus, very different system behavior may be found depending on the ac-
tual value of β. It must be emphasized that the identification of the adequate
value of β turns out to be a critical issue.

The whole analysis for the system (9) can be summarized in the bifur-
cation diagram of Fig. 4. Also, the corresponding phase portraits for several
values of β are sketched in Figs. 5 and 6. In Fig. 6 there are also shown the
corresponding Poincaré maps for different values of β with the section S set
at x1 = 0. Notice that the slope of the curve in Fig. 6a is greater than 1 and
the system is unstable. In Fig. 6b the slope is always 1, which corresponds to
a global center. On the other hand, in Fig. 6c the slope is always lower than
1, showing global stability.

3.2 System with Modified Consequent

In this example, we will consider a change in the second rule with respect to
the previous one, to use instead

if x1 is P then ẋ =
[
−1 − 1

2
1 β

]
x, (17)

taking the same normalized trapezoidal membership functions (5) as in Ex-
ample 1. Now, the system becomes
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Fig. 5. Phase portraits of Example 1 for different values of β. (a) For β = −6,
there is an unstable limit cycle stating the attraction basin of a stable equilibrium
(dashed line). (b) For β = −5.6 there are no stable equilibrium points (at β = β1

the system undergoes a subcritical Hopf bifurcation within the interpolating region)
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Fig. 6. Phase portraits of Example 1 for different values of β and their correspond-
ing Poincaré maps. (a) For β = 0.9 the system has an unstable equilibrium at the
origin. (b) For β = 1 the system has a global center. (c) For β = 1.1 the origin is
the global attractor of the system
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ẋ =

[
1 − 1

2

1 0

]
x, for x1 < −1,

ẋ = 1−x1
2

[
1 − 1

2

1 0

]
x +

1 + x1

2

[
−1 − 1

2

1 β

]

x =

[
−x2

1 − 1
2x2

x1 + β
2x2 + β

2x1x2

]
, for |x1| ≤ 1,

ẋ =

[
−1 − 1

2

1 β

]
x, for x1 > 1.

(18)

Repeating the above steps, the first remark is that the dynamics in the
left operating region is identical to that of Example 1.

For the right operating region (x1 > 1) the linear dynamics is governed
by a virtual equilibrium at the origin for β �= 0.5. This equilibrium is a saddle
point for β > 0.5 and a stable point (focus or node) for β < 0.5. For β = 0.5
there appears a continuum of equilibria making up half of the straight line
2x1 + x2 = 0 with x1 ≥ 1 (for x1 < 1 they constitute virtual equilibria)
as shown in Fig. 10. Trajectories enter the middle interpolating region from
the right region, coming from the point at infinity, at x1 = 1 for x2 ≥ −2,
and they return to the right region at x1 = 1 for x2 < −2 approaching
asymptotically one of the continuum of equilibria.

Concerning the interpolating region, the origin is always an actual equi-
librium, and for β /∈ (−4, 0] there are two other equilibrium points, namely

x̄1
1 =

−β +
√
β2 + 4β

2β
, x̄1

2 =
−2− β +

√
β2 + 4β

β
, (19)

and

x̄2
1 =

−β −
√
β2 + 4β

2β
, x̄2

2 =
−2− β −

√
β2 + 4β

β
, (20)

both coalescing for β = −4 at the point (− 1
2 ,− 1

2 ). The linearization matrix
at (− 1

2 ,− 1
2 ) is

J

(
−1

2
,−1

2

)
=

[
1 − 1

2

2 −1

]
, (21)

with null trace and null determinant. Therefore, this point is a nonhyperbolic
equilibrium with two zero eigenvalues. The corresponding bifurcation is called
a Bogdanov–Takens bifurcation (see [5]; this bifurcation needs two parameters
to make all the possible behaviors nearby visible). Thus the point (− 1

2 ,− 1
2 ) is

a cuspidal point, and by moving β a one-dimensional section of the unfolding
of the Bogdanov–Takens bifurcation will become visible.
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The equilibrium (x̄1
1, x̄

1
2) of the interpolation region is an actual equi-

librium both for β ≤ −4 and for β ≥ 0.5, and a virtual equilibrium for
0 < β < 0.5. On the other hand, the point (x̄2

1, x̄
2
2) is an actual equilibrium

only for β ≤ −4 (a virtual equilibrium for β > 0).
By considering the analysis of both the right and the interpolation regions,

β = 0.5 clearly represents a bifurcation value for the whole system. When
β < 0.5 (with |β − 0.5| small), the only actual equilibrium is the origin.
At β = 0.5 there appears a halfstraight line of equilibrium points (x1 ≥ 1,
with x2 = −2x1) from which the system inherits a new equilibrium point at
(x̄1

1, x̄
1
2) for β > 0.5, in a (DSN) bifurcation (see Fig. 10).

Returning to the analysis of the interpolation region, we will proceed to
analyze the three equilibrium points within the region [namely, the origin,
(19), and (20)]. The linearization of the equilibrium point at the origin is

J(0, 0) =

[
0 − 1

2

1 β
2

]
, (22)

so that
trace J(0, 0) =

β

2
, det J(0, 0) =

1
2
. (23)

Thus, the origin is stable for β < 0 (a node for β < −2
√

2, and a focus
for −2

√
2 < β < 0). For β = 0 it is a nonhyperbolic equilibrium. And it is

unstable for β > 0 (a focus for 0 < β < 2
√

2, and a node for β > 2
√

2).
For β = 0 a Hopf bifurcation could be expected. It is interesting to note

that the system for β = 0 is the same as that of Example 1 for β = 1.
From Lemma A1 of Appendix A, at β = 0 there is a global nonlinear center.
However, for β > 0, and small, there now appears a stable limit cycle, as
a result of a supercritical Hopf bifurcation at the infinity (the existence of
this bifurcation can be confirmed by using the techniques introduced in [15]).
Notice that this limit cycle did not exist in Example 1. The limit cycle can also
be characterized based on the Poincaré map as shown in Fig. 7. Particularly,
the slope in Fig. 7c shows that it is a stable limit cycle. The amplitude of the
stable limit cycle decreases as the bifurcation parameter grows. Furthermore,
it is possible to show that the periodic orbit disappears suddenly at β = 0.5,
in a degenerate global bifurcation, due to the appearance of the continuum
of equilibria in the right region (see Fig. 8).

In the case of point (x̄1
1, x̄

1
2), the linearization process results in

J
(
x̄1

1, x̄
1
2

)
=

⎡⎣ β−
√

β2+4β

β − 1
2

−β+
√

β2+4β

2

β+
√

β2+4β

4

⎤⎦ , (24)

and so,
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Fig. 7. Phase portraits of Example 2 for different values of β and their correspond-
ing Poincaré map. (a) For β = −0.4 the origin is the global attractor of the system.
(b) For β = 0 the system has a global center. (c) For β = 0.45 there is a stable
limit cycle surrounding the origin which is unstable (at β = 0 the system undergoes
a supercritical Hopf bifurcation at infinity)
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Fig. 8. Phase portraits of Example 2 for different values of β. (a) For β = 0.5
the system has a half line of stable equilibrium points at x2 = −2x1 with x1 ≥ 1.
Appearance of this continuum of equilibria causes that the periodic orbit in Fig. 7c
disappears suddenly. (b) For β = 0.6 there are no stable equilibrium points
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trace J
(
x̄1

1, x̄
1
2

)
=

4β + β2 + (β − 4)
√
β(β + 4)

4β
, (25)

det J
(
x̄1

1, x̄
1
2

)
=

√
β(β + 4)(β −

√
β(β + 4))

4β
. (26)

Trace (25) is positive both for β < −4 and β > 4
3 (being zero for β = −4

and β = 4
3 ). On the other hand, determinant (26) is positive for β < −4.

Therefore, it is easy to conclude that the equilibrium point (x̄1
1, x̄

1
2) is an

unstable focus for β < −4, a nonhyperbolic equilibrium for β = −4, and a
saddle point for β > 0 (recall that the equilibrium does not exist for −4 <
β ≤ 0, being a virtual one for 0 < β < 0.5).

Similarly, the linearization at equilibrium point (x̄2
1, x̄

2
2) is

J
(
x̄2

1, x̄
2
2

)
=

⎡⎣ β+
√

β2+4β

β − 1
2

−β−
√

β2+4β

2

β−
√

β2+4β

4

⎤⎦ , (27)

giving

trace J
(
x̄2

1, x̄
2
2

)
=

4β + β2 + (4− β)
√
β(β + 4)

4β
, (28)

det J(x̄2
1, x̄

2
2) =

√
β(β + 4)(β +

√
β(β + 4))

4β
. (29)

Now, trace (28) is positive for β > 0 and it is zero for β = −4. Also,
determinant (29) is null only for β = −4. Thus, equilibrium point (x̄2

1, x̄
2
2) is

a saddle point for β < −4, a nonhyperbolic equilibrium for β = −4, and a
virtual unstable node for β > 0.

Therefore, at β = −4 the complete system undergoes a bifurcation similar
to the saddle-node bifurcation of equilibria (it could be called a saddle-focus
bifurcation), which is in fact a section of the more general Bogdanov–Takens
bifurcation. Thus, for β > −4, with |β + 4| small, the only equilibrium of
the system is the origin, which is globally stable. However, for β < −4 the
system exhibits three equilibria (see Fig. 9), due to the appearance of two
new equilibria (an unstable focus and a saddle point), making in principle
the stability of the origin only local.

Finally, the whole analysis can be summarized in the bifurcation diagram
shown in Fig. 10. The main conclusion is that for β < 0 the origin is the only
(quasi-) global attractor (the presence of other equilibria for β ≤ −4 does
not preclude this assertion, since excepting these equilibrium points makes
all trajectories tend to the origin).

3.3 System with Affine Consequents

The last example deals with an affine (includes an offset term) T-S fuzzy
system
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Fig. 9. Phase portrait of Example 2 for β = −5; the origin is the only stable
equilibrium point of the system
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Fig. 10. Bifurcation diagram of Example 2 (SF = saddle focus from a cuspidal
point; Hsup

∞ = supercritical Hopf at infinity; DSN = degenerate saddle node; GC =
global center)
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if x1 is N then ẋ =

[
−4.5 −1.5

3 −6

]
x +

[
0

12

]
,

if x1 is P then ẋ =

[
β −3

6 β

]
x +

[
0

−12

]
,

(30)

where β is the bifurcation parameter, and the membership functions are the
same as in previous examples. Therefore, system (30) can be expressed as

ẋ =

[
−4.5 −1.5

3 −6

]
x +

[
0

12

]
, for x1 < −1,

ẋ =

⎡⎣ (2β+9)x2
1+(2β−9)x1−3x1x2−9x2

4

3x2
1−15x1+(β+6)x1x2+(β−6)x2

2

⎤⎦, for |x1| ≤ 1,

ẋ =

[
β −3

6 β

]
x +

[
0

−12

]
, for x1 > 1.

(31)

In the left operating region, the dynamics corresponds to an affine system,
being independent of the bifurcation parameter. The only equilibrium in this
region should be (x1, x2) = (−4

7 ,
12
7 ), a stable focus, which is always out of the

region, being a virtual equilibrium point. Trajectories enter this region from
the middle (interpolating) region at x1 = −1 for x2 > 3, and they return to
the middle region at x1 = −1 for x2 < 3.

On the other hand, the right operating region is governed by an affine
system depending on the bifurcation parameter. Thus, in this region, the
only equilibrium is given by

x̄1 =
36

18 + β2
, x̄2 =

12β
18 + β2

, (32)

which is an actual equilibrium of system (31) for β ∈ [−3
√

2, 3
√

2], and a
virtual equilibrium elsewhere. Trajectories enter this region from the inter-
polating region at x1 = 1 for x2 <

β
3 , and they return to the middle region

at x1 = −1 for x2 >
β
3 .

The trace and determinant of the linearized system at the equilibrium
point (x̄1, x̄2) are

trace J(x̄1, x̄2) = 2β, det J(x̄1, x̄2) = 18 + β2 . (33)

Therefore for β < 0, the equilibrium is a stable focus; when β = 0, it
is a nonhyperbolic equilibrium and, for β > 0, it is an unstable focus. At
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β = 0 the trace vanishes, with a positive determinant, which suggests the
existence of a Hopf bifurcation as shown in Figs. 12 and 13 (indeed, as affine
systems cannot undergo Hopf bifurcations, it is better to speak of a Hopf-
like bifurcation). Analyzing this bifurcation, it can be concluded that there
appears a linear center around point (2, 0), which is restricted to the right
operating region.

The outermost periodic orbit of this center is tangent to the border of the
region at (x1, x2) = (1, 0), and it is a semistable periodic orbit (stable from
its inner side but unstable from its outer side). Trajectories starting near this
semistable periodic orbit from its outer side tend to another stable periodic
orbit of greater amplitude, which lies partially in the interpolating region.
For β < 0, and small, the center disappears, leaving one unstable limit cycle
(which arises from the outermost periodic orbit of the center, in a bifurcation
analogous to the one studied in [23]), whose amplitude grows as β decreases,
so lying partially in the middle region and coexisting with the stable limit
cycle. For β > 0, and small, the center disappears without giving rise to new
limit cycles but the stable limit cycle persists.

With respect to the interpolating region, apart from the origin, another
two equilibria could exist for β /∈ [−168−12

√
21

25 , −168+12
√

21
25 ] (assuming also

that β �= −12), namely,

x̄1
1 = − 2β2 − 63− 3α

63 + 21β + 2β2
,

x̄1
2 = −2β3 − (99− 2α)β2 − (1071 + 3α)β − 27α+ 2268

2(β + 12)(63 + 21β + 2β2)
(34)

and

x̄2
1 = − 2β2 − 63 + 3α

63 + 21β + 2β2
,

x̄2
2 = −2β3 − (99 + 2α)β2 − (1071− 3α)β + 27α+ 2268

2(β + 12)(63 + 21β + 2β2)
, (35)

with α =
√

25β2 + 336β + 1008.
Point (x̄1

1, x̄
1
2) is an actual equilibrium only for β ≥ 3

√
2, while the point

(x̄2
1, x̄

2
2) is an actual equilibrium only for β ≥ −3

√
2.

The linearization of the equilibrium point at the origin is

J(0, 0) =

[
2β−9

4 − 9
4

− 15
2

β−6
2

]
, (36)

so that

trace J(0, 0) = β − 21
4
, det J(0, 0) =

2β2 − 21β − 81
8

. (37)



306 F. Cuesta et al.

The trace vanishes for β = 21
4 , but with a negative determinant. The

determinant is zero both for β1 = −3 and β2 = 27
2 . Thus, the origin is

a stable node for β < β1. For β = β1, it is a nonhyperbolic equilibrium.
For β1 < β < β2 the origin is a saddle point. For β = β2 it is again a
nonhyperbolic equilibrium, being always an unstable node for β > β2.

In fact, both at β = β1 and at β = β2, the system undergoes a transcritical
bifurcation, due to the collision of the origin with equilibrium (x̄2

1, x̄
2
2) and

(x̄1
1, x̄

1
2), respectively.

The linearization at equilibrium (x̄1
1, x̄

1
2) is

J(x̄1
1, x̄

1
2) =

⎡⎣ (4β+18)x̄1
1−3x̄1

2+2β−9
4 − 3x̄1

1+9
4

6x̄1
1+(β+6)x̄1

2−15
2

(β+6)x̄1
1+β−6
4

⎤⎦ , (38)

so that

trace J(x̄1
1, x̄

1
2) =

(6β + 30)x̄1
1 − 3x̄1

2 + 4β − 21
4

, (39)

det J(x̄1
1, x̄

1
2) =

γ(x̄1
1)

2 + ζx̄1
1 + (6β + 72)x̄1

2 + η
8

, (40)

with γ = 4β2 + 42β + 126, ζ = 6β2 − 3β − 153, and η = 2β2 − 21β − 81.
Thus, trace (39) is zero for

β =
−108404

5583
≈ −19.417 ,

β =
−157769
39304

≈ −4.014 , (41)

β =
286644
9169

≈ −31.262 ,

with a positive determinant only at β ≈ −4.014 (note that although a Hopf
bifurcation could be possible, the point (x̄1

1, x̄
1
2) at this value is a virtual

equilibrium). On the other hand, determinant (40) is zero for several values
of β, namely,

β3 =
−168− 12

√
21

25
≈ −8.92 ,

β4 =
−168 + 12

√
21

25
≈ −4.52 , and (42)

β2 = 13.5,

with the trace being nonzero at these values, and point (x̄1
1, x̄

1
2) a nonhyper-

bolic equilibrium.
In a similar way, analyzing the trace and determinant of the linearized

system at point (x̄2
1, x̄

2
2), it can be concluded that the trace is always negative,

and the determinant is zero for



Bifurcation Phenomena in Elementary Takagi–Sugeno Fuzzy Systems 307

β = β3, β = β4, β = β1

with point (x̄2
1, x̄

2
2) being a nonhyperbolic equilibrium at these values.

Note that equilibria (x̄1
1, x̄

1
2) and (x̄2

1, x̄
2
2) do not exist for β ∈ [β3, β4]. The

system undergoes a saddle-node bifurcation of virtual equilibria at β = β4,
where two branches of equilibria appear, corresponding to point (x̄1

1, x̄
1
2) (a

stable node) and point (x̄2
1, x̄

2
2) (a saddle point). Furthermore, these branches

will become actual equilibria of the whole system at β > −3
√

2 for (x̄2
1, x̄

2
2),

and β > 3
√

2 for (x̄1
1, x̄

1
2).

Therefore, from the point of view of the whole system, β = −3
√

2 rep-
resents a bifurcation value; in fact, a nonsmooth saddle-node bifurcation
(NSSN) takes place just at the boundary between the interpolating (middle)
and the right operating regions. When β < −3

√
2, the only actual equilib-

rium is the origin (a globally stable node). At β = −3
√

2 two new equilibria
appear starting from point (x1 = 1, x2 = −

√
2): equilibrium (x̄2

1, x̄
2
2), which is

a saddle point, and equilibrium (x̄1, x̄2) on the right operating region, which
is a stable node. Thus, for β ≥ −3

√
2 the stability or instability of the origin

will be only local (see Fig. 11). It should be remarked that this bifurcation
(NSSN) occurs at a point where the system is not differentiable. However,
such a phenomenon can be detected with this methodology.

On the other hand, at β = β2, the system undergoes a transcritical bifur-
cation corresponding to the collision of point (x̄1

1, x̄
1
2) with the origin. Thus,

for β < β2, point (x̄1
1, x̄

1
2) is an unstable node, while for β > β2 it is a saddle

point. In a similar way, at β = β1 there exists a transcritical bifurcation due
to the collision of point (x̄2

1, x̄
2
2) with the origin. Thus, for β < β1, (x̄2

1, x̄
2
2) is

a saddle point, while for β > β2 it is a stable node.
Finally, two global bifurcations also appear. First, a saddle-node bifurca-

tion of periodic orbits takes place at β ≈ −0.05, resulting in the appearance
of an unstable limit cycle, together with a stable limit cycle around it (see
Fig. 12). The amplitude of the stable periodic orbit grows with the value
of the bifurcation parameter, while the amplitude of the unstable limit cy-
cle decreases with β. Thus, the unstable periodic orbit will decrease until it
connects at β = 0 with the outermost orbit of the local center (see Fig. 12c).

As mentioned before, for β > 0, the only periodic orbit is the stable one.
This limit cycle will grow in amplitude approaching the saddle point at the
origin. Thus, for β ≈ 0.028 the periodic orbit becomes a loop connecting one
branch of the unstable manifold of the origin with one branch of its stable
manifold, in a global homoclinic bifurcation. For β > 0.028 the relative posi-
tions of these manifold branches change, giving as a result the disappearance
of the limit cycle (see Fig. 13).

The whole bifurcation analysis is summarized in Fig. 14, which shows
the bifurcation diagram for this example. The main conclusions are that
for β ≤ −3

√
2 the origin is the only global attractor of the system, and

for −3
√

2 < β < 0 the system exhibits two stable attractors. Also it can be
concluded that for β > −3 the origin is not an operating point for the system.
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(b)β = −4
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Fig. 11. Phase portraits of Example 3 for different values of β. (a) For β = −6
the origin is the global attractor of the system. (b) For β = −4 the system has
two stable equilibria and a saddle point (at β = −3

√
2 the system undergoes a

degenerate saddle node bifurcation). (c) For β = −2 the system also has two stable
equilibria but the origin is a saddle point (at β = −3 a transcritical bifurcation
takes place)
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(a) β = −0.06
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(b) β = −0.03
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(c) β = 0

Fig. 12. Phase portraits of Example 3 for different values of β and their corre-
sponding Poincaré maps. (a) For β = −0.06 the system has two stable equilibria
and a saddle point. (b) For β = −0.03 there exists an unstable periodic orbit and
a stable limit cycle around it (at β = −0.05 the system undergoes a saddle-node
bifurcation of periodic orbits). (c) For β = 0 there is a stable limit cycle and a local
center around point (2, 0) in the right operating region (the outermost periodic
orbit of the center is tangent to the border of the region at point (1, 0))
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(a) β = 0.01
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(b)β = 0.028
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(c)β = 0.04

Fig. 13. Phase portraits of Example 3 for different values of β and their corre-
sponding Poincaré maps. (a) For β = 0.01 the system has only one (stable) limit
cycle whose amplitude grows with β. (b) For β = 0.028 the limit cycle connects
with the saddle point in a homoclinic connection. (c) For β = 0.04 the system has
only one stable equilibrium
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Fig. 14. Bifurcation diagram of Example 3 (NSSN = nonsmooth saddle node; T =
transcritical; SNPO = saddle node of periodic orbits; LC = local center; HC =
homoclinic connection)

4 Summary

In this chapter, the variety of behaviors of some elementary T-S fuzzy sys-
tems has been studied with the tools supplied by the bifurcation theory.
Qualitative analysis and bifurcations are of high relevance in every family of
nonlinear systems, and so in T-S-systems. It has been shown that even very
elementary T-S systems can display local and global bifurcations, some of
them due to the parameters in the consequents of the rules and to the lack
of differentiability at the boundaries. In the latter case (low differentiability)
we speak of degenerate bifurcations. It should be emphasized that these de-
generate bifurcations might not persist after some smoothing of the piecewise
linear membership functions, even when the perturbations are small ones. It
has also been shown that small variations in the values of the parameters
associated with the fuzzy rules can give rise to unexpected behavior.

It has been stressed that the task is nontrivial even for the simplest cases,
but as seen in the examples analyzed, the information gained is of great
value, for instance, in studies of robustness, since the system only displays
structurally stable behaviors far from the bifurcation points.
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Appendix: Bifurcation Analysis of Example 1 for β = 1

The standard techniques of Hopf bifurcation analysis do not provide any
interesting information, apart from the fact that in this case the bifurcation
is degenerate. Here, it is proposed an alternative approach. For β = 1, system
(10) is {

ẋ1 = x1 − 1
2x2

ẋ2 = x1

, for x1 < −1,

{
ẋ1 = −x2

1 − 1
2x2

ẋ2 = x1
, for |x1| ≤ 1,

{
ẋ1 = −x1 − 1

2x2

ẋ2 = x1
, for x1 > 1.

(A.1)

Lemma A1. System (A.1) has a global nonlinear center.

Proof First, consider the quadratic system that coincides with system (A.1)
in the middle region. Such quadratic system is not difficult to integrate by
rewriting it as follows (

x2
1 +

x2

2

) dx2

dx1
+ x1 = 0 , (A.2)

and observing that e2x2 is an integrating factor. Thus, trajectories are im-
plicitly given by

e2x2

(
x2

1 +
x2

2
− 1

4

)
= K (A.3)

for each value of the constant K.
From (A.3) it is easily deduced that all trajectories of the quadratic system

are symmetric with respect to the x2-axis, since they are defined by

x1 = ±
√

1
4
− x2

2
+Ke−2x2 , (A.4)

provided that there exists a range of values of x2 where the expression in
the radical is positive. In fact, that range always appears for K ≥ −1

4 . For
instance, when K = 0, the radical is positive for x2 ≤ 1

2 and the trajectory
is given by the parabola x2 = 1

2 − 2x2
1.

For K = − 1
4 , the corresponding trajectory degenerates in a point (the

origin), while for K ∈ (− 1
4 , 0) trajectories form closed curves (see Fig. A.1).

Obviously, from these trajectories only the portion in the interval −1 ≤
x1 ≤ 1 represents actual trajectories for system (A.1). However, the complete
system (A.1) is invariant under the following transformations:
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Fig. A.1. Trajectories of the quadratic system (A.2) for different values of K. When
K ∈ (− 1

4
, 0) trajectories are closed curves; these closed curves belong completely

to the middle region only for K ∈ (− 1
4
,− 1

4e4 )

(x1, x2, t) → (−x1, x2,−t), for |x1| ≤ 1 ,
(x1, x2, t) → (−x1,−x2, t), for |x1| ≥ 1 ,

which indicates that apart from the aforementioned symmetry of trajectories
with respect to the x2-axis in the middle region, trajectories are symmetric
with respect to the origin in the outer regions. In these regions the dynamics
are of focus type (one unstable and one stable) and so all the trajectories are
closed curves. The conclusion follows.

Lemma A2. For |β − 1| �= 0 and small, the system (10) has no periodic
orbits.

Proof. For sake of brevity, technical details will be omitted. After an el-
emental scaling of time, system (10) can be written in Liénard form, that
is

ẋ1 = F (x1)− x2

ẋ2 = g(x2)
(A.5)

for |β − 1| being small, system (10) has only one equilibrium at the origin.
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Then a necessary condition for existence of periodic orbits, which is based
upon Filippov transformations, is given in Theorem 5 of Cherkas [24] (see
also the related remark therein). Basically, the condition needed is that there
exist u < 0 < v such that the system equation

F (u) = F (v)
G(u) = G(v) (A.6)

is fulfilled, where G(u) =
∫ u

0
g(x) dx. Detailed computations show that the

above system cannot be compatible, and the conclusion follows.
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Self-Reference, Chaos, and Fuzzy Logic�

Patrick Grim

Abstract. Self-reference and paradox introduce a spectrum of nonlinear phenom-
ena in fuzzy logic. Working from the example of the Liar paradox, and using iterated
functions to model self-reference, sentences can be constructed with the dynamical
semantics of fixed-point attractors, fixed-point repellors, and full chaos on the [0,1]
interval. The paper also extends the analysis to pairs and triples of mutually ref-
erential sentences, which generate strange attractors and semantic fractals in two
and three dimensions.

1 Introduction

Chaos theory and fuzzy logics form two of the most intriguing and promising
areas of recent mathematical research. In what follows I want to explore a
region of fuzzy logic which exhibits a wide range of the phenomena of chaos
theory. The route to that region is via a consideration of some of the dynamics
of paradox.

The basics of the fuzzy logic used here are outlined in Sect. 1. In Sect. 2 the
classical example of the Liar paradox is used to introduce iterated functions as
a way of modeling self-reference. Section 3 shows how self-referential sentences
in fuzzy logic display the dynamical semantics of fixed-point attractors and
fixed-point repellers. Section 4 is devoted to the Chaotic Liar, a fuzzy self-
referential sentence with a dynamical semantics that is chaotic in the full
mathematical sense. Section 5 traces similar results with regard to pairs of
mutually referential sentences, introducing strange attractors and fractals in
two dimensions. In Sect. 6 the exploration is extended to triples of mutually
referential sentences and to dynamical phenomena in three dimensions.

What I want to outline are some of the dynamical phenomena of self-
referential fuzzy logic, proceeding for the most part by example. In a some-
what different context, Buckley [1] expressed a hope that research in fuzzy
logic would reveal fuzzy systems with chaotic behavior, “and then we can de-
fine, and study, fuzzy fractals” (p. 20)1. The work outlined here fulfills that
hope, here using self-reference in fuzzy logic.
� This is an adaptation of “Self-Reference and Chaos in Fuzzy Logic.” IEEE Trans.

Fuzzy Syst. 1 237–253 (1993)
1 For related work see also [2, 3]

P. Grim: Self-Reference, Chaos, and Fuzzy Logic, StudFuzz 187, 317–359 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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It should perhaps be emphasized that the attempt here is not to solve the
paradoxes. Two thousand years of attempted solutions can hardly be said
to have met with conspicuous success. Three-valued, multi-valued, infinite-
valued, gapped, and antifoundational logics all prove vulnerable to strength-
ened versions of the Liar, and there seems little reason to think that fuzzy
logics should be any exception in that regard (for a critical survey see, for ex-
ample, Chap. 1 in [4]). But a solution to the phenomena of self-reference may
be the wrong thing to look for. In something of the spirit of Herzberger [5],
Gupta [6], and Gupta and Belnap [7], the attempt here is rather to open
for investigation the semantical dynamics of self-reference and self-referential
reasoning for study in their own right.

Although I attempt to draw some speculative conclusions, much remains
to be done in terms of generalization and interpretation. Intriguing and beau-
tiful formal phenomena appear in the semantics of self-referential sentences
within fuzzy logic, but it is not always clear why they appear, how they gen-
eralize, or what the formal phenomena really mean. In a different context
the approach outlined is used to extend Gödel-like limitative results to both
chaos theory and fuzzy logic [8, 9]. Here, however, the concentration is on
the chaotic phenomena themselves.

2 A Simple Fuzzy Logic

The philosophical premise of all fuzzy logic is a denial of the assumption in
classical logic that all sentences or propositions are either fully true or fully
false. Fuzzy logic is built on the premise that truth comes rather in degrees:
that a sentence of proposition could take any truth-value between 0 (for full
falsity) and 1 (for full truth). For a proposition p, the numerical truth value
v(p) of that proposition might be any real value in the [0, 1] interval.

The semantics for classical logic is outlined in terms of the familiar
Boolean truth tables; fuzzy logic requires an analog in which the truth value
of compound sentences can be calculated from the truth value of their com-
ponents. The fuzzy logic that will be used here is built on the �L ukasiewicz
system �Lℵ1

2.
Given the value ν(p) for a proposition, its negation is taken to be 1 minus

that value:
ν(∼ p) = 1− ν(p)

The value of a conjunction is the value of its least conjunct. The value of a
disjunction, on the other hand, is the value of its greatest disjunct:

ν(p ∧ q) = min[ν(p), ν(q)]
ν(p ∨ q) = max[ν(p), ν(q)]

2 See for example [10, 11]
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We follow �Lukasiewicz in calculating the value of “if . . . then” as 1 if the
antecedent is less true than the consequent, and the absolute distance between
the two otherwise:

ν(p→ q) =
{

1
1− abs(ν(p)− ν(q))

if ν(p) < ν(q)
otherwise

or equivalently
ν(p→ q) = min[1, 1− ν(p) + ν(q)] .

The biconditional, then, can be treated as a conjunction of conditionals
in each direction or as 1 minus the absolute difference between the values of
its components:

ν(p↔ q) = ν((p→ q) ∨ (q → p))
= min[min[1, 1− ν(p) + ν(q)],min[1, 1− ν(q) + ν(p)]]
= 1− abs(ν(p)− ν(q)) .

Were we to restrict propositional values to 0 and 1, as in classical logic,
the formulas above would give us the classical connectives. But of course the
formulas above are not the only ones that will generalize classical logic in
this way. Formal considerations cast a strong presumption in favor of this
treatment of conjunction and disjunction in terms of min and max [12], and
an only slightly weaker presumption in favor of this treatment of negation.
The same cannot be said for �Lukasiewicz implication, however. With regard
to implication it must simply be admitted that there are a number of alter-
natives.3

The distinguishing mark of true fuzzy logics, as opposed to mere infinite-
valued logics, is the use of a denumerable set of “linguistic” truth values
beyond the numerical truth values ν(p) outlined above.4 Linguistic truth
values are themselves represented by fuzzy sets, standardly generated from
a fuzzy set “true” and its converse “false” through recursive application of
algorithmic hedges such as “very,” “more or less,” “slightly,” and the like [11,
15–19].

Nothing in the basic �Lukasiewicz logic, however, dictates what shape a
basic fuzzy set for “true” is to take. Here as in the case of implication there are
clear alternatives. For present purposes I will use what may be the simplest
and most clearly justified fuzzy set for “true,” generated by importing the
Tarski convention T directly into �Lℵ1.
3 In [8], for example, we use an implication definable as (∼ p ∨ q), which gives

us Rescher’s system S⊃
ℵ [10], first developed in [13]. As Gaines [14] notes, this

approach offers a direct fuzzification of predicate calculus.
It should also be noted that a stronger intuitive argument might be made for

the �Lukasiewicz biconditional than for the conditional itself. It is the bicondi-
tional rather than the conditional that is most directly relied on in what follows

4 See, however, [14] on different senses of “fuzzy logic”
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Following Tarski [20], and using T (p) for the claim that “p” is true,
Tarski’s convention T specifies that p is true if and only if

T (p) ↔ p .

Using the outline for the �Lukasiewicz biconditional,

ν(T (p) ↔ p) = ν((T (p) → p) ∧ (p→ T (p))
= 1− abs(ν(T (p))− ν(p)) .

if we assume that the Tarskian schema itself takes the value of “1”, for ab-
solute truth, it must then be the case that

ν(T (p)) = ν(p) .

What direct importation of the Tarskian T -schema into �Lℵ1 gives us is thus
the basic fuzzy set for “true” outlined in [17, 18] (see also [21, 22]). With
“false” as the complement of “true” and modeling “very” and “fairly” in
terms of squares and square roots, respectively—a treatment fairly consistent
across the literature—we get the basic set of linguistic truth values indicated
in Fig. 1.5

Fig. 1. Baldwin’s fuzzy sets for linguistic truth-values, using a direct importation
of the Tarski T-schema

As noted, there are alternaives to this treatment of “true.” Zadeh [11]
characterizes a fuzzy set for “true” as
5 For the incorporation of Tarski via the �Lukasiewicz biconditional I am obliged to

Gary Mar and Paul St. Denis. Here I do not mean to suggest that the standard
modeling for “very” and “fairly” is any way beyond question, of course. On this
see also the discussion of Sect. 4 and note 17
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µtrue(ν) = 0 for 0 ≤ ν ≤ α

= 2
(
ν − α
1− α

)2

for α ≤ ν ≤ α+ 1
2

= 2
(
ν − 1
1− α

)2

for
α+ 1

2
≤ ν ≤ α

Here α is a parameter “which indicates the subjective judgment about the
minimum value of ν in order to consider a statement as ‘true’ at all” (see
p. 124 in [19]). A sketch of Zadeh’s basic fuzzy sets for “true” and “false”
[where µfalse(ν) = µtrue(1 − ν)], using an α of .6, as shown in Fig. 2. Corre-
sponding sets for “very” and “fairly” are also indicated.

Fig. 2. Zadeh’s fuzzy sets for linguistic truth-values

The results that follow are built on Baldwin’s fuzzy logic rather than
Zadeh’s for reasons of simplicity. Baldwin’s outline is simpler not only in al-
gorithmic and graphic terms but also in terms of its justification as a direct
importation of the Tarski T -schema into �Lukasiewicz �Lℵ1. A range of results
similar to those below, however, would emerge using Zadeh’s or more compli-
cated fuzzy logics as well. At several points results are indicated which will
hold for any fuzzy logic with �Lℵ1 as a base.

It is important to note that although the underlying semantic model of
our logic is expressed in terms of numerical truth values, the propositions
admissible in the language of the logic itself can use only linguistic truth
values. “p is very true” is thus a type of sentence for which this fuzzy logic
provides a valuation scheme; “p is .75 true” is not. The perceived artificiality
of sentences of the latter sort seems to be have been part of Zadeh’s initial
motivation for moving to linguistic truth values (see, for example, [11]), and
much of the common suspicion of the “artificial numbers” of fuzzy logics can
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be dealt with by viewing those numbers merely as artifacts of the seman-
tic model. The language for which that model is designed need not contain
numerical truth values at all.6

Consider also a language, however, in which we are allowed to claim nu-
merical truth values for particular propositions—a language in which “p is
.75 true,” for example, is allowed as a sentence of the language. Suppose,
moreover, that we have a claim q that we know to be .75 true. In that case,
the claim that “p is .75 true” will intuitively be as true as the claim that p
has the same value as q. For this particular case, and using the biconditional
quite naturally to represent “has the same value as,” we can express that
basic intuition as

p is .75 true ↔ (p↔ q) .

In general, let [v] represent a proposition with fixed numerical value v. By the
same reasoning, the claim that “p is v true” will be as true as the claim that
p has the same value as [v]. This we can express in terms of a biconditional
as

p is v true ↔ (p↔ [v]) .

If this general intuitive principle is itself thought of as having a value of 1,
the �Lukasiewicz biconditional gives us

ν(p is v true) = 1− abs(ν(p)− ν([v])) ,

or simply
ν(p is v true ) = 1− abs(ν(p)− v) .

This, it turns out, is Rescher’s truth-value assignment operator for infinite-
valued logic (see p. 89 in [10]).7 In terms of Rescher’s schema, the value for
a proposition V vp to the effect that a proposition p has a numerical truth
value v is given by

ν(V vp) = 1− abs(v − ν(p)) .
This relation between Baldwin’s fuzzy sets for linguistic truth values and
Rescher’s V vp schema for attributions of numerical truth values is perhaps
even clearer when envisaged graphically. With numerical values on axes, the
graph for a proposition “V 1p” to the effect that a proposition p has value
1, given Rescher’s treatment, is precisely Baldwin’s graph for “p is true” in
Fig. 1. The Rescher graph for “V 0p” corresponds to Baldwin’s graph for “p
is false.”

The infinite-valued Rescher scheme is central to that of Mar and Grim [8],
Grim et al. [9, 23]. The emphasis in what follows, however, is on dynamical
semantic phenomena within the more strictly fuzzy logic outlined above.
6 The case of set-theoretical semantics is perfectly parallel: the fact that a seman-

tic model is written in terms of sets need not commit us to thinking that the
sentences modeled are themselves about sets

7 Here as at many other points I am obliged to Gary Mar
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3 Self-Reference as Iteration: The Example of the Liar

The oldest and most famous of the paradoxes is the Liar paradox: a sentence
that says of itself that it is false:

This sentence is false. (1)

Consider for a moment the Liar sentence in the context of a classical logic.
If (1) is true, it must be false. If (1) is false—since it says it is false—it must
be true. When one first approaches the Liar, one is forced into an intuitive
pattern of reasoning that seems to oscillate in conclusion between “true” and
“false.” If true, the Liar must be false. . .but then if false, it must be true. . .but
then if true, it must be false:

T, F, T, F, T, F, . . . 8

In intuitive terms, this alternation is a temporal one. One is first drawn to
the conclusion that the Liar must be true, later forced to the conclusion that
it must be false, and so forth. It is also the case that finite reasoners such as
ourselves are generally smart enough—or logically unprincipled enough, or
both—to break out of such a series rather than to continue it indefinitely. In
what follows, I want to abstract from both of these points. The dynamical
semantics of the Liar can be thought of as a series of revised semantic values
forced by something like the standard Liar argument. As such, the points of
oscillation represent not so much discrete times as discrete abstract steps in
8 Semantic paradox has had of course a long and distinguished career in philosoph-

ical and mathematical logic. It lies at the core of Cantor’s diagonal argument and
the paradise of transfinite infinities it offers. Russell’s paradox, discovered as a
simplification of Cantor’s argument, was historically instrumental in motivating
axiomatic set theory. Gödel himself [24] explicitly uses the Liar paradox (and
a relative known as the Richard paradox) to motivate his incompleteness theo-
rems, and the limitative theorems of Tarski [20], Church [25], and Turing [26]
can all be seen as exploiting the basic reasoning of the Liar. In the mid-1960s,
Gregory Chaitin [27] developed an interpretation of Gödel’s theorem in terms of
the notion of algorithmic randomness by formalizing the Berry paradox, itself a
simplification of the Richard paradox.

Philosophers have repeatedly attempted to find solutions to the semantic para-
doxes by seeking patterns of semantic stability—hence the proliferation of “truth-
value gap solutions” of the 1960s and 1970s (see [28–30]). Efforts in the direction
of finding patterns of stability within the paradoxes continued in the 1980s with
the works of Hans Herzberger [5] and Anil Gupta [6]. Later work includes that
of Jon Barwise and John Etchemendy [31], using Aczel set theory with an an-
tifoundation axiom to characterize Liar-like cycles.

The work of this chapter, in contrast, can be seen as an attempt to study com-
plex patterns of instability in the general domain of self-reference and paradox
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a pattern of protracted reasoning.9 If we think of these as values arrived at
by a reasoner, that reasoner should be thought of as an idealized reasoner
acting purely on logical principle and without time constraints.10

Using 1 for truth and 0 for falsity, we can then model the classical semantic
behavior of the Liar in terms of a sequence of values xn, where x0 is an initial
or “seed” value and

xn+1 = 1− xn .

With a seed value of 1, the dynamic semantics of the Liar within a classical
logic can thus be graphed as in Fig. 3.

Fig. 3. ‘This sentence is false.’ The dynamical semantics of the classic Liar

A seed value of 0, of course, shows an identical oscillation shifted one
iteration to the left. A central idea in the work that follows is to use iterated
9 In p. 218 of [32], dynamical systems are spoken of intuitively as the description

of the time behavior of a point moving about on some sort of surface according
to a rule that describes how one point is to follow another. Here as in other
contexts, I think that restriction to time cannot be taken too literally. Within
ecological studies iterative “times” may in fact be generations; within epidemi-
ological studies “times” may be (variable) periods of vulnerability to infection,
and of course the pure mathematics of iterated functions need not be thought of
in terms of literal time at all.

Many attempts to solve the Liar and similar paradoxes, of course, rely on
denying that there is a genuine oscillation here, by insisting that at each step
one is using a distinct truth predicate, say, or has ascended to a higher meta-
language. That move itself, however, is quite clearly counterintuitive. (As Barwise
and Etchemendy note, “When we think about the Liar on an intuitive level, there
is an inclination to claim that the truth value “flips back and forth.” First we
see that it is false, then that it is true, then that it is false, and so forth.” [31,
p. 136]). Here and throughout, the attempt (like that of Herzberger [5], Gupta [6],
and Gupta and Belnap [7]) is to track the intuitive dynamical semantics of self-
referential sentences rather than to sacrifice semantic intuitions in a too-quick
search for a “solution” to the paradoxes

10 The idealizations and abstractions at issue clearly make our semantic model
“objectivist” in spirit. For a critique of objectivist approaches in general see esp.
205 ff. in [33]
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algorithms of this type to model the dynamical semantics of self-referential
sentences in general.

As a first example, consider the Liar sentence within the context of the
fuzzy logic outlined above—a variation we might term the Fuzzy Liar. Given
the Baldwin fuzzy set for “false,” our algorithm remains the same, though
now of course we need to consider numerical truth-values in the full [0, 1]
interval.

For a seed value of .3, the Fuzzy Liar gives an oscillation between .3 and
.7 (Fig. 4).

Fig. 4. ‘This sentence is false’ in a fuzzy logic. The dynamical semantics of the
Fuzzy Liar with an initial value of .3

For any seed value x, in fact, the dynamical semantics of the Fuzzy Liar
will be a simple oscillation between x and (1− x). The one fixed point is .5.

Often the dynamical semantics of self-referential sentences is better il-
lustrated using a web diagram. In a graph such as that in Fig. 5 we start
with a plotted function for, say, “false.” An initial seed value a (.3, in this
case) is plotted as (a, 0), and a line drawn from that point vertically to the

(a) (b)

Fig. 5. Steps in a web diagram for the Fuzzy Liar with an initial value of .3
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function f(x) (Fig. 5a). We read off our y value here as indicating that for
x = .3, f(x) is .7. In order to represent the iteration of that function, we now
draw a horizontal line to a point (f(a), f(a)) on the diagonal x = y, thereby
converting our previous y value to a new x value. We then draw a vertical
line again from that point to our function at (f(a), f(f(a)) (Fig. 5b). The y
value of this intersection point indicates that f(x) for x = .7 is .3 (Fig. 5b).
We graph the results of repeated iteration by continuing the process, at each
step converting our y value to an x value by reflecting off the x = y diagonal,
giving us a new point of intersection with our plotted function.

Within a web diagram of this sort it is clear that a seed value of .3 for
the Fuzzy Liar will give us a simple box, representing the period 2 oscillation
between .3 and .7. A seed value of .86 gives us a broader box (Fig. 6).

Fig. 6. The Fuzzy Liar for values of 0.3 and 0.86

Because the Fuzzy Liar sets up an oscillational semantics of this type,
statements which are not self-referential but which attribute some linguistic
truth value to the Fuzzy Liar will have a semantics that follows the same
pattern. The dynamical semantics of the Fuzzy Liar proves contagious.

Consider, for example, the following fuzzy statement about the Fuzzy Liar:
The Fuzzy Liar is very true
or the second statement of the pair:

This sentence is false. (1)
(1) is very true. (2)

For a seed value of .3, we have seen that, the Fuzzy Liar alternates between
.3 and .7. Using the standard squaring function for “very true,” the value of
statement (2) will then alternate between .09 and .49. For a seed value of
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Fig. 7. Derivative semantics for the statement that the Fuzzy Liar is very true

.54, to use another example, the Fuzzy Liar alternates between .54 and .46.
In that case, statement (2) will correspondingly alternate between .2916 and
.2116.11

The derivative semantic behavior of statement (2) can be thought of in
terms of a web diagram as shown in Fig. 7. Let us start with an initial seed
value of .3 for the Fuzzy Liar, represented on the x-axis as (.3, 0). If sentence
(1) thus has a value of .3, sentence (2) will have a value of .09, reflected by
the fact that a line drawn vertically from (.3, 0) intersects our function for
“very true” at (.3, .09). Given a seed value of .3, however, we will also be
forced to a revised value for the Fuzzy Liar of .7, reflected by the fact that
our vertical line intersects the function for the Fuzzy Liar at (.3, .7).

Here we are interested in successive values for (2). In order to obtain the
next value for (2), however, we cannot simply reflect (.3, .09) off the x = y
diagonal as before. We must instead work from the revised value .7 for the
Fuzzy Liar, reflect that off the x = y diagonal, and then drop a line vertically
11 On the pattern of the Liar, the intuitive reasoning here will proceed something

as follows. If we assume that (1) has a value of .3, then (2) will be fairly false,
with a value of .09. On the assumption that (1) has a value of .3, however, since
(1) says it is false, (1) will be fairly true—it will have a value of .7. But then (2)
will not be so far off after all, receiving a value of .49. But if (1) has a value of
.7.... Despite this alternation, the spirit of Zadeh’s extension principle (see 416
ff. in [11]) appears to be preserved at each step.

The intuition that we should nonetheless be able to say something constant
about the truth value of (1), despite its oscillation, can perhaps be addressed
only in a language in which we explicitly introduce predicates such as “is not
consistently true” or “has no constant truth value”. In this chapter I have con-
centrated on chaotic relatives of the Liar; in that stronger language, I believe,
we should expect chaotic relatives of the Strengthened Liar
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to again intersect our “very true” function for (2). As it turns out, w can
also graph progressive values for (2) directly by reflecting the y value of our
earlier point (.3, .09) off not the x = y diagonal but the mirror image left to
right of our graph for (2).

An initial value of .41 for the Fuzzy Liar gives us a graph for sentence (2)
shown on the left in Fig. 8. An initial value of .8 gives us the graph on the
right.

Fig. 8. Derivative semantics for the claim that the Fuzzy Liar is very true, using
initial values of .41 and .8 in the Fuzzy Liar

In each case our graph again shows a box, though here in a different
position, reflecting the fact that semantic values for sentences which attribute
truth values to the Fuzzy Liar will oscillate in the same way that semantic
values for the Fuzzy Liar itself do.

4 Attractor and Repeller Fixed Points
in the Phenomena of Self-Reference

To this point we have concentrated on the simple Liar. The same basic tech-
niques also allow us to model a wider spectrum of self-referential sentences
with a wider class of dynamic semantic behaviors.

Consider, for example, a sentence we might call the Modest Liar:

This sentence is fairly false. (3)

In terms of our basic logic, the dynamical semantics of (3) can be modeled
using the following algorithm:

xn+1 =
√

1− xn .

In a simple bounce diagram, for a seed value of .314, this gives us the behavior
shown in Fig. 9.
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Fig. 9. ‘This sentence is fairly false.’ The dynamical semantics of the Modest Liar,
for a seed value of .314

Fig. 10. ‘This sentence is fairly false.’ A web diagram of the Modest Liar, for a
seed value of .3

The semantical behavior of the Modest Liar is still clearer, however, in a
web diagram (Fig. 10).

For any seed value, the Modest Liar converges inexorably on a fixed-point
attractor of −1=

√
5

2 .12 Figure 11, for example, shows the Modest Liar started
with a seed of .99.
12 The solution to

√
1 − x is −1±√

5
2

. Only −1+
√

5
2

appears within our semantic
interval [0, 1], however. Similar comments apply with respect to x = (1−x)2 and

the semantic fixed point 3−√
5

2
for the Emphatic Liar below. In an entertaining

knights-and-knaves exploration of some of these ideas, Nathaniel Hellerstein (Isle
of Paradox and Other Logic Adventures, unpublished manuscript) refers to the
Modest Liar as the Golden Liar, pointing out that its attractor fixed point is
1/φ, where φ is the golden ratio. The repeller fixed point for the Emphatic Liar
is similarly 1− 1/φ. The golden ratio φ itself turns up in a number of surprising
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Fig. 11. The Modest Liar with a seed value of .99

The fact that the Modest Liar has a semantics with a fixed-point attractor
of this sort makes it a self-referential limiting case with regard to fuzziness.
Whatever element of a fuzzy range of numerical values we might assign to
such a sentence initially, repeated calculation will force us to a very precise
and single value. The Modest Liar converts fuzziness to precision.

It is clear that the precise behavior of the Modest Liar relies on the use of
a square root function to model “fairly.” Although that use is fairly consistent
in the literature, it is also clearly open to challenge: why insist on the square
root in particular? The use of 3

√
, 4
√ , or the like gives us semantic behavior

similar to that of the Modest Liar, though converging on a different fixed
point. It is not clear, however, whether this has anything important to tell us
about the appropriateness of using different roots in modeling hedges such
as “fairly”.

Consider also an Emphatic Liar:

This sentence is very false. (4)

Semantic values for the Emphatic Liar will be determined by

xn+1 = (1− xn)2 .

For a seed value of .3 the Emphatic Liar forces a series of revised values
which eventually converge on the familiar oscillation between 0 and 1, char-
acteristic of the classical Liar (Fig. 12): With one exception, the Emphatic
Liar will force any numerical value in the [0, 1] interval to the oscillation of

places: φ is the limit of the Fibonacci series 1/1, 2/1, 3/2, 5/3, 8/5, . . . ; φ − 1 =

1/φ; φ =

√
1 +

√
1 +

√
1+ . . .; etc. Here see pp 203–206 in [34]
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Fig. 12. ‘This sentence is very false.’ The Emphatic Liar converges on semantical
dynamics characteristic of the classic Liar

the classical Liar. The semantical dynamics of the Emphatic Liar is that of
a fixed repeller point at 3−√

5
2 . The one point that is not forced out to the

behavior of the classical Liar is the point 3−√
5

2 itself. The Emphatic Liar, like
the Modest Liar, can thus be seen as a limiting case to fuzziness. The Modest
Liar, however, forces convergence to a precise nonclassical value. With one
exception, the Emphatic Liar forces revised values to a Liar-like oscillation
between the two classical values of 0 and 1.13

13 Nathaniel Hellerstein has also suggested an Equivocal Liar:
This sentence is not very true, with an algorithm

xn+1 = 1 − x2
n .

Here −1+
√

5
2

is a repelling fixed point, forcing values out to an oscillation
between 0 and 1
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The use of squaring to model “very” is of course open to question in
precisely the same way that the use of square roots to model ‘fairly’ is. An
Emphatic Liar using (1 − xn)3 or (1 − xn)4 would still converge to a Liar-
like oscillation, though from a different repeller point. Here again it remains
unclear whether this has anything to tell us about the proper modeling of
hedges such as “very” or “fairly”.

What of statements which attribute fuzzy truth values to sentences such
as the Modest and Emphatic Liars? Here as in the case of the Fuzzy Liar we
will have sentences with a dependent semantics. Consider, for example,

The Modest Liar is very false (5)

or sentence (6):

This sentence is fairly false (3)

(3) is very false (6)

For a seed value of .3, the Modest Liar gives us the following series, converging
as we have seen on 1+

√
5

2 :

.3, .83667, .40415, .77191, . . . 14

If the Modest Liar has a value of .3, however, the claim that it is very
false takes a value of (1–.3)2 or .49. Given a revised value of .83667 for the
Modest Liar, we are forced to revise the value of (6) accordingly, to .02668.
Thus, the progressive dynamics of the Modest Liar forces a corresponding
dynamics for sentence (6):

.49, .02668, .35503, .05202, . . .

This pattern can also be illustrated in a web diagram. Figure 13 graphs
functions for both the Modest Liar and “very false”. For a given seed value
x, we draw a line vertically from (x, 0) to intersect the Modest Liar function.
The y value of this point of intersection (x, y) is our revised numerical truth
value for the Modest Liar, and reflection off the x = y line will give us the
next value for the Modest Liar.

At each step, the value of (6) depends on that of the Modest Liar, and is in
fact the value at which our line representing the x value intersects the function
line for (6). Thus we can think of progressive values for (6) as intersection
points on the “very false” curve directly below the progressive points on the
graph for the Modest Liar.

In this case we can also graph the dynamics of the dependent sentence (6)
more directly, however, by reflecting its values off the x4 curve. Progressive
values for (6) starting with two different seed values for (3) thus appear as
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Fig. 13. Derivative semantics for the claim that the Modest Liar is very false

Fig. 14. Attribution of fuzzy truth-values to the Modest Liar also converge to a
fixed point

in Fig. 14. Not surprisingly, attribution of fuzzy linguistic truth-values to the
Modest Liar shows convergence to a single fixed point as well.

To this point we have concentrated on fuzzy relatives of the Liar. We
should however also mention fuzzy relatives of the Truth-teller. Within clas-
sical logic, sentence (7) proves troublesome in a manner different from but
related to the troubles of the Liar:

This sentence is true. (7)

Unlike the Liar, the problem with (7) is not that it cannot consistently be
assigned a value of either true or false. On the contrary, (7) can consistently
be assigned either value, with no apparent basis on which to prefer one rather
than the other. In a fuzzy logic, using the algorithm

xn+1 = xn ,

14 Only approximate values are shown, rounded off for the sake of simplicity
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the Truth-teller can still consistently be assigned any value in the [0, 1] in-
terval.

Consider also the Modest Truth-teller and the Emphatic Truth-teller:

This sentence is fairly true (8)
This sentence is very true (9)

with corresponding algorithms

xn+1 =
√
xn

xn+1 = x 2
n

Both Truth-tellers, like their classical predecessor, have fixed points at 0 and
1. For fuzzy values in between, however, they vary dramatically and symmet-
rically. The self-reference of the Modest Truth-teller drives every intermediate
value up to 1. The Emphatic Truth-teller, on the other hand, drives every
intermediate value down to 0 (Fig. 15).

Fig. 15. The Modest Truth-teller: ‘This sentence is fairly true.’ The Emphatic
Truthteller: ‘This sentence is very true’

The Truth-tellers, like the Modest Liar, thus force fuzziness to precision
through the iteration of semantic self-reference. In the case of the Truth-tellers
as in the case of the Emphatic Liar, that inexorable self-precision is the more
remarkable since the values one is driven to in each case are classical values.
In the case of the Truth-tellers, moreover, one is driven to stable classical
values.

One lesson of sentences such as the Modest Truth-teller and the Emphatic
Truth-teller is that dynamical semantics may introduce the need for logical
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categories beyond the traditional “tautology” and “contradiction.” A classical
tautology is one which (instantly, as it were) takes a value of “1” for any value
assigned to its components. A dynamic tautology, we might propose, is one
which converges through iteration on a value of “1” for any initial value.
The Modest Truth-teller might thus be proposed as a dynamic tautology;
the Emphatic Truth-teller as a dynamic contradiction.15

From this first sampling of examples it is clear that fuzzy self-reference
opens up a realm of dynamical semantics far richer than anything dreamt of
in classical logic. It is also clear that there are some surprises in the transition
from classical to fuzzy logic. The Fuzzy Liar, for example, is a quite direct
fuzzification of the standard Liar. But it is not the Fuzzy Liar but the quite
different Emphatic Liar that converges on the familiar oscillation between 0
and 1.

As outlined in the next section, it is also the case that fuzzy self-reference
is capable of giving us full semantic chaos in the strict mathematical sense.

5 Fuzzy Chaos

Consider the following sentence, which I will call the Chaotic Liar:

This sentence is true if and only if it is false. (10)

Using the �Lukasiewicz biconditional and modeling self-reference in terms of
iterated algorithms, semantic values for the Chaotic Liar will be given by

xn+1 = 1− abs((1− xn)− xn) .

By expanding our language slightly we can also express the Chaotic Liar in
other ways. If “p is as true as q” or “the value of p is the same as the value
of q” is treated fairly naturally as taking the value

1− abs(ν(p)− ν(q)) ,

for example, then the Chaotic Liar can alternatively be expressed as

This sentence is as true as it is false (11)

or
The value of this sentence is the same as its negation. (12)

A seed value of .314 for any of these gives us a series of values that begins
as in Fig. 16.
15 The very different behavior of the Modest Truth-teller and the Emphatic Truth-

teller is inevitable given a modeling of “very” and “fairly” by squares and square
roots—or, for that matter, by cubes and cube roots or the like. It has been
suggested, however, that this is itself a mark against such a modeling: are “very”
and “fairly” so different that “this is fairly true” should converge on pure truth
and “this is very true” should converge on pure falsity?
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Fig. 16. ‘This sentence is true if and only if it is false.’ The dynamical semantics
of the Chaotic Liar with a seed value of .314

Fig. 17. ‘This sentence is true if and only if it is false.’ A web diagram for the
Chaotic Liar with a seed value of .314

The semantical behavior of the Chaotic Liar is perhaps best exhibited by
its web diagram, shown in four progressive stages of development in Fig. 17.16

16 One peculiarity of this function is that standard rounding off within the binary
arithmetic of computers in fact disguises its chaoticity: although it is provably
chaotic on the [0, 1] interval, it does not show up as such on the computer
screen. In order to graph something closer to the function’s true behavior it is
thus standard to “cancel out” the effect of rounding-off by introducing a small
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The dynamical semantics of the Chaotic Liar qualifies as chaotic in
the precise mathematical sense of, for example, Devaney [36].17 What this
amounts to is a range of surprising semantic features:

(1) The Fuzzy Liar, we have seen, has a simple period of 2 for almost all
values. For sentences such as the Chaotic Liar, on the other hand, any
repeating period we might care to choose, however high, will be gener-
ated by some initial value. For such sentences there is no upper limit to
semantic periodicity.

(2) It is also the case that there will be numerical truth values for such sen-
tences which eventually move from any arbitrarily small semantic region
to any other. There is thus no range of degrees of truth, however small,
such that values within that range assigned to the Chaotic Liar will safely
stay there on iteration. For any such region, some semantic values will
eventually escape to any other semantic region we might name.

(3) Finally, no matter what numerical truth value x we might start off with
as an estimate for such sentences, there will be numerical truth values
arbitrarily close to our initial value which, upon iterative recalculation
through our sentences, eventually move as far from corresponding itera-
tions of x as we might choose to specify. There is thus no initial range
“close enough” to a starting estimate x that differences within that range
will not make a significant difference. Within any distance from x, how-

element of randomness, and that has been done for the illustrations here. On
this point I am obliged to John Milnor for discussion

17 Given a set J, f : J → J is chaotic on J if

a. f shows sensitive dependence on initial conditions
b. f is topologically transitive
c. the set of periodic points is dense in J

Here let us use the notation fn(x) to stand for the composition or iteration of
the function f(x)n times, i.e.,

fn(x) = . . . f(f(f(x))) . . . n times︸ ︷︷ ︸
a. f : J → J shows sensitive dependence on initial conditions if there exist points

arbitrarily close to any x ∈ J , which eventually separate from x by any chosen
distance δ or more under iteration of f , i.e., there exist δ > 0 such that, for any
x ∈ J and any neighborhood N of x, there exist y ∈ N and n ≥ 0 such that
abs(fn(x) − fn(y)) > δ.

b. f : J → J is topologically transitive if it has points which eventually move under
iteration from one arbitrarily small neighborhood to any other, i.e., for any pair
of open sets U, V ⊆ J there exists some n > 0 such that fn(U)∩V is nonempty.

c. The set of periodic points of J , PER(J), is the set of all x ∈ J such that
fn(x) = x for some natural number n, i.e., PER (J) = {x ∈ J : ∃nfn(x) = x}.
PER(J) is dense in J if PER(J) together with all its limit points is equal to J
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ever small, is another value iterations of which will eventually diverge
from iterations of x enormously—as enormously, within the limits of our
semantic range, as we might care to specify.

Although stronger and weaker characterizations of chaos appear in the
literature, the central element in all versions is this last feature, sensitive de-
pendence on initial conditions. The graph in Fig. 18 shows the basic idea of
sensitive dependence for the Chaotic Liar. Here iteration graphs are super-
imposed for seed values starting with .314 and increasing by .001.

Fig. 18. Sensitivity to initial conditions: Dynamics of the Chaotic Liar with initial
values of .314 increasing by .001

The basic algorithm for the Chaotic Liar is in fact a very simple and
paradigmatically chaotic function, known as a tent map because of the shape
of its graph and more familiar in the mathematical guise xn+1 = 1−abs(2xn−
1) or

xx+1 =
{

2xn for 0 ≤ x ≤ 0.5
2(1− xn) for 0.5 ≤ x ≤ 1

(see 171 ff. in [36]). Though this function appears in Robert May’s seminal
paper on chaos theory and ecology [37], its role within self-referential fuzzy
logic comes as something of a surprise.18

Here let me also offer a second simple sentence which shows chaotic be-
havior within fuzzy logic—a sentence I will call the Fuzzy Logistic:

It is very false that this sentence is true if it is false . (13)

Here semantic values will be given by

xn+1 = (1− (1− abs((1− xn)− xn)))2 .

Note that the algorithm for the Chaotic Liar is embedded within that of the
Fuzzy Logistic. We can in fact obtain the Fuzzy Logistic from the Chaotic
Liar simply by adding the prefix “It is very false that. . ..”
18 The similar role of that algorithm in a Rescher multi-valued logic appears in [8, 9]
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Here as before there are of course alternative phrasings. If we take “differs
in value from” as the negation of “is as true as,” the Fuzzy Logistic can be
phrased as

It is very true that this sentence differs in value from its negation (14)

or

The value of this sentence is very different from that of its negation. (15)

For values in the [0, 1] interval our algorithm amounts in each case to

xn+1 = ((1− xn)− xn)2

= (1− 2xn)2

= 1− 4xn(1− xn) .

This, it turns out, is an inverted form of the logistic or quadratic equation,
perhaps the most familiar and thoroughly studied sample of chaos.19 For an
intitial value of .314 the web digram of the Fuzzy Logistic develops as shown
in Fig. 19

Chaos can also be expected to appear within other fuzzy logics by way
of other self-referential sentences. Although our tour of fuzzy chaos has been
confined in general to the simple Baldwin fuzzy logic outlined in Sect. 2,
it is perhaps worth noting a route by which chaos will appear within any
fuzzy logic with the standard �Lukasiewicz base, regardless of the fuzzy set it
introduces for “true.” Within the Zadeh fuzzy logic or any other based on
�Lℵ1, consider the prospect of a sentence p which amounts to a biconditional
between itself and its negation:

p = (p↔∼ p) .

Given simply the basic �Lukasiewicz biconditional, the algorithm for such a
sentence will be

xn+1 = 1− abs((1− xn)− xn) ,

and any such sentence will thus amount to the Chaotic Liar.20

19 An additional negation would of course give us the Logistic without inversion:

It is not very false that this sentence is true if it is false

or

It is not very true that this sentence differs in value from its negation

or

The value of this sentence is not very different from that of its negation

I am obliged to Nathaniel Hellerstein for his seminal work on the Fuzzy Logistic,
communicated in private correspondence

20 For Zadeh fuzzy logic in particular, Paul St. Denis has suggested the following
chaotic sentence:
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Fig. 19. ‘It is very false that this sentence is true iff it is false.’ Dynamics for the
Fuzzy Logistic

6 Fuzzy Self-Reference in Two Dimensions

Beyond the traditional Liar lies an infinite series of Liar cycles, the simplest
of which is perhaps the Dualist. In medieval form it appears as an exchange
between Socrates and Plato:

Socrates: What Plato is about to say is true.
Plato: Socrates speaks falsely.

It is not the case that this sentence is fairly not true, or it is not the case that
the negation of this sentence is fairly not true.

Here our algorithm is

xx+1 − max[1 −
√

1 − Z(xn), 1 −
√

1 − Z(1 − xn)] ,

where Z(xn) indicates the degree of membership in Zadeh’s fuzzy set “true”
(using .5 as α) of a sentence with numerical truth value xn
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More simply, we have two sentences each of which is about the truth value
of the other:

X: Y is true
Y: X is false

With the tools of our basic fuzzy logic we can also introduce fuzzy variations
on the Dualist. Consider for example,

X: X ↔ Y
Y: Y ↔ it is very false that X

or equivalently

X: X is true if and only if Y is
Y: Y is true if and only if X is very false.

The focus in previous sections was on single sentences which force a series
of revised values. Here the situation is somewhat more complex: we have a
pair of sentences which, for any initial seed values (x0, y0), forces a series
of pairs of revised values. For the X and Y above, revised values can be
calculated in terms of the following algorithms:

xn+1 = 1− abs(xn − yn)
yn+1 = 1− abs(yn − (1− xn)2)

If we start with seed values of .25 and .25, for example, we are forced to the
following series of revised values:21

(1, .6875), (.6875, .3125), (.625, .7852), (.8398, .3555), (.5156, .6702), . . .

If we plot these pairs as Cartesian coordinates, the pentagonal attractor as
shown in Fig. 20 appears.

The persistence of such an attractor, for various seed values, is clear from
an overlay diagram for seed values (x, y) where x and y range from 0 to 1 in
intervals of .05 (Fig. 21). Throughout the [0, 1] interval values are attracted
to and trapped within the same clearly defined region.

Consider also a second fuzzy Dualist variation:

X: It is very false that (X ↔ Y)
Y: It is fairly false that (Y↔∼ X)

or more colloquially

X: It is very false that: X is true if and only if Y is.
Y: It is fairly false that: Y is true if and only if X is false.

21 Here again numbers are rounded off for pres entational simplicity
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Fig. 20. The two-dimensional attractor for a Dualist pair of mutually referential
sentences, with seed values of .25 and .25 (simultaneous calculation).

X: X is true if and only if Y is
Y: Y is true if and only if X is very false

Fig. 21. Persistence of the attractor: Overlay diagram for seed values for x and y
from 0 to 1 in intervals of .05 (simultaneous calculation)

Here successive values can be calculated using the following algorithms:

xn+1 = (1− (1− abs(xn − yn)))2

Yn+1 =
√

(1− (1− abs(yn − (1− xn)))

or more simply

xn+1 = (xn − yn)2

xy+1 =
√

abs(yn − (1− xn)) .
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In this case our attractor is shown in Fig. 22 as an overlay diagram.

Fig. 22. Overlay diagram for a second Dualist pair
X: It is very false that (X ↔ Y)
Y: It is fairly false that (Y ↔∼ X) (simultaneous calculation)

Here let me finally offer one further fuzzy Dualist:

X: It is very false that (X ↔ Y)
Y: It is very false that X is false if and only if Y is very true,

with successive values

xn+1 = (xn − yn)2

yn+1 = ((1− xn)− y2
n)2 .

The attractor for this final variation, once again in overlay form, appears
in Fig. 23.

In our calculation of revised values for the Fuzzy Dualists above, it should
be noted, we have assumed a simultaneous calculation of numerical truth
values for sentences X and Y. Given a pair of seed values (x, y), we have
calculated a new value for X in terms of those values and have simultaneously
calculated a new value for Y in terms of those same values.

Evaluation of the sentences of a Fuzzy Dualist pair might also proceed
sequentially. In at least some contexts, it might be argued, a more natural
way to approach such a pair of sentences would be to begin with seed values
(x, y), to calculate the value of X in terms of those seed values, but then to
calculate the value of Y using the newer or most recent value computed for X.

This second pattern of reasoning with regard to the same pairs of sen-
tences above can be represented with a slight change in our algorithms: in
each case xn is replaced in the second algorithm with xn+1.
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Our algorithms for the first variation on the Dualist above, for example,

X: X ↔ Y
Y: Y ↔ it is very false that X

will now be

xn+1 = 1− abs(xn − yn)

yn+1 = 1− abs(yn − (1− xn+1)
2) .

Using this alternative form of calculation the same pair of sentences give us
the attractor shown in Fig. 24.

A similar change from a simultaneous to sequential pattern of reasoning
in the case of our other fuzzy Dualist variations gives us other attractors.
Figure 25 shows the sequential attractor for

X: It is very false that (X ↔ Y)
Y: It is fairly false that (Y ↔∼ X)

xn+1 = (x− y)2

yn+1 =
√

abs(yn − (1− xn+1))

Figure 26 shows the sequential attractor for

X: It is very false that (X ↔ Y)
Y: It is very false that X is false if and only if Y is very true

Fig. 23. Overlay diagram for a third Dualist pair
X: It is very false that (X ↔ Y)
Y: It is very false that X is false if and only if Y is very true

(simultaneous calculation)
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xn+1 = (xn − yn)2

yn+1 = ((1− xn+1)− y2
n)2

Although these figures illustrate a clear difference between simultaneous
and sequential updating, it must be confessed that their interpretation re-
mains much less clear. Simultaneous updating might be said to be more
appropriate to a God’s eye view of the informational dynamics of the fuzzy
Dualist, in which all information is received and processed simultaneously
at each step. Sequential updating, on the other hand, might be thought to
be more appropriate to beings capable of processing only the information
of a single sentence at a time. In more realistic applications to repeated se-
quences of mutually referential sentences, the difference might be appropriate
to contexts in which two sources provide information about each other, and
in which the second source of information may or may not be aware of re-
ports coming from the first source. (For further work on epistemic chaos of
this type, and the attempt to control it, see Chap. 2 in [9]).

Certain aspects of the fuzzy dynamics of Dualist variations can also be
graphed using what are known as escape-time diagrams. For each pair of
points (x, y) on the Cartesian plane, we can graph in terms of color the num-
ber of iterations required for the series of values to reach a certain threshold.
We might choose a threshold as a certain distance from the origin, for exam-
ple, with the origin itself representing “double falsity” for our two sentences.

Fig. 24. Sequential calculation for the first Dualist pair:
X: X is true if and only if Y is
Y: Y is true if and only if X is very false
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Fig. 25. Sequential calculation for the second Dualist pair:
X: It is very false that (X ↔ Y)
Y: It is fairly false that (Y ↔∼ X)

Fig. 26. Sequential calculation for the third Dualist pair:
X: It is very false that (X ↔ Y)
Y: It is very false that X is false if and only if Y is very true

Within a particular fuzzy Dualist a pair of seed values (say .1, .5) may give
us a series of values which first escapes from a distance of 1 from the origin in
two iterations, for example, in three, in four, or in more. If that series escapes
in two iterations we might color the initial point (.1, .5) blue; if three, we
might color it green, and so forth. Another point (say .2, .4) may give us
a series which escapes our chosen threshold in a different number of itera-
tions, and will correspondingly be given a different color. The general idea of
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Fig. 27. Escape-time diagram for a Fuzzy Dualist with simultaneous calculation
X: X is true if and only if Y is
Y: Y is true if and only if X is very false

Fig. 28. Tracery of escape-time diagram, showing points at which number of iter-
ations changes

escape-time diagrams also appears in the graphing of the familiar Mandelbrot
set.

Figure 27 shows an escape-time diagram of this type for the first Fuzzy
Dualist above.

The fractal character of such a graph is clearer if we emphasize merely the
interfaces of different colored areas: points at which the number of iterations
required to pass the chosen threshold changes. The escape-time diagram now
appears as the tracery shown in Fig. 28.
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Fig. 29. Escape-time diagram for the first Dualist with sequential calculation.
X: X is true if and only if Y is
Y: Y is true if and only if X is very false

Consider in contrast an escape-time diagram for a sequential pattern of
reasoning with regard to our first Fuzzy Dualist (Fig. 29). Figure 30 shows
escape-time diagrams for simultaneous and sequential calculations (left and
right, respectively) of the second Dualist variation offered above, using an
escape threshold of .8.

Fig. 30. Escape-time diagrams for the second Dualist, using simultaneous (left)
and sequential (right) calculations and an escape threshold of .8
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Fig. 31. Escape-time diagrams for the third Dualist, using simultaneous and se-
quential calculations, plotted for values between −1.4 and 2.4 with a threshold
of .85.

Fig. 32. Variant escape-time diagrams measuring iterations to a point at which x
and y values are separated by at least .5

In all of the escape-time diagrams considered to this point we have con-
fined our values (x, y) to the unit interval, reflecting the fact that the seman-
tics of our fuzzy logic limits numerical truth values to the [0, 1] interval. In
some cases, however, it is easy to see that the characteristics of points within
the [0, 1] interval are merely part of a larger pattern. Figure 31 shows our
third Fuzzy Dualist variation for values between −1.4 and 2.4 and with a
threshold of .85.22

Other escape-time diagrams are possible using other parameters. Fig-
ure 32 shows an escape-time diagram in which what we measure is the num-
ber of iterations required before a series starting from a pair of seed values
(x, y) reaches a value (x′, y′) such that x and y are separated by a distance
of at least .5.

In many of these images a deep fractal character—self-affinity at descend-
ing scales—is clearly evident. This is a familiar companion to chaos within
22 The range of Fuzzy Dualist variations is so immense as to be intimidating. For

a few other small samples the reader is referred to [8, 9, 33]
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dynamical systems theory. What its appearance here indicates is the presence
of fractal organization in the dynamical semantics of self-referential sentences
within a fuzzy logic. It is tempting to speculate that different varieties of
self-reference, direct or indirect, can themselves be thought of as abstractly
fractal in some intuitive sense: that self-referential sentences or sets of sen-
tences semantically contain themselves, or images of themselves, in much the
way that fractals show self-similarity on different scales. It might thus be pro-
posed that images such as those above give more explicit visual expression
to the inherently fractal semantics of different patterns of self-reference. This
remains speculation, however. Here as elsewhere it proves easier to graph
certain semantic characteristics than to fully understand them.

7 Fuzzy Triplists Modeled in Three Dimensions

Beyond the Dualist lie Triplist variations, in which three mutually referen-
tial sentences speak of each other’s truth values. Triplist attractors must be
graphed as three-dimensional rather than two-dimensional objects. The cor-
relates to two-dimensional escape-time diagrams will be three-dimensional
escape-time solids.

Consider, for example, the following set of sentences (a colon is used to
avoid ambiguity):

X: It is very false that: X↔∼ (Y ↔ Z)
Y: It is very false that: Y↔∼ Z
Z: It is very false that: Z↔∼ (X ↔ Y)

In the fuzzy Dualists, our sentences forced us through a series of revisions
for initial seed values (x, y) for sentences X and Y. In the case of this fuzzy
Triplist, our sentences will force us through a similar series of revisions for
seed values (x, y, z). For the sentences above, these revised values can be
calculated as

xn+1 = (abs(yn − zn)− xn)2

yn+1 = ((1− zn)− yn)2

zn+1 = (abs(xn − yn)− zn)2 .

If we plot revised values for these sentences starting with seed values of
.23, .34, .45, the attractor in Fig. 33 appears. In Fig. 34 the attractor is
rotated in three dimensions. Despite its apparent depth when viewed “full
face,” it is clear that the attractor for this first fuzzy Triplist is still confined
to a plane.

Here as before we can also compute revised values sequentially rather
than simultaneously, with the following changes in our formulas:



Self-Reference, Chaos, and Fuzzy Logic 351

xn+1 = (abs(yn − zn)− xn)2

yn+1 = ((1− zn)− yn)2

zn+1 = (abs(xn+1 − yn+1)− zn)2 .

With that sequential calculation, the looping attractor of Figs. 35 and 36
appears.

Consider also a second fuzzy Triplist variation:

X: ∼ (X ↔ it is very true that (Y↔ Z))
Y: ∼ (Y ↔ it is very true that (X↔ Z))
Z: ∼ (Z ↔ it is very true that (X↔ Y)),

with the following algorithms for revised values:

Fig. 33. X: It is very false that: X ↔∼ (Y ↔ Z)
Y: It is very false that: Y ↔∼Z
Z: It is very false that: Z ↔∼(X ↔ Y)

Triplist attractor in two dimensions (simultaneous calculation)

Fig. 34. The same Triplist attractor in three dimensions (simultaneous calculation)
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Fig. 35. Sequential calculation for the Triplist attractor in Figs. 33 and 34, shown
in two dimensions

Fig. 36. Sequential calculation for the Triplist attractor in Figs. 33 and 34, shown
in three dimensions

xn+1 = abs((1− abs(yn − zn))2 − xn)
yn+1 = abs((1− abs(xn − zn))2 − yn)
zn+1 = abs((1− abs(xn − yn))2 − zn) .

Using the same seed values as before, this second fuzzy Triplist gives us the
attractor of Figs. 37 and 38. A sequential computation, in contrast, gives us
the attractors of Figs. 39 and 40.

For fuzzy Triplists, the analog to two-dimensional escape-time diagrams
will be three-dimensional escape-time solids. Once again we can color points
in terms of how many iterations are required for a series of revised values
starting from that point to reach a certain threshold. In the case of Triplist
variations, however, we will be coloring points (x, y, z) in a three-dimensional
space.
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Fig. 37. X: ∼(X ↔ it is very true that (Y ↔ Z))
Y: ∼(Y ↔ it is very true that (X ↔ Z))
Z: ∼(Z ↔ it is very true that (X ↔ Y))

Triplist attractor in two dimensions (simultaneous calculation)

In Figs. 41 and 42 we use sequential calculation for the first Triplist vari-
ation and simultaneous calculation for the second, with a chosen threshold in
each case of

√
x2 + y2 + z2 = 1. Both escape-time solids are shown from two

angles, in a space extending roughly from −2.5 to +5 for each of our three
values.

There is no upper limit to the size of sets of mutually self-referential sen-
tences that might be considered, of course, nor any upper limit to the number
of dimensions appropriate for modeling their semantical dynamics. Beyond
the three-dimensional semantic phenomena of Triplist variations lie the four-
dimensional semantic phenomena of the Quadruplists, the five-dimensional
semantic phenomena of Quintuplists, and so on.

Fig. 38. The same Triplist attractor in three dimensions (simultaneous calculation)
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Fig. 39. Sequential calculation for the Triplist attractor in Figs. 37 and 38, shown
in two dimensions

Fig. 40. Sequential calculation for the Triplist attractor in Figs. 37 and 38, shown
in three dimensions

8 Conclusion

Once we introduce self-reference, a range of dynamical phenomena appear in
the semantics of fuzzy logic. Within such a logic are sentences the dynamical
semantics of which exhibit the behavior of fixed-point attractors, fixed-point
repellers, and full chaos on the [0, 1] interval of semantic values. Mutually
self-referential Dualist and Triplist pairs take the phenomena of semantic
chaos into two and three dimensions.
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Fig. 41. X: It is very false that: X ↔∼ (Y↔ Z)
Y: It is very false that: Y ↔∼Z
Z: It is very false that: Z ↔∼(X ↔Y)

Escape-time solid using sequential calculation

A great deal of further formal exploration, generalization, and application
clearly remains to be done.23 Perhaps it is not out of place, however, to close
with some admittedly philosophical speculations.

Logical systems have typically been introduced with certain semantical
expectations. Self-reference has a tendency to violate those expectations.
Classical logic is a prime example. Within such a logic the expectation is
that every proposition will be simply true or false. With the introduction of
semantical self-reference, however, we are confronted with the classical Liar:
23 One meta-mathematical application is mentioned in the introduction: References

[8] and [9] each contain a sketch of Gödel-like limitative results for chaos theory
in the context of formal systems for real arithmetic, motivated by a close relative
of the sentence that appears here as the Chaotic Liar. It is clear that one class
of extensions would take these into the context of fuzzy logics
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Fig. 42. X: ∼(X ↔ it is very true that (Y ↔ Z))
Y: ∼(Y ↔ it is very true that (X ↔ Z))
Z: ∼(Z ↔ it is very true that (X ↔ Y))

Escape-time solid using simultaneous calculation
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This sentence is false. (1)

The dynamical semantics of that sentence seems to be an oscillation, and the
attempt to assign either of our supposedly exhaustive semantical categories
results in simple contradiction. A similar story, relying on strengthened ver-
sions of the Liar, can be told for multi-valued, infinite-valued, gapped, and
antifoundational logic (see Chap. 1 in [1]). In each case self-reference seems
to violate initial expectations by forcing us to recognize new categories of
semantical behavior.

What the work above shows is that something similar also happens when
self-reference is introduced into fuzzy logic. Fuzzy logic was constructed to
incorporate an important range of intuitive phenomena not provided for in
classical logics, facilitating a range of applications. One assumption carried
over from its classical predecessors, however, was that semantic values, how-
ever fuzzy, would nonetheless be tolerably well behaved and manageably sta-
ble. Here again the introduction of self-reference seems to violate semantical
expectations. In the context of fuzzy logic, self-reference introduces a range
of patterns of semantic instability as diverse and complex as the phenomena
of chaos theory generally.

Acknowledgments

The work presented here is an expansion of collaborative work on infinite-
valued logics and chaos which appears in [8, 9, 23]. I am indebted to Paul
St. Denis for programming assistance and for repeatedly bringing my at-
tention back to the �Lukasiewicz biconditional. Matt Neiger developed the
programming required for three-dimensional escape-time solids in Sect. 5. I
am indebted to Gary Mar for fruitful collaboration and for central good ideas.

References

1. J.J. Buckley: Fuzzy dynamical systems I. In: Proc. IFSA’91 (Mathematics Sec-
tion), Brussels, pp 16–20.

2. G.-Y. Wang, J.-P. Ou, P.-Z. Wang: Dynamic fuzzy sets and fuzzy processes.
In: Proc. 3rd IFSA Congr., ed by J. Bezdek, Seattle, 1989, pp 276–279

3. P. Diamond: Chaos and fuzzy representations of dynamical systems. In: Int.
Symp. on Fuzzy Systems, Iizuka, Japan, July 1992, pp 51–58

4. P. Grim: The Incomplete Universe (MIT Press, Cambridge, MA, 1991)
5. H. Herzberger: J. Philosophical Logic 11, 61–102 (1982) [Reprinted in Recent

Essays on Truth and the Liar Paradox, ed by R.L. Martin (Oxford University
Press, New York, 1984), pp 133–174]

6. A. Gupta: J. Philosophical Logic 11, 1–60 (1982) [Reprinted in Recent Essays
on Truth and the Liar Paradox, ed by R.L. Martin (Oxford University Press,
New York, 1984), pp 175–235]



358 P. Grim

7. A. Gupta, N. Belnap: The Revision Theory of Truth (MIT Press, Cambridge,
MA, 1993)

8. G. Mar, P. Grim: Noûs 25, 659–694 (1991)
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Chaotic Behavior
in Recurrent Takagi–Sugeno Models

Alexander Sokolov and Michael Wagenknecht

Abstract. We investigate dynamic systems which are modeled by recurrent fuzzy
rule bases widely used in applications. The main question to be answered is “Under
which conditions recurrent rule bases show chaotic behavior in the sense of Li–
Yorke?” We determine the minimal number of rules of zero-order and first-order
Takagi–Sugeno models with chaotic orbits. We also consider the case of an arbitrary
number of rules in such models and high-order time delay case. This chapter is the
first from a series of papers where we will consider arbitrary types of consequent
functions, noncomplete or contradictory rule bases, vectors in the rule antecedents,
Mamdani model, and methods of chaos identification by backward mapping.

1 Introduction

One of the main features in modeling dynamic systems is prediction (respec-
tively simulation). On the other hand, there do exist very simple dynamic
systems which are unpredictable in principle and show chaotic behavior [1, 2].
If some dynamic model is chaotic, we cannot perform long-time predictions
due to its extreme sensitivity with respect to initial conditions. There is an
extensive literature for classical (unfuzzy) chaotic dynamic systems.

We can distinguish several approaches of how to investigate dynamic sys-
tems based on different classes of mathematical models that can be used for
their description. The kind of the model applied heavily depends on our idea
about the necessary accuracy of description. Generally, increasing accuracy
implies increasing complexity.

During the last two decades, Takagi–Sugeno (TS) fuzzy rule bases have
successfully been applied as an excellent tool to describe many complex dy-
namic processes in engineering recurrent. In the simplest case of one-time
delay, TS model has the form

R1 : If xk = L1 then xk+1 = f1(xk)
R2 : If xk = L2 then xk+1 = f2(xk)
...
RN : If xk = LN then xk+1 = fN (xk) ,

(1)

where Li are linguistic variables (terms) and fi (x) are real-valued functions.

A. Sokolov and M. Wagenknecht: Chaotic Behavior in Recurrent Takagi–Sugeno Models,
StudFuzz 187, 361–389 (2006)
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If fi is constant, we speak of zero-order TS models; if fi is linear, we call
it first-order TS model. We can represent the recurrent system as closed-loop
dynamic system with interior structure (1), as shown in Fig. 1.

Fig. 1. Recurrent fuzzy rule base

In this chapter we consider TS models and their properties for modeling
of chaos, and in the process we shall answer the following questions:

1. Can dynamic TS rule bases be chaotic?
2. Which conditions are necessary for chaos?
3. How can chaotic behavior be recognized by analyzing the TS rule base

structure and parameter values?

First of all we need to give necessary terms, definitions of chaos, and its
properties for future investigations.

2 On the Nature of Chaos

The basic operation of dynamical systems is iteration. Iteration is the rep-
etition of a process. Iteration begins with some initial value or input and
proceeds with the output of one application of the process as the input to
the next application of the process. While iteration may be applied to any
process, in dynamics it is usually applied to a mathematical function. For ex-
ample, consider the positive square root function F (x) =

√
x and the initial

input x0 = 256. Iteration yields the following:
√

256 = 16 ,√
16 = 4 ,√
4 = 2 ,√
2 = 1.414214 . . . ,√
1.414214 . . . = 1.189207 . . . ,√
1.189207 . . . = 1.090508 . . . ,√
1.090508 . . . = 1.044274 . . . ,

...√
1 = 1 .
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For convenience, F i(x) is defined as the ith application of F (x). Thus,

F 1(256) = 16 ,
F 2(256) = 4 ,
F 3(256) = 2 ,
... .

The sequence of successive iterates of a point is called the orbit of that point.
The orbit analysis of F (x) =

√
x reveals for any positive x0

lim
n→∞F

n(x0) = 1 .

Obviously, 1 is a fixed point of F (x) .
Not all functions obey such a simple behavior as above. For example,

consider the square function S(x) = x2. Obviously, S(x) has a fixed point at
1; however, it also has orbits tending to 0 and ∞:

lim
n→∞S

n(x0) =

⎧⎨⎩
0, if 0 < x0 < 1
1, if x0 = 1
∞, if x0 > 1

.

In the case of square root function, 1 is an attracting fixed point of F (x). For
the square function, 1 is a repelling fixed point of S(x). As a rule, it is easier
to find an attracting fixed point than a repelling one.

Another type of orbit is the so-called periodic orbit or cycle. A periodic
orbit eventually returns to where it began. That is, the orbit x0 is periodic, if
there exists an integer n such that Fn(x0) = x0. In this case, x0 is a periodic
point of period n. The smallest such n is the prime period of the orbit. For
example, consider the reciprocal function R(x) = 1/x. Both 1 and –1 are
fixed points of R(x). Any other initial point x0 generates a cycle of period 2,
oscillating between x0 and 1/x0.

However, many realistic systems are rather complex and nonregular. It
may happen that an orbit has many different periodic points, and its behavior
is “strange” (e.g., very sensitive with respect to initial conditions, etc.). This
is the realm of chaotic dynamic systems [3]. Chaos entails the concept of
sensitivity to initial conditions, namely

• neighbored trajectories in the phase space diverge exponentially.
• chaotic systems are inherently unpredictable, i.e.

1. one can never specify system’s initial state to arbitrary precision and
2. negligible differences in initial conditions amplify the system’s evolution

in time.
• geometric interpretation

1. under the action of the equations of motion, volumes of the phase space
are stretched (trajectories separation) and folded (boundedness of solu-
tions, i.e., trajectories do not go off to infinity).
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2. produces “mixing” or “homogenization” of initial states, which are even-
tually spread over the entire attractor according to some probability
distribution called invariant measure.

• mathematical definition: existence of invariant sets containing
1. countable sets of periodic motions,
2. uncountable sets of aperiodic motions, and
3. “dense” orbits which come arbitrarily close to any point in the set.

There are a number of definitions of chaos [4, 5]:

1. The Li–Yorke definition
2. Devaney’s, Kloeden’s, and Wiggin’s definition
3. Definition based on topological mixing
4. Definition based on Smales’s horeshoe
5. Definition based on transversal homoclinic points
6. Definition based on symbolic dynamics

In our investigation we will mainly use notions and theorems given by Li–
Yorke, and Kloeden. Historically, Li and Yorke gave the first definition of
chaos [1]. They considered a mapping f : I → I (I is the unit interval) into
itself

xn+1 = f(xn) . (2)

Definition 1. (Li and Yorke [1, 6]) A mapping f : I → I is chaotic if

1. there exists a positive integer K (K = 1 in [7]) such that the iterative
scheme (2) has a cycle of period k for each k ≥ K.

2. the iterative scheme (2) has a scrambled set, i.e., an uncountable set S ⊂ I
containing no cyclic points of f such that
a. f(S) ⊂ S;
b. for every x0, y0 ∈ S with x0 �= y0,

lim
n→∞ sup

∣∣fn(x0)− fn(y0)
∣∣ > 0 ; (3)

c. for every x0 ∈ S and any cyclic point y0 of f ,

lim
n→∞ sup

∣∣fn(x0)− fn(y0)
∣∣ > 0 .

3. there exists an uncountable subset S0 ⊂ S such that for all x0, y0 ∈ S,

lim
n→∞ inf

∣∣fn(x0)− fn(y0)
∣∣ > 0 . (4)

Analogous definitions apply for more general metric spaces replacing ab-
solute values by distances.

Theorem 1. (Li and Yorke [1, 8]) If the function f : I → I is continuous on
a compact interval I and there exists a point, a ∈ I, for which f3(a) ≤ a <
f(a) < f2(a) (orf3(a) ≥ a > f(a) > f2(a)), then f has a cycle of length 3
and is chaotic (in the sense of Definition 1).
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The following theorem gives sufficient conditions for the existence of chaos
for Banach space mappings and is particularly suited for TS models because
of its flexibility.

Theorem 2. (Kloeden [6]) Let f be a continuous mapping of a Banach space
B into itself and suppose that there exists nonempty compact subsets A, B of
B and integers n1, n2 ≥ 1 such that

(i) A is homeomorphic to a convex subset of B,
(ii) A ⊆ f(A),
(iii) f is expanding on A, i.e., there exists a constant λ > 1 such that

λ‖x− y‖ ≤ ‖f(x)− f(y)‖ for all x, y ∈ A ,

(iv) B ⊂ A ,
(v) fn1(B) ∩A = Ø ,
(vi) A ⊆ fn1+n2(B), and
(vii) fn1+n2 is injective on B (one to one).

Then mapping f is chaotic in the sense of Definition 1.

There are many examples of mathematical models with chaotic behav-
ior with respect to the definitions given above. The most well-known one-
dimensional ones are the logistic equation and tent mapping. The logistic
equation is of the form

Pn+1 = cPn(1− Pn) , (5)

where c is a constant. Given an initial value P0, constant c, and the logistic
equation, future values can be determined. Note that this is simply the iter-
ation of the function F (x) = cx(1−x). Another example of chaotic behavior
can be illustrated with the so-called tent mapping [6, 7]:

xn+1 =
{

2xn, if 0 ≤ xn ≤ 1/2
2(1− xn), if 1/2 ≤ xn ≤ 1 . (6)

3 Modeling Chaos by Takagi–Sugeno Rule Bases
with One-Time Delay Case

In this chapter we consider the TS models (1) with the following generally
accepted restrictions [8]:

1. Complete rule base.
2. Noncontradictory rule set.

The membership functions µi(x) for the linguistic terms Li, i = 1, N have
the following properties.

1. Delimitation: µi(x) ∈ [0, 1], x ∈ X, i.e., domain of state variable x.
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2. Convexity :
{
µi(x) monotonically increases for x < ai

,
µi(x) monotonically decreases for x > ai

where ai is a core position of appropriated linguistic variable Li.
3. Partition:

∑
i µi(x) > 0 for all x ∈ X.

4. Feedback correspondence: µi(aj) = 0, i �= j.

If the range of fi is a finite set of linguistic variables, the recurrent fuzzy
system (1) can be regarded as a linguistic automata and under certain condi-
tions chaotic behavior can be proved [8]. But in general case it is important
to find the chaotic properties for any case of output function f(x) and not
just for the case that this function maps into sets of linguistic variable.

For TS fuzzy model we will answer the following questions:

1. What is the minimal number of rules for different order TS models imply-
ing chaos?

2. What are the relationships between the parameters of a TS model implying
chaos?

3. Which methods for identification of chaos in TS models do exist?

3.1 Modeling Chaos
with Scalar Zero-Order Takagi–Sugeno Model

In the zero-order TS model the consequents of rules (1) are constants. In this
case let fi(xk) = Ai. The transition function of any TS mapping for (1) is
given by

f(x) =
∑

i µi(x)Ai∑
i µi(x)

∀x ∈ X ,

where µi is defined on X and means the membership function describing
the corresponding linguistic variable Li. We suppose X = I = [0, 1], if not
stated otherwise. Let the membership functions (MF) µi satisfy the following
additional conditions:

1. They belong to the triangular class of MF.
2. µi(ai) = 1 and µi(aj) = 0, if j �= i, where ai is the core position (mean

value);
3. They are globally normalized, i.e.,∑

i

µi(x) = 1 ∀x ∈ I . (7)

Remark 1. The MFs need not be symmetrical.

In this case the transition function of (1) reads as

f(x) =
∑

i

µi(x)Ai ∀x ∈ I .
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We now investigate how many rules are necessary to imply chaotic systems.
According to [2] it is sufficient to find a mapping fulfilling the assumptions
of Theorem 1.

Lemma 1. The minimal number of rules of zero-order TS model for occur-
rence of chaos (according to the above definitions) is three.

Proof. If we have one rule, the transition function f : xk ← xk+1 of model
(1) according to (8) is

f(x) = µ1(x)A1 ∀x ∈ I .
According to (7), µ1(x) = 1 ∀x ∈ I. Hence, f(x) = A1 ∀x ∈ I and x1 =
f(x0) = x0 and there is no chaos. For two rules we get

f(x) = µ1(x)A1 + µ2(x)A2 ∀x ∈ I . (8)

Let the core positions fulfill. Then for x ∈ [0, a1], f(x) = A1; for x ∈ [a2, 1],
f(x) = A2; and for x ∈ [a1, a2], f(x) = a2−x

a2−a1
A1 + x−a1

a2−a1
−A2.

Obviously, mapping f(x) in (8) is a monotonic function again excluding
chaos. If we have three rules then rule base is

R1 : If xk = L1 then xk+1 = A1 ,
R2 : If xk = L2 then xk+1 = A2 ,
R3 : If xk = L3 then xk+1 = A3 .

(9)

Then
for x ∈ [0, a1]: f(x) = A1;
for x ∈ [a3, 1]: f(x) = A3;

for x ∈ [a1, a2]: f(x) =
a2 − x
a2 − a1

A1 +
x− a1

a2 − a1
A2 ;

for x ∈ [a2, a3]: f(x) =
a3 − x
a3 − a2

A2 +
x− a2

a3 − a2
A3 .

Hence, f(x) is a piecewise linear function. For the special choice A1 = A3 = a1

and A2 = a3 with a1 = 0, a2 = 0.5, and a3 = 1, it is a tent mapping (5) and
therefore chaotic [9].

Now we consider which value could be set for consequents A1, A2, A3. Of
course, in general case each of these can take on any value from unit interval
I = [0, 1]. But taking into account that

for x ∈ [0, a1]: f(x) = A1 ,
for x ∈ [a3, 1]: f(x) = A3 ,

the transition function is a constant outside of [a1, a3] and that is why we will
find chaotic mapping in this interval and consider the mapping f : [a1, a3] →
[a1, a3].

This means that first of all we consider the case Ai ∈ [a1, a3], i = 1, 2, 3,
(See Fig. 2). Letting function f(x) be convex on [a1, a3], more general cases,
including the case of concave mapping, will be considered below.
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a1 a2 a3 1
0

1

a3

a2

a1

A1

A2

A3

X(k)

X(k+1)

Fig. 2. Moving of consequents positions

Theorem 3. A rule base (9) with mapping f : [a1, a3] → [a1, a3] is chaotic
in the sense of Li and Yorke on the interval [a1, a3] ⊆ I if the following
conditions are satisfied:

(a) A1 ∈ [a1, f
−1
2 (a2)),

(b) A2 = a3, and
(c) A3 = a1.

Proof. Because we consider convex mapping, conditions (b) A2 = a3 and (c)
A3 = a1 are necessary for providing mapping f : [a1, a3] → [a1, a3]. Let us
apply Theorem 2 for mapping f : [a1, a3] → [a1, a3]. Then it is sufficient to
find appropriate compact subsets A and B of I. Let A = [ξ, Ψ ] ⊂ [a2, a3] and
B = [θ, Ψ ] ⊂ A, with ξ, θ, and Ψ to be determined.

Note that ξ > a2, Ψ < a3, and ξ < θ; the left increasing part of tent
mapping is denoted as f1(x) and the right decreasing part as f2(x) (in the
case of zero-order TS model these functions are straight lines). Then f(A) =
[f2(Ψ), f2(ξ)]. Let f2(ξ) = Ψ . Then when f2(Ψ) ≤ a2, we have A ⊆ f(A).

We shall now prove that f is expanding on A, i.e., it is sufficient (and
necessary) to have
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a3 − a2

∥∥∥∥ > 1 .

When A2 = a3 (condition (b)), it is clear that it comes to agreement about
A3 ∈ [a1, a2) (including of course condition (c)). Now it is necessary to check
the conditions

f(B) ∩A = Ø ,

A ⊆ f2(B) .

Let us find f(B). We have f(B) = [f2(Ψ), f2(θ)]. To satisfy the condition of
f(B) ∩ A = Ø let us assume that f2(θ) = a2. It is easy to see that because
Ψ > θ and so f2(Ψ) < a2. According to above assumption we can write
f2(B) = [f1(f2(Ψ)), a3]. Depending of the value of A1 we have several cases.

Case 1: a1 ≤ A1 ≤ a2

In this case we can find that if Ψ > θ, then f1(f2(Ψ)) ≤ ξ and the condition
A ⊆ f2(B) is satisfied assuredly. As a result we can write that

θ = f−1
2 (a2), f1(f2(Ψ)) ≤ ξ, ξ = f−1

2 (Ψ) .

It is easy to see that when the conditions of Theorem 3 hold, the values ξ, θ
and Ψ can be found. It is clear that for this we must have the following:
∃x ∈ [a1, a2], when f1(x) = a2. So if we choose Ψ such that f1(f2(Ψ)) = a2

holds, we guarantee providing the condition A ⊆ f2(B). It is always possible
when a1 ≤ A1 ≤ a2.

Case 2: a2 < A1 ≤ z, where z = f2(z) is a fixed point of the mapping
f : [a1, a3] → [a1, a3].

In this case providing the conditions of Kloeden theorem is not so easy
because f1(x) > a2. Moreover, we need to investigate the possibility of fun-
damental of Kloeden conditions in this case, namely the property of mapping
of compact set into itself, on which we are finding chaos.

Let us check this now that we have the mapping f : [a1, a3] → [a1, a3].
Because [a1, a3] = [a1, a2] ∪ [a2, a3] we find each part of mapping separately.
It is easy to see that f : [a2, a3] → [a1, a3]. Now find f : [a1, a2] → [A1, a3].
The next step is mapping f : [A1, a3] → [a1, f2(A1)]. Because a2 < A1 we
have inequality f(A1) > A1 and we can rewrite the mapping f : [A1, a3] →
[a1, f2(A1)] as f : [A1, a3] → [a1, a2] ∪ [a2, f2(A1)].

The next step of iteration gives f : [a1, f2(A1)] → [A1, a3] ∪ [f2
2 (A1), a3].

Because of the expanded properties of function f2(x) we have f2(A1) < A1

and can rewrite the above expression as f : [a1, f2(A1)] → [f2
2 (A1), a3]. If

f2
2 (A1) ≤ a2 then the next step is f : [f2

2 (A1), a3] → [a1, a3] and we have
mapping f : [a1, a3] → [a1, a3]. If f2

2 (A1) > a2, we continue the action of
mapping and due to expanded properties of f2(x) we find, at last, power 2k
when f2k

2 (A1) ≤ a2 holds.
Now we need to find appropriate values for ξ < θ and Ψ > θ. Because

A1 ≤ z and it can take on arbitrary values and taking into account that
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f2(x) is expanded on [a2, a3] let us assume that ξ = fk(A1) < θ and Ψ =
fk+1(A1) > θ, where integer k ≥ 0. Here fk(A1) means use the function

f(x) = {f1(x), f2(x)} k times, i.e., fk(A1) =
f(f(. . . f2(A1)))︸ ︷︷ ︸

k
. It is easy to

see that such value k can be found because f2(x) is expanded. Then subsets
A and B will be as follows:

A = [fk(A1), fk+1(A1)], B = [θ, fk+1(A1)] .

Then f(A) = [fk+2
2 (A1), fk+2

2 (A1)], fk+2
2 (A1) < a2. It follows that A ⊆

f(A).
It is clear that A ∩ f(B) = Ø because f(B) = [fk+2

2 (A1), a2]. Let us find
such fn(B), n > 1, that A ⊆ fn(B):

f2(B) =
[
f1

(
fk+2
2 (A1)

)
, a3

]
,

f3(B) =
[
a1, f2

(
f1

(
fk+2
2 (A1)

))]
,

f4(B) =
[
A1, f1

(
f2

(
f1

(
fk+2
2 (A1)

)))]
.

Denoting Φ = f1
(
f2

(
f1

(
fk+2
2 (A1)

)))
we can have two cases: Φ ≥ θ or Φ < θ.

When Φ ≥ θ we can rewrite

f4(B) = [A1, θ] ∪ [θ, Φ] .

Then f5(B) = [a2, f2(A1)] ∪ [f2(Φ), a2]. It is easy to see that for f5(B) the
condition A ⊆ f5(B) holds when k = 0. If k > 0, we find

f6(B) =
[
f2
2 (A1), a3] ∪ [f1(f2(Φ)), a3

]
.

Drop the set [f1(f2(Φ)), a3] and we could continue to find

f7(B) =
[
a1, f

3
2 (A1)

]
,

f8(B) =
[
f4
2 (A1), A1

]
.

Continuing in such way it is clear that for expanded mapping we find appro-
priate iteration for satisfying condition A ⊆ fn(B).

If Φ < θ we can find such number N . Because of the expanded mapping
f2(x) we find such iteration

fN (B) =
[
fN−1
2 (A1), θ

]
∪
[
θ, fN−1

2 (Φ)
]

satisfying the condition A ⊆ fn(B). So, we have chaotic behavior if a2 <
A1 ≤ z.
Case 3: z < A1 < θ.

Let us investigate the property of mapping of compact set into itself, on
which we are finding chaos. Let us check this as now we do not deal with the
mapping f : [a1, a3] → [a1, a3]. It is easy to see that f : [a2, a3] → [a1, a3].
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Now find f : [a1, a2] → [A1, a3]. The next step is mapping f : [A1, a3] →
[a1, f2(A1)].

Because θ > A1 > z we have the inequality a2 < f(A1) < z < A1 and
we can rewrite the mapping f : [A1, a3] → [a1, f2(A1)] as f : [A1, a3] →
[a1, a2)] ∪ [a2, f2(A1)].

The next step of iteration gives f : [a1, f2(A1)] → [A1, a3]∪
[
f2
2 (A1), a3)

]
.

Because of the expanded properties of function f2(x) we have f2
2 (A1) > A1

and can rewrite the above expression as f : [a1, f2(A1)] → [A1, a3].
Hence we do not have chaotic mapping because it is based on the non

compact set [a1, f2(A1)] ∪ [A1, a3], where f(A1) < A1:

f : [A1, a3] → [a1, f2(A1)] ,
f : [a1, f2(A1)] → [A1, a3] .

In this case we cannot use the Kloeden theorem directly for this mapping,
but can use this theorem for f2 mapping and find appropriate sets.

Let us consider new mapping g = f2 : [A1, a3] → [A1, a3]. Now we need
to find appropriate values for ξ < θ and Ψ > θ. Let A = [ξ, Ψ ] ⊂ [A1, a3] and
B = [ξ, θ] ⊂ A. Find the necessary mappings for Kloeden theorem:

g(A) = f [f [ξ, Ψ ]] = f [f2(ξ), f2(Ψ)] = f [[f2(Ψ), a2] ∪ [a2, f2(ξ)]]
= [f1(f2(Ψ)), a3] ∪ [f2(f2(ξ)), a3]

and
g(B) = f [f [ξ, θ]] = f [a2, f2(ξ)] = f2 [f2(f2(ξ)), a3] .

It is easy to see that to provide properties A ⊆ f(A) and A ∩ f(B) = Ø
let f1(f2(Ψ)) ≤ ξ and f2(f2(ξ)) > Ψ . We can find such higher power of g(B)
to satisfy the condition A ⊆ fk(B) because g(x) is expanded on [A1, a3].
Actually we have

g([θ, a3]) = f(f2([θ, a3])) = f1([a1, a2]) = [A1, a3] .

That is, z < A1 < θ gives the chaotic orbits.

Case 4: θ ≤ A,< a3

In this case we deal with not expanding mapping g = f2. As in the case
above we can write

f : [a1, a2] → [A1, a3] ,
f : [A1, a3] → [a1, f2(A1)] .

From the condition θ ≤ A1 < a3 we have a2 ≥ f2(A1) > a1. It means that
new iteration gives

f : [a1, f2(A1)] → [A1, f1(f2(A1))] ⊆ [A1, a3] .

That is why we do not have chaotic behavior in this case.
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Finally, it is easy to show that f2(B) = f1(f2(B)) is injective on B (one
to one). Thus, f is chaotic in the sense of Definition 1.

Figure 3 illustrates Theorem 3.

a3

a2

1

0

a1

a2a1 a3
1 x

)(xf

A3

A2

A1

2f

xf2

xf1

Fig. 3. Illustration of Theorem 3

Remark 2. When a1 < A3 < a2, it is easy to see that we deal with mapping
f∗ : [A3, a3] → [A3, a3] instead of previous mapping f : [a1, a3] → [a1, a3].
In this case we can consider f∗ as a renewed mapping, namely, g : [b1, b3] →
[b1, b3], where b1 = A3, b2 = a2, b3 = a3, g(b1) = f(A3), g(b2) = a3 and
g(b3) = b1. Then Theorem 3 can be used for mapping g : [b1, b3] → [b1, b3].

Remark 3. When A2 �= a3 it is easy to see that we deal with mapping f∗ :
[a1, A2] → [a1, A2] instead of the previous mapping f : [a1, a3] → [a1, a3]. In
this case we can consider f∗ as a renewed mapping, namely, g : [b1, b3] →
[b1, b3], where b1 = a1, b3 = A2, g(a2) = b3, and b2 = a2. It is clear that
A2 > a2. Then there are two possible cases.
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The first case
If a2 < A2 ≤ a3, we will observe chaos when conditions of Theorem 3

hold for mapping g. (For this we substitute all symbols in Fig. 3, namely
f → g, a→ b and we obtain strict equality again). If A2 ∈ (a2, a3] we consider
the mapping g : [b1, b3] → [b1, b3], where b1 = a1, b3 = A2, g(a2) = b3 and
b2 = a2 and check the conditions of Theorem 3 for mapping g.

The second case
If a3 < A2 ≤ 1 the transition function is not triangular and we have

horizontal interval with length γ (Fig. 4). This mapping is chaotic on classic
Cantor set. In our case chaos is presented not on the set [a1, a3], but on set
C∗ pertaining to Cantor set C . The set C∗ is constructed on [a1, a3] and
includes as well (λmin, λmax) �⊂ C∗ and so on. So, in this case we can have
chaos, but not in interval [a1, a3] as in the previous cases. That is why we
never obtain chaotic orbits on whole interval. However, in Cantor set we can
find different closely set points that produce different orbits. But it is true
only in the limit.

Fig. 4. Interval γ ⊂ (a1, a3)

We could summarize the above remark as follows:

1. If A2 = a3, we have the original conditions of Theorem 3 regarding A1, A3

for chaos on interval [a1, a3].
2. If a2 < A2 < a3, we say about chaos on interval [a1, A2] ⊂ [a1, a3]

when the remaining conditions of Theorem 3 are fulfilled with follow-
ing substitutions: We consider the mapping g : [b1, b3] → [b1, b3], where
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b1 = a1, b3 = A2, g(a2) = b3 and b2 = a2 and check the conditions of
Theorem 3 for mapping g.

3. If a3 < A2 ≤ 1, we say about chaos pertaining to Cantor set constructed
on interval [a1, a3] and using interval λ as excluded one. The conditions
for A1, A3 remain effective.

3.2 More General Cases of Consequents

3.2.1 Case 0 ≤ A1 < a1

It is easy to see (Fig. 5) that we have repelling fixed point Z. In this case
for x0 ∈ [a1, Z) we have orbit xk+1 = f1(xk) with limxk = a1. That is
why we have an evident condition A3 = Z. We now refine the conditions of
Theorem 3.

a3

a2

1

0

a1

a2a1 a3 x

)(xf

A3

A2

A1

xf2

xf1

1

Fig. 5. The case 0 ≤ A1 < a1

Theorem 4. A rule base (9) with mapping f : I → I is chaotic in the sense
of Li and Yorke on the interval [A3, a3] ⊆ I if the following conditions are
satisfied:

(a) A1 ∈ [0, f−1
2 (a2)),

(b) A2 = a3, and
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(c) A3 =
{
a1, if A1 ≥ a1 ,
Z, if A1 < a1, where f1(Z) = Z.

3.2.2 Case of Concave Mapping

We could use the same approach for investigation of concave mapping. Here
we show one case when A1 = a3, A2 = a1, and A3 = a3 (Fig. 6). The re-
maining cases are similar to convex mapping investigations and are therefore
omitted.

a3

a2

1

0

a1

a2a1 a3
1 x

)(xf

A3

A2

A1

xf2

xf1

Fig. 6. The case of concave mapping

We have the following theorem that is opposite to Theorem 3 for convex
mapping.

Theorem 5. A rule base (7) with mapping f : I → I is chaotic in the sense
of Li and Yorke on the interval [a1, a3] ⊆ I if the following conditions are
satisfied:

(a) A1 = a3,
(b) A2 = a1, and
(c) A3 ∈ (a2, a3].

Proof. Because we consider concave mapping, condition (b), A2 = a1, is
necessary for providing mapping f : [a1, a3] → [a1, a3]. Let us apply Theorem
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2 for mapping f : [a1, a3] → [a1, a3] and find n1, n2. Then it is sufficient to
find appropriate compact subsets A and B of I. Let A = [θ, a3] ⊂ [a2, a3] and
B = [θ, ξ] ⊂ A, with ξ, θ to be determined.

Note that θ < ξ < a3; left part of tent mapping is denoted as f1(x), and
right part as f2(x) (see Fig. 6). Then f(A) = [f2(θ), a3]. Let f2(θ) = a2. Then
we have A ⊆ (A).

Now it is necessary to check the condition f(B) ∩ A = Ø. Let us find
f(B). We have f(B) = [a2, f2(ξ)]. To satisfy the condition of f(B) ∩ A = Ø
let us assume that f2(ξ) = θ. That is why condition (c) is necessary.

According to the above assumption we can write f2(B) = [a1, a2] and
f3(B) = [a1, a3]. Thus for n1 = 1, n2 = 2 we have A ⊆ fn1+n2(B). The
remaining of the assumption are the same as with Theorem 3. Thus f is
chaotic in the sense of Definition 1.

3.3 The Case of an Arbitrary Number of Rules
in the Zero-Order Takagi–Sugeno Model

Let us consider the case of zero-order TS model, when rule base consists of
several rules:

R1 : If xk = L1 then xk+1 = A1 ,
R2 : If xk = L2 then xk+1 = A2 ,
...
RN : If xk = LN then xk+1 = AN .

(10)

Under the above conditions with respect to the MF and assuming 0 ≤ a1 <
a2 < · · · < an ≤ 1 for the core positions, f(x) is again piecewise linear,
namely,

for x ∈ [0, a1]: f(x) = A1 ;
for x ∈ [aN , 1]: f(x) = AN ;

for x ∈ [a1, a2]: f(x) =
a2 − x
a2 − a1

A1 +
x− a1

a2 − a1
A2 ;

...

for x ∈ [aN−1, aN ]: f(x) =
aN − x

aN − aN−1
AN−1 +

x− aN−1

aN − aN−1
AN .

Therefore, if we found a triple (ai, aj , ak) with ai < aj < ak and monotonous
functions between appropriated core positions for which the conditions of
Theorems 3–5 are satisfied, we would have a chaotic behavior in [ai, ak].
Such an interval [ai, ak] ⊆ I is known has cluster of chaos. The example
below illustrates two clusters in the mapping (Fig. 7).
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Mapping )(xf Membership functions 

          Phase portrait ( 2.00x )          Phase portrait ( 33.00x )

Fig. 7. Mapping with two clusters of chaos

The rule base is as follows:

R1 : If xk is L1 then xk+1 = 0.425 ;
R2 : If xk is L2 then xk+1 = 0.8 ;
R3 : If xk is L3 then xk+1 = 0.5 ;
R4 : If xk is L4 then xk+1 = 0.9 ;
R5 : If xk is L5 then xk+1 = 0.65 .

3.4 Modeling of Chaos with Scalar First-Order
Takagi–Sugeno Model

The first-order TS model is given by

R1 : If xk = L1 then xk+1 = A1xk +B1 ,
R2 : If xk = L2 then xk+1 = A2xk +B2 ,
...
RN : If xk = LN then xk+1 = ANxk +BN ,

(11)

where Li are the linguistic variables and Ai and Bi are numerical coefficients.
The MFs and core positions are the same as above.

First of all we want to clarify how many rules are necessary to have chaotic
behavior.
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Lemma 2. The minimal number of rules of first-order TS model for modeling
chaos according to Theorem 1 is two.

Proof. If we have one rule the transition function f : xk → xk+1 of model
(11) according to normality conditions will be

f(x) = µ1(x)(A1x+B1) ∀x ∈ X .

Again, µ1(x) = 1 ∀x ∈ I. Then f(x) = A1x+B1 ∀x ∈ I. Hence, f(x) is a
monotonous function with no chaos. If we have two rules then

for x ∈ [0, a1]: f(x) = A1x+B1 ;
for x ∈ [a2, 1]: f(x) = A2x+B2 ;

for x ∈ [a1, a2]: f(x) =
a2 − x
a2 − a1

(A1x+B1) +
x− a1

a2 − a1
(A2x+B2).

That is, f(x) is a parabola and for A1 = 4, A2 = 0, B1 = 0, B2 = 0, a1 = 0,
and a2 = 1 it is a logistic mapping of type (5) with chaotic features [9].

Now let us derive general conditions for coefficients Ai and Bi to provide
chaotic f . For N = 2 the rule base has the following form:

R1 : If xk = L1 then xk+1 = A1xk +B1 ,
R2 : If xk = L2 then xk+1 = A2xk +B2 .

(12)

In Figs. 8 and 9 the case a1 = 0.25, a2 = 0.75, A1 = 2, B1 = 0, A2 = −2,
and B2 = 2 is depicted. As for the zero-order TS model we can formulate an
analogous theorem for the first-order TS model.

Theorem 6. A rule base (12) is chaotic in the sense of Li and Yorke on the
interval [a1, a2] ⊂ I if the coefficients A1, A2, B1 and B2 are the solutions of
the following equations:⎧⎨⎩

A1a1 +B1 = φ ,
A2a2 +B2 = φ ,
A1(a1 + a2)A2(a1 + a2) + 2B1 + 2B2 = 4a2 ,

with certain φ ∈ [a1,
a1+a2

2 ).

Proof. According to Theorem 2 it is sufficient to find the appropriate compact
convex sets A and B in [a1, a2] for the transition function f : [a1, a2] →
[a1, a2]. Let A = [ξ, Ψ ] ⊂ (a1+a2

2 , a2] and B = [θ, Ψ ] ⊂ A, with ξ, θ, and Ψ to
be determined. Note that ξ > a1+a2

2 , Ψ < a2, and ξ < θ; the left branch of
a parabola is denoted as f1(x) and the right branch as f2(x) (see Fig. 10).
Then f(A) = [f2(Ψ), f2(ξ)]. Let f2(ξ) = Ψ . Now we need f2(Ψ) ≤ a1+a2

2 to
satisfy A ⊆ f(A).
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Let us find f(B). We have f(B) = [f2(Ψ), f2(θ)]. To satisfy the condition
of f(B) ∩ A = φ let us assume that f2(θ)] = a1+a2

2 . Because we have Ψ > θ
therefore f2(Ψ) < a1+a2

2 . That is why condition φ ∈ [a1,
a1+a2

2 ) is necessary.
Note that conditions (13) provide the following properties:

f(a1) = φ, f(a2) = φ, f

(
a1 + a2

2

)
= a2 .

According to the above assumption we can write f2(B) = [f1(f2(Ψ)), a2].
When f1(f2(Ψ)) = a1+a2

2 , the condition A ⊆ f2(B) is satisfied. It is clear
that ∃x ∈

[
a1,

a1+a2
2

]
, when f1(x) = a1+a2

2 .
As a result we can write that

θ = f−1
2

(
a1 + a2

2

)
, Ψ = f−1

2

(
f−1
2

(
a1 + a2

2

))
, ξ = f−1

2 (Ψ) .

It is clear that in this case condition ξ < θ holds. Now we can rewrite that
f2(ξ) > f2(θ) and at last we have Ψ > a1+a2

2 .
We shall now prove that f is expanding on A. This means that |f ′(x)| > 1,

for x ∈ [ξ, Ψ ]. Obviously, it is enough to prove this statement only for point
x = ξ. Let us find x∗ ∈

[
a1+a2

2 + a2

]
such that |f ′(x∗)| = 1. According to

conditions (13) we can write the derivative of transition function after evident
substitutions as

f ′(x) =
4(φ− a2)
(a2 − a1)2

(2x− (a1 + a2))

for which we have

x∗ =
1
2

(
a1 + a2 −

(a1 − a2)2

4(φ− a2)

)
.

Fig. 8. MFs for the linguistic variables
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Fig. 9. Transition function
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Fig. 10. Modelling of chaos by 1st order TS model

If ξ > x∗ our assumption that function f is expanding on A is true. Then
according to the transition function we can rewrite this inequality as

f(f(f(ξ))) < f(f(f(x∗))) .
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Fig. 11. Investigation of convex properties of set A with MathCad



382 A. Sokolov and M. Wagenknecht

Because f(f(f(ξ))) = a1+a2
2 , we need to prove that f(f(f(x∗))) > a1+a2

2 to
see that we made the numerical experiment (unfortunately, analytical trans-
formation is not enough evidently) with different values of φ ∈ [a1,

a1+a2
2

)
and any values of a1, a2 ∈ I. The result of numerical modeling in MathCad is
shown in Fig. 11. (Let B1 = B2). Finally, the injectivity on B follows trivially.

Figure 10 illustrates the situation.

Remark 4. Besides we have another degree of freedom to choose the coeffi-
cients in (13).

Remark 5. We can design positive or negative convex parabolas for chaos
modeling. For negative one we need to change conditions (13).

3.5 Arbitrary Number of Rules of First-Order
Takagi–Sugeno Model

First, we consider the case of three rules:

R1 : If xk = L1 then xk+1 = A1xk +B1 ,

R2 : If xk = L2 then xk+1 = A2xk +B2 ,

R3 : If xk = L3 then xk+1 = A3xk +B3 .

(13)

Now we have to solve equations (13) twice: for ranges [a1, a2] and [a2, a3].
Moreover,

for x ∈ [0, a1]: f(x) = A1x+B1 ;
for x ∈ [a3, 1]: f(x) = A3x+B3 ;

for x ∈ [a1, a2]: f(x) =
a2 − x
a2 − a1

(A1x+B1) +
x− a1

a2 − a1
(A2x+B2) ;

for x ∈ [a2, a3]: f(x) =
a3 − x
a3 − a2

(A2x+B2) +
x− a2

a3 − a2
(A3x+B3) .

For x ∈ [a1, a2] we derive⎧⎪⎨⎪⎩
A1a1 +B1 = Ψ ,

A2a2 +B2 = Ψ ,

A1(a1 + a2) +A2(a1 + a2) + 2B1 + 2B2 = 4a2 ,

(14)

and for x ∈ [a2, a3] we derive{
A3a3 +B3 = Ψ ,

A2(a2 + a3) +A3(a2 + a3) + 2B2 + 2B3 = 4a3 .
(15)

In (15) coefficients A2 and B2 are already known from (14). Hence, for an
arbitrary number of rules we have to solve equation sets of type (15), where
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part of coefficients is know from previous calculations. Moreover, f(ai) =
f(ai+1) leading to f(ai) = Ψ, i = 1, . . . , N . Therefore the following obvious
statement is true.

Statement 1. If the first-order TS model is constructed as directly connected
parabolas according to Theorem 8 there will be only one cluster of chaos for
any number of rules that will appear in the first parabola (orientation from
left to right).

4 Modeling of Chaos by Takagi–Sugeno Rule Bases
with High-Order Time Delay Case

For description of many complex dynamic processes we often use the 0th
recurrent TS fuzzy rule bases with high-order mapping. These rules have the
following form:

R1 : If xk is L1jk
and xk+1 is L1jk+1 and · · · and xk+n is

L1jk+n
then xk+n+1 = A1 ,

R2 : If xk is L2jk
and xk+1 is L2jk+1 and · · · and xk+n is

L2jk+n
then xk+n+1 = A2 ,

...
RM : If xk is LMjk

and xk+1 is LMjk+1 and · · · and xk+n is
LMjk+n

then xk+n+1 = AM ,

(16)

where L2jq
are linguistic variables (terms) and Ai are numerical constants.

The transition function of such TS mapping for (16) is given by

f(x) =

∑M
j=1

∏n
k=1 µjk(x)Ai∑M

j=1

∏n
k=1 µjk(x)

∀x ∈ X . (17)

We suppose that assumptions about membership function agree with those
for scalar case (see Sect. 3).

Such rule bases can demonstrate the chaotic behavior in sense of Li and
Yorke. So it is important to find the properties of the consequents that could
help to recognize chaos. Earlier in this chapter we considered the one-time
delay case of system (16) for n = 0 and found the conditions for coefficients
Ai that deliver chaotic behavior of recurrent rule base. We proved the state-
ment that the minimum number of rules that are necessary for chaos in TS
models is three for triangular membership functions. Moreover, we obtained
the necessary and sufficient conditions for coefficients Ai in such rule base.

Much more interesting problem is large-scale time delay TS models that
are really important in task of time series analysis and simulation modeling.
First we will consider the case of two-time delay model, then three-time delay,
and at last the general case. Herein we consider the mapping f : I× I× . . .×
I → I, in which I = [0, 1].



384 A. Sokolov and M. Wagenknecht

4.1 Chaos in Two-Time Delay Takagi–Sugeno Model

In this case model (14) can be rewritten as

R1 : If xk is L1jk
and xk+1 is L1jk+1 then xk+2 = A1 ,

R2 : If xk is L2jk
and xk+1 is L2jk+1 then xk+2 = A2 ,

...
RM : If xk is LMjk

and xk+1 is LMjk+1 then xk+2 = AM .

(18)

It is easy to see that the following propositions hold. Three rules in two-time
delay TS rule base are necessary and sufficient for producing chaos. Let us
consider the following rule base:

R1 : If xk is L1 then xk+2 = A1 ,
R2 : If xk is L2 then xk+2 = A2 ,
R3 : If xk is L3 then xk+2 = A3 .

(19)

If the linguistic variables Li and consequents Ai in (22) satisfy the con-
ditions of Theorem 3 for one-time delay case, we have the chaotic orbit
X = {x0, x2, . . . , x2n, . . .}. In a general case of two-time delay TS model
the rule base is as follows:

R1 : If xk is L1 and xk+1 is L1 then xk+2 = A11 ,
R2 : If xk is L1 and xk+1 is L2 then xk+2 = A12 ,
R3 : If xk is L1 and xk+1 is L3 then xk+2 = A13 ,
R4 : If xk is L2 and xk+1 is L1 then xk+2 = A21 ,
R5 : If xk is L2 and xk+1 is L2 then xk+2 = A22 ,
R6 : If xk is L2 and xk+1 is L3 then xk+2 = A23 ,
R7 : If xk is L3 and xk+1 is L1 then xk+2 = A31 ,
R8 : If xk is L3 and xk+1 is L2 then xk+2 = A32 ,
R9 : If xk is L3 and xk+1 is L3 then xk+2 = A33 .

(20)

Let a1, a2, and a3 be the core positions of appropriate linguistic variables
L1, L2, and L3. Then rule base (20) can be considered as lattice with coor-
dinates a1, a2, and a3 on each axis (see Fig. 12). The nodes of the lattice
contains the appropriate values A11, A12, . . . , A33.

We use Theorem 2 for the general case of two-time delay TS model (20).
Let us try to generalize the Theorem 2 on the vector case f : x, x→ x. Then
we have the following theorem.

Theorem 7. A rule base (20) with mapping f : [a1, a3] × [a1, a3] → [a1, a3]
is chaotic on x ∈ [a1, a3] ⊂ I in the sense of Li and Yorke if the following
conditions are satisfied:

(a) A22 = a3,
(b) min(A11, A12, A13) ∈ [a1, a2], and
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(c) min(A31, A32, A3) = a1.

Proof. According to Theorem 2 it is necessary to find the appropriate sets A
and B for the transition function f : [a1, a3]×[a1, a3] → [a1, a3]. Let us extend
the conditions of Theorem 2 on vector case. Assume that A = [[ξ, Ψ ]× [θ, Ψ ]]
and B = [[ξ, Ψ ]× [θ, a2]] ⊂ A (see Fig. 13), with ξ, Ψ, and θ to be determined.
Let θ < a2 and Ψ > ξ > a2 as well.

We can rewrite the general mapping f : xk, xk+1 → xk+2 in the state
space X = (x1, x2), where x1 = xk, x2 = xk+1. Then we can write(

x1

x2

)
k+1

=
(

x2

f(x1, x2)

)
k

(21)

It is clear that according to (21) we obtain Xk+1 = F (Xk), where F =(
x2

f(x1,x2)

)
. Then we can consider Theorem 2 in a vector case. Let A =

Fig. 12. Example of rule base (25)

Fig. 13. Rule base representation and illustration of sets A, B
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ξ,Ψ

θ,Ψ

])
. Then F (A) =

(
[θ,Ψ ]

[f(Ψ,◦),f(ξ,a2)]

)
. Here f(ξ, a2) is a value of func-

tion F on the straight line x1 = ξ and f(Ψ, ◦) means some value of F on the
straight line x1 = Ψ . Let us assume that f(ξ, a2) = Ψ . To provide condition
(ii) of Theorem 2 in a vector case A ⊆ F (A) we have the following inequality:

f(Ψ, ◦) ≤ θ < a2 .

Because

B =
(

[ξ, Ψ ]
[θ, a2]

)
we can find

F (B) =
(

[θ, a2]
[f(Ψ, ◦), f(ξ, a2) = Ψ ]

)
.

It is clear that F (B) ∩ A = Ø (condition (v) of Theorem 2 for n1 = 1). Let
us find F 2(B). Here we have

F 2(B) =
(

[f(Ψ, ◦), f(ξ, a2) = Ψ ]
[f(θ, ◦), a3]

)
.

To provide condition (vi) of Theorem 2 we demand that f(θ, ◦) ≤ θ ≤ a2.
Then conditions

f(θ, ◦) ≤ θ ≤ a2

f(ξ, a2) = Ψ

f(Ψ, ◦) < a2

define conditions (a)–(c) of Theorem 9. The remaining conditions of Theo-
rem 2 are evident and are not proved here.

4.2 Chaos in Three and Higher Time Delay Takagi–Sugeno Model

For the investigation of higher order TS model we propose the same approach
as for the two-time delay TS model. Let us consider the general case of three-
time delay TS model. Herein we have the following rule base:

R1 : If xk is L1 and xk+1 is L1 and xk+2 is L1 then xk+3 = A11 ,
R2 : If xk is L1 and xk+1 is L1 and xk+2 is L2 then xk+3 = A12 ,
...
R27 : If xk is L3 and xk+1 is L3 and xk+2 is L3 then xk+3 = A33 .

(22)

We now consider the mapping f : xk, xk+1, xk+2 → xk+3. First of all it
is necessary to present this model in the state space form Xk+1 = F (Xk),
where X = (x1, x2, x3). We have
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x2

x3

⎞⎠
k+1

=

⎛⎝ x2

x3

f(x1, x2, x3)

⎞⎠
k

(23)

According to the proposed approach we have the following theorem.

Theorem 8. A rule base (22) with mapping f : [a1, a3]× [a1, a3]× [a1, a3] →
[a1, a3] is chaotic on x ∈ [a1, a3] ⊂ I in the sense of Li and Yorke if the
following conditions are satisfied:

(a) A222 = a3,
(b) min(A111, A112, . . . A133) ∈ [a1, a3], and
(c) min(A311, A312, A333) = a1.

Proof. According to Theorem 2 it is necessary to find the appropriate sets
A and B for the transition function f : [a1, a3]× [a1, a3]× [a1, a3] → [a1, a3].
Assume that A = [[ξ, Ψ ]× [θ, Ψ ]× [θ, Ψ ]] and B = [[ξ, Ψ ]× [θ, a2]× [ξ, Ψ ]] ⊂ A
(see Fig. 14), with ξ, Ψ and θ to be determined. Let θ < a2 and Ψ > ξ > a2

as well.

Fig. 14. Rule base representation for three time delay model

According to (23) we can write

F =

⎛⎝ x2

x3

f(x1, x2, x3)

⎞⎠ .

Let A =
([ ξ,Ψ

θ,Ψ

θ,Ψ

])
; then F (A) =

([ θ,Ψ
θ,Ψ

f(Ψ,◦,◦),Ψ ]

])
. To provide condition (ii) of

Theorem 2 in a vector case A ⊆ F (A) we have the following inequality:

f(Ψ, ◦, ◦) ≤ θ < a2 .
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Because

B =

⎛⎝ [ξ, Ψ ]
[θ, a2]
[ξ, Ψ ]

⎞⎠
we can find

F (B) =

⎛⎝ [θ, a2]
[ξ, Ψ ]

[f(Ψ, ◦, ◦), Ψ ]

⎞⎠ .

It is clear that F (B) ∩ A = Ø (condition (v) of Theorem 2 for n1 = 1). Let
us find F 2(B). Herein we have

F 2(B) =

⎛⎝ [ξ, Ψ ]
[f(Ψ, ◦, ◦), Ψ ]
[f(θ, ◦, ◦), a3]

⎞⎠ .

To provide condition (vi) of Theorem 2 we demand that f(θ, ◦, ◦) ≤ θ ⊆ a2.
Then conditions

f(θ, ◦) ≤ θ ≤ a2

f(ξ, a2, a2) = Ψ

f(Ψ, ◦, ◦) ≤ θ ≤ a2

define conditions (a)–(c) of Theorem 9. The remaining conditions of Theo-
rem 2 are evident and are not proved here.

Thus we can generalize our investigations in the following Theorem.

Theorem 9. A rule base (16) with mapping f : [a1, a3] × [a1, a3] × · · · ×
[a1, a3] → [a1, a3] is chaotic on x ∈ [a1, a3] ⊂ I in the sense of Li and Yorke
if the following conditions are satisfied:

(a) A22...2 = a3,
(b) min(A11...1, A11...2, . . . , A13...3) ∈ [a1, a2], and
(c) min(A311...1, A31...2, . . . , A33...3) = a1.

Remark 6. The restriction A22...2 = a3 can be weakened according to Re-
mark 3 with the same reservations.

Remark 7. Conditions (b) of Theorems 7–9 can be weakened according to
Theorem 2 as min(A11...1, A11...2, . . . , A13...3) ∈ [a1, f

−1(a2, a2, . . . , a2)]. The
proof is the same as in scalar case.

Remark 8. Conditions (c) of Theorems 7–9 can be weakened according to
Theorem 2 as it was done in Remark 2.
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5 Summary

This chapter continues the investigation of recurrent fuzzy rule bases. We
analyzed important properties of TS recurrent models with respect to their
transition functions. In future we plan to investigate the chaotic behavior
of Mamdani models responding to real tasks in time series analysis and TS
models without MF limitations like globally normalized.
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Theory of Fuzzy Chaos for the Simulation
and Control of Nonlinear Dynamical Systems

Oscar Castillo and Patricia Melin

Abstract. This chapter introduces the basic concepts of dynamical systems the-
ory and several basic mathematical methods for controlling chaos. The main goal
of this chapter is to provide an introduction to and a summary of the theory of
dynamical systems, with particular emphasis on fractal theory, chaos theory, and
chaos control. We first define what is meant by a dynamical system, then we define
an attractor, and then the concept of the fractal dimension of a geometrical object.
We also define the Lyapunov exponents as a measure of the chaotic behavior of a
dynamical system. On the other hand, the fractal dimension can be used to classify
geometrical objects because it measures the complexity of an object. The chap-
ter also describes mathematical methods for controlling chaos in dynamic systems.
These methods can be used to control a real dynamic system; however, due to ef-
ficiency and accuracy requirements we were forced to use fuzzy logic to model the
uncertainty, which is present when numerical simulations are performed. We also
describe in this chapter a new theory of chaos using fuzzy logic techniques. Chaotic
behavior in nonlinear dynamical systems is very difficult to detect and control. Part
of the problem is that mathematical results for chaos are difficult to use in many
cases, and even if one could use them there is an underlying uncertainty in the accu-
racy of the numerical simulations of the dynamical systems. For this reason, we can
model the uncertainty of detecting the range of values where chaos occurs, using
fuzzy set theory. Using fuzzy sets, we can build a theory of fuzzy chaos, where we
can use fuzzy sets to describe the behaviors of a system. We illustrate our approach
with two cases: Chua’s circuit and Duffing’s oscillator.

1 Basic Concepts of Dynamical Systems

In this section we present a brief overview of the field of nonlinear dynamical
systems and fractal theory. Recently research has shown that many simple
nonlinear deterministic systems can behave in an apparently unpredictable
and “chaotic” manner [1]. The existence of complicated dynamics has been
discussed in the mathematical literature for many decades, with important
contributions by Poincaré, Birkhoft, Smale, and Kolmogorov and his stu-
dents, among others. Nevertheless, it is only recently that the wide-ranging
impact of “chaos” has been recognized. Consequently, the field is now under-
going explosive growth, and many applications have been made across a broad
spectrum of scientific disciplines—robotics, engineering, physics, chemistry,

O. Castillo and P. Melin: Theory of Fuzzy Chaos for the Simulation and Control of Nonlinear
Dynamical Systems, StudFuzz 187, 391–414 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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fluid mechanics, and economics, to name several. We start with some basic
definitions of concepts used in this chapter.

Dynamic System: This is a set of mathematical equations that allows one,
in principle, to predict the future behavior of the system given the past. One
example is a system of first-order ordinary differential equations in time:

dx
dt

= G(x,t) , (1)

where x(t) is a D-dimensional vector and G is a D-dimensional vector func-
tion of x and t. Another example is a map.

Map: A map is an equation of the following form:

xt+1 = F (xt) , (2)

where the “time” t is discrete and integer valued. Thus, given x0, the maps
gives x1. Given x1, the map gives x2, and so on.

Dissipative System: In Hamiltonian (conservative) systems such as the
ones arising in Newtonian mechanics of particles (without friction), phase
space volumes are preserved by time evolution (the phase space is the space
of variables that specify the state of the system). Consider, for example, a
two-dimensional phase space (q, p), where q denotes a position variable and p
a momentum variable. Hamilton’s equations of motion take the set of initial
conditions at time t = t0 and evolve them in time to the set at time t = t1.
Although the shapes of the sets are different, their areas are the same. By
a dissipative system we mean one that does not have this property. Areas
should typically decrease (dissipate) in time so that the area of the final
set would be less than the area of the initial set. As a consequence of this,
dissipative systems typically are characterized by the presence of attractors.

Attractor : If one considers a system and its phase space, then the initial
conditions may be attracted to some subset of the phase space (the attractor)
as time t→∞. For example, for a damped harmonic oscillator the attractor
is the point at rest. For a periodically driven oscillator in its limit cycle, the
limit set is a closed curve in the phase space.

Strange Attractor : In the above two examples, the attractors were a point,
which is a set of dimension zero, and closed curve, which is a set of dimension
one. For many other attractors the attracting set can be much more irregular
(some would say pathological) and, in fact, can have a dimension that is not
an integer. Such sets have been called “fractal,” and when they are attractors,
they are called strange attractors. The existence of a strange attractor in a
physically interesting model was first demonstrated by Lorenz.

Chaotic Attractor : By this term we mean that if we take two typical points
on the attractor that are separated from each other by a small distance ∆(0)
at t = 0, then for increasing time t they move apart exponentially fast. That
is, in some average sense

∆(t) ∼ ∆(0) exp (λt) , (3)
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with λ > 0 (where λ is called the Lyapunov exponent). Thus a small uncer-
tainty in the initial state of the system rapidly leads to inability to forecast
its future. It is typically the case that strange attractors are also chaotic.

One of the most prominent, chaotic, continuous-time dynamical systems
is the “Lorenz attractor,” named after the meteorologist E.N. Lorenz who
investigated the three-dimensional, continuous-time system

x′ = s(−x+ y)
y′ = rx− y − xz s, r, b > 0
z′ = −bz + xy

(4)

emerging in the study of turbulence in fluids. For r above the critical value
of r = 28.0, trajectories of (4) evolve in a rather unexpected way. Suppose
that a trajectory starts at an initial value near the origin. For some time the
trajectory regularly spirals outward from one fixed point, then the trajectory
jumps to a region near another fixed point and does the same thing. As
trajectories starting at different initial values all converge to and remain
in the same region near the two fixed points, the region is considered an
“attractor.” It is a “strange attractor” because it is neither a point nor a
closed curve. In general, this chaotic behavior can only occur for systems of
at least three simultaneous nonlinear differential equations or for systems of
at least a one-dimensional nonlinear map [2].

Fractal geometry is a mathematical tool for dealing with complex sys-
tems that have no characteristic length scale. A well-known example is the
shape of a coastline. When we see two pictures of a coastline on two different
scales, we cannot tell which scale belongs to which picture: both look the
same. This means that the coastline is scale invariant or, equivalently, has
no characteristic length scale. Other examples in nature are rivers, cracks,
mountains, and clouds. Scale-invariant systems are usually characterized by
noninteger (“fractal”) dimensions.

The dimension tells us how some property of an object or space changes
as we view it at increased detail. There are several different types of dimen-
sion. The fractal dimension df describes the space filling properties of an
object. Three examples of the fractal dimension are the self-similarity di-
mension, the capacity dimension, and the Hausdorff–Besicovitch dimension.
The topological dimension dt describes how points within an object are con-
nected together. The embedding dimension de describes the space in which
the object is contained.

The fractal dimensions df are useful and important tools to quantify self-
similarity and scaling. Essentially, the dimension tells us how many new pieces
are resolved as the resolution is increased. The self-similarity dimension can
be applied only to geometrical self-similar objects, where the small pieces are
exact copies of the whole object. However, the capacity dimension can be used
to analyze irregularly shaped objects that are statistically self-similar. On
the other hand, the Hausdorff–Besicovitch dimension requires more complex
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mathematical tools. For this reason, we will limit our discussion here to the
capacity dimension.

A ball is the set of points within radius r of a given point. We determine
N(r) the minimum number of balls required so that each point in the object
is contained within at least one ball of radius r. In order to cover all the
points of the object, the balls may need to overlap. The capacity dimension
is defined by the following equation:

dc = lim
r→0

logN(r)
log(1/r)

. (5)

The capacity dimension defined as above is a measure of the space filling
properties of an object because it gives us an idea of how much work is needed
to cover the object with balls of changing size.

A useful method to determine the capacity dimension is to choose balls
that are the nonoverlapping boxes of a rectangular coordinate grid. N(r) is
then the number of boxes with side of length r that contain at least one
point of the object. Efficient algorithms have been developed to perform this
“box counting” for different values of r, and thus determine the box counting
dimension as the best fit of log N(r) versus log(1/r).

The fractal dimension df characterizes the space-filling properties of an
object. The topological dimension dt characterizes how the points that make
up the object are connected together. It can have only integer values. Con-
sider a line that is so long and wiggly that it touches every point in a plane
and thus covers an area. Because it covers a plane, its space-filling fractal
dimension df = 2. However, no matter how wiggly it is, it is still a line and
thus has topological dimension dt = 1. Thus, the essence of a fractal is that
its space-filling properties are larger than one anticipates from its topologi-
cal dimension. Thus we can now present a formal definition of a fractal [3],
namely, that an object is a fractal if and only if

df > dt .

However, there is no one definition that includes all the objects or processes
that have fractal properties.

Despite the identification of fractals in nearly every branch of science, too
frequently the recognition of fractal structure is not accompanied with any
additional insight as to its cause. Often we do not even have the foggiest idea
as to the underlying dynamics leading to the fractal structure. The chaotic
dynamics of nonlinear systems, on the other hand, is one area where consid-
erable progress has been made in understanding the connection with fractal
geometry. Indeed, chaotic dynamics and fractal geometry have such a close
relationship that one of the hallmarks of chaotic behavior has been the mani-
festation of fractal geometry, particularly for strange attractors in dissipative
systems [4]. For a practical definition we take a “strange attractor,” for a dy-
namic system, to be an attracting set with fractal dimension. For example,
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Y(t) ln N(r)

. .
.

    y2  y4 . .
. .     ln N(r) = ln - dln r

 y1 y3

0         t time 0 ln(r)

    (a) (b)

Fig. 1. Fractal dimension of a time series: (a) curve and the boxes covering it, and
(b) the logarithmic regression to find d

the famous Lorenz strange attractor has a fractal dimension of about 2.06.
Also, we think that beyond only this relationship between strange attractors
and the fractal dimension of the set, there is a deeper relationship between
the underlying dynamics of a system and the fractal nature of its behavior.
We will explore this relationship in more detail in the following sections of
this chapter.

Let us consider as an example the use of the fractal dimension as a math-
ematical model of the time series in the following form:

d =
log(N)
log(1/r)

, (6)

where d is the fractal dimension for an object of N parts, each scaled down
by a ratio r. For an estimation of this dimension we can use the following
equation:

N(r) = β[1
/
rd] , (7)

where N(r) = number of boxes contained in a geometrical object and r =
size of the box. We can obtain the box dimension of a geometrical object [3]
counting the number of boxes for different sizes and performing a logarith-
mic regression on this data. For our particular case the geometrical object
consists of the curve constructed using the set of points from the time series.
Fig. 1a shows the curve and the boxes used to cover it, and in Fig. 1b the
corresponding logarithmic regression is illustrated.

2 Controlling Chaos

More than two decades of intensive studies on nonlinear dynamics have posed
the question on the practical applications of chaos [5]. One of the possible
answers is to control chaotic behavior in such a way as to make it predictable.
Indeed, nowadays the idea of controlling chaos is an appealing one.
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Chaos occurs widely in engineering and natural systems; historically, it
has usually been regarded as a nuisance and is designed out if possible. It has
been noted only as irregular or unpredictable behavior, often attributed to
random external influences. More recently, there have been examples of the
potential usefulness of chaotic behavior [5].

We can divide chaos controlling approaches into two broad categories:
firstly those in which the actual trajectory in the phase space of the system
is monitored and some “feedback” process is employed to maintain the trajec-
tory in the desired mode, and secondly “nonfeedback” methods in which some
other property or knowledge of the system is used to modify or exploit chaotic
behavior. Feedback methods do not change the controlled systems and stabi-
lize unstable periodic orbits or strange chaotic attractors, while nonfeedback
methods slightly change the controlled system, mainly by a small perma-
nent shift of control parameter, changing the system behavior from chaotic
attractor to periodic orbit which is close to the initial attractor.

We describe in this section several methods by which chaotic behavior
in a dynamical system may be modified, displaced in parameter space, or
removed. The Ott–Grebogi–Yorke (OGY) method [6] is extremely general,
relying only on the universal property of chaotic attractors, i.e, they have
embedded within them infinitely many unstable periodic orbits. On the other
hand, the method requires following the trajectory and employing a feedback
control system, which must be highly flexible and responsive; such a system
in some experimental configurations may be large and expensive. It has the
additional disadvantage that small amounts of noise may cause occasional
large departures from the desired operating trajectory.

The nonfeedback approach is inevitable much less flexible and requires
more prior knowledge of equations of motion. On the other hand, to apply
such a method, we do not have to follow the trajectory. The control proce-
dures can be applied at any time and we can switch from one periodic orbit
to another without returning to the chaotic behavior, although after each
switch, transient chaos may be observed. The lifetime of this transient chaos
strongly depends on initial conditions. Moreover, in a nonfeedback method
we do not have to wait until the trajectory is close to an appropriate unstable
orbit; in some cases this time can be quite long. The dynamic approach can
be very useful in mechanical systems, where feedback controllers are often
very large. In contrast, a dynamical absorber having a mass of the order
of 1% of that of the control system is able, as we will see later, to convert
chaotic behavior to periodic one over a substantial region of parameter space.
Indeed, the simplicity by which chaotic behavior may be changed in this way
may actually motivate the search for, and exploitation of, chaotic behavior
in practical systems.

The essential property of a chaotic trajectory is that it is not asymp-
totically stable. Closely correlated initial conditions have trajectories, which
quickly become uncorrelated. Despite this obvious disadvantage, it has been
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Fig. 2. Chua’s circuit
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Fig. 3. iR–vC1 characteristic of the non-linear resistor

established that control leading to the synchronization of two chaotic systems
is possible.

The methods described in this section are illustrated by the example
of Chua’s circuit [7] shown in Fig. 2. Chua’s circuit contains three linear
energy storage elements (an inductor and two capacitors), a linear resistor,
and a single nonlinear resistor NR, namely Chua’s diode with a three-segment
piecewise linear v–i characteristic defined by

f(vc1) = m0vc1 +
1
2
(m1 −m0)(|vc1 + 1| − |vc1 − 1|) , (8)

where the slopes in the inner and outer regions are m0 and m1, respectively
(see Fig. 3).

In this case the state equations for the dynamics of Chua’s circuit are as
follows:

C1
dvc1

dt
= G(vc2 − vc1)− f(vc1)

C2
dvc2

dt
= G(vc1 − vc2)− iL

L
diL
dt

= vc2 , (9)
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Fig. 4. Plot of variable vC1 of Chua’s circuit

where G = 1/R.
It is well known that for R = 1.64 kΩ, C1 = 10nF, C2 = 99.34 nF,m1 =

−0.76mS,m0 = 0.41mS, and L = 18.46mH, Chua’s circuit operate on the
chaotic double-scroll Chua’s attractor. We show in the following figures the
simulation of Chua’s circuit for initial conditions (−3,−3,−10). Figure 4
shows the plot of variable vC1 in time. In this figure, we can appreciate the
erratic behavior of this variable. Figure 5 shows the plot of variable vC2

across time, which is similar to the behavior of vC1. Figure 6 shows a two-
dimensional view of the double-scroll Chua’s attractor. Finally, in Fig. 7 we
can appreciate a three-dimensional view of Chua’s attractor. The chaotic dy-
namics of Chua’s circuit have been widely investigated (e.g., see [8]). One of
the main advantages of this system is the very good accuracy between nu-
merical simulations of the model and experiments on real electronic devices.
Experiments with this circuit are very easy to perform, even for nonspecial-
ists.

2.1 Controlling Chaos Through Feedback

2.1.1 Ott–Grebogi–Yorke Method

Ott et al. [6] have proposed and developed a method by which chaos can
always be suppressed by shadowing one of the infinitely many unstable peri-
odic orbits embedded in the chaotic attractor. The basic assumptions of this
method are as follows:
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Fig. 5. Plot of variable vC1Vc2 for Chua’s circuit
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(a) The dynamics of the system can be described by an n-dimensional map
of the form

Xn+1 = f(Xn, p) . (10)

(b) p is some accessible system parameter which can be changed in some
small neighborhood of its nominal value p∗.

(c) For this value p∗, there is a periodic orbit within the attractor around
which we would like to stabilize the system.

(d) The position of this orbit changes smoothly with changes in p, and there
are small changes in the local system behavior for small variations of p.

Let XF be a chosen fixed point of the map f of the system existing for
the parameter value p∗. In the close vicinity of this fixed point with good
accuracy we can assume that the dynamics are linear and can be expressed
approximately by

Xn+1 −XF = M(Xn −XF ) . (11)

The elements of the matrix M can be calculated using the measured
chaotic time series and analyzing its behavior in the neighborhood of the
fixed point. The OGY algorithm is schematically explained in Fig. 8 and its
main properties are as follows:

(a) No model of dynamics is required. One can use either full information
from the process or a delay coordinate embedding technique using single
variable experimental time series.



Theory of Fuzzy Chaos for the Simulation and Control of Nonlinear 401

XF(p*)   XF(p*)         XF(pN)

XN

      XN

XF(p*)

  XN+1

Fig. 8. General idea of the Ott–Grebogi–Yorke method

(b) Any accessible variable (controllable) system parameter can be used as
the control parameter.

(c) In the absence of noise and error, the amplitude of applied control signal
must be large enough (exceed a threshold) to achieve control.

(d) Inevitable noise can destabilize the controlled orbit, resulting in occa-
sional chaotic bursts.

(e) Before settling into the desired periodic mode, the trajectory exhibits
chaotic transients, the length of which depends on the actual starting
point.

In [9] the OGY method was applied to control chaos in Chua’s circuit.
Using a specific software package, unstable periodic orbits were found em-
bedded in the attractor which could serve as goals of control. The controlling
method was implemented in the way shown in Fig. 9. The computer was used
for data acquisition, identification of the chaotic system in terms of unstable
periodic orbits, and calculation of the control signal. When applying the OGY
method to control chaos in a real electronic circuit the main problem encoun-
tered was the noise introduced due to inevitable noise of the circuit elements.

 X X

 Y Y

 Z Z

Control Control

Chua’s
circuit

Data
acquisition

card
Computer

Fig. 9. Practical implementation of the Ott–Grebogi–Yorke OGY method
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The method was found to be very sensitive to the noise level—very small
signals sometimes are hidden within the noise, and control is impossible.

Generally, the experimental application of the OGY method requires a
permanent computer analysis of the state of the system. The changes of the
parameters, however, are discrete in time and this leads to some serious limi-
tations. The method can stabilize only those periodic orbits in which maximal
Lyapunov exponent is small compared to the reciprocal of the time interval
between parameter changes. Since the corrections of the parameter are rare
and small, the fluctuation noise leads to occasional bursts of the system into
regions far from the desired periodic orbit, especially in the presence of noise.

2.1.2 Pyragas’s Control Methods

A different approach to feedback control, which helps to avoid the above-
mentioned problems, was proposed by Pyragas [10]. This method is based on
the construction of a special form of a time continuous perturbation, which
does not change the form of the desired unstable periodic orbit, but under
certain constraints can stabilize it. Two feedback-controlling loops, shown in
Fig. 10, have been proposed.

A combination of feedback and periodic external force is used in the first
method (Fig. 10a). The second method (Fig. 10b) does not require any ex-
ternal source of energy and it is based on self-controlling delayed feedback.

 X(t) Y(t)

cos(wt)

(a)

 X(t) Y(t)

(b)

Chaotic
Systems

Chaotic
Systems

Delay

Fig. 10. Feedback controlling loops; (a) control by periodic external perturbation,
and (b) control by time delay
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If the period of external force or a time delay is equal to the period of one of
the unstable periodic orbits embedded in the chaotic attractor, it is possible
to find a constant K, which allows stabilization of the unstable periodic or-
bit. This approach, being noise resistant, can easily be used in experimental
systems. The first of Pyragas’s methods can be considered as the special case
of the direct application of classical controlling methods to the problem of
controlling chaos.

The dynamical system
X ′ = f(X) , (12)

where X ∈ Rn, is controllable if there exists a control function u(t), such
that

X ′ = f(X) + u(t) (13)

allows to move trajectory X(t) from point X0 at time t0 to the desired point
X in finite time t.

The controllability concept can be applied to the chaos controlling prob-
lems. For example, for Chua’s circuit the equations for the controlled circuit
are

X ′ = a(Y −X − f(X))
Y ′ = X − Y + Z −K(Y − Y ∗)
Z ′ = −bY . (14)

This approach is illustrated in Fig. 11. The main advantages of this method
are as follows:

Y* + Y

            -

Chua’s
Circuit

K

K

Fig. 11. Closed loop feedback control configuration

(a) Any solution of the original system can be a goal of the control (fixed
point, unstable periodic orbit, etc.)

(b) The controller has a very simple structure.
(c) Access to system parameters is not required.
(d) It is not affected by small parameter variations.
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2.1.3 Controlling Chaos by Chaos

In this section, we show that the chaotic behavior of one system can be
controlled by coupling it with another one which can also be chaotic [5].
Thus we consider two chaotic systems, which we call A and B respectively,

X ′ = f(X)
Y ′ = g(X) , (15)

where X,Y ∈ Rn, and we use the controlling strategy, which is illustrated in
Fig. 12; the two systems are coupled through the operators λ, µ, which have
a very simple linear form. We assume that some or all state variables of both
systems A and B can be measured, so that we can measure signal X(t) from
system A and signal Y (t) from B, and that the systems are coupled in such
a way that the differences D1 and D2 between the signals X(t) and Y (t) are

F1(t) = λ[X(t)− Y (t)] = λD1(t)
F2(t) = µ[Y (t)− Y (t)] = µD2(t) (16)

used as control signals introduced, respectively, into each of the chaotic sys-
tems A and B as negative feedback. We take λ, µ > 0 to be experimentally
adjustable weights of the perturbation.

(Y-X)

(X-Y)

Chaotic
System A

Chaotic
System B

Fig. 12. Controlling chaos-by-chaos scheme

Using the coupling given in Fig. 12, it has been shown that one chaotic
system coupled with the other one can significantly change the behavior of
one of them (unidirectional coupling, i.e., λ or µ = 0) or of both systems
(mutual coupling, i.e., λ, µ �= 0). This property allows us to describe the
above procedure as the “controlling chaos by chaos” method. In [11], rigorous
conditions are given, under which chaotic attractors of systems A and B are
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equivalent, or the evolution of one of them is forced to take place on the
attractor of the other one. Kapitaniak [5] shows an example of coupling two
Lorenz chaotic attractors, which results in chaos control and increase of the
predictability.

2.2 Controlling Chaos Without Feedback

2.2.1 Control Through Operating Conditions

Virtually all engineering and most natural systems are subjected during op-
eration to external forcing. This forcing will contain (and hopefully be domi-
nated by) planned and intentional components; it will also almost invariably
contain unintentional “noise.” Smart design and control of this forcing is of-
ten able to annihilate, or shift to a harmless region of parameter space, an
unwanted chaotic behavior.

In this case, the method consists of finding the chaotic region in parame-
ter space by analytical and numerical methods [5]. Then based on this region
change the parameters to control the dynamical system. The procedure de-
scribed in this section is based on the direct change of one of the system
parameters to shift system behavior from chaotic to periodic, close to the
chaotic attractor. It cannot be called a control method in the sense of the
methods described before, but it illustrates that having a system designed as
chaotic, we obtain easy access to different types of periodic behavior.

2.2.2 Control by System Design

In this section, we explore the idea of modifying or removing chaotic behavior
by appropriate system design. It is clear that, to a certain extent, chaos may
be “designed out” of a system by appropriate modification of parameters,
perhaps corresponding to modification of mass or inertia of moving parts.
Equally clearly, there exist strict limits beyond which such modifications
cannot go without seriously affecting the efficiency of the system itself.

In this section, we describe a method for controlling chaos in which the
chaos effect is achieved by coupling the chaotic main system to a simpler
autonomous system (controller), usually linear, as shown in Fig. 13. This
method [5] is developed for chaotic systems in which for some reason it is
difficult, if not impossible, to change any parameter of the main system. In
particular consider the coupling of the chaotic system

X ′ = f(X,µ) , (17)

where X ∈ Rn, n ≥ 3, and µ ∈ R is a system parameter, to another (simpler)
asymptotically stable system (controller) described by

Y ′ = g(Y, e) , (18)
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Autonomous
Controller

Chaotic
System

Fig. 13. Coupling scheme

where Y ∈ Rn and e is a vector denoting the controller’s parameters, and
where at least one of the parameters ei can be easily changed. For practical
reasons, the dimension m of the controller system (18) should be chosen as
low as possible. Since the method was mainly designed for controlling chaos in
mechanical systems, we choose m = 2, i.e., a one degree of freedom controller
(the simplest mechanical system). The equations for the extended system are

X ′ = f(X,µ) +AY
Y ′ = g(Y, e) +BX , (19)

where A and B are the coupling matrices. Since the Y subsystem is asymp-
totically stable, the role of the controller is to change the behavior of the
system from chaotic to some desired periodic, possibly constant, operating
regime.

The idea of this method is similar to that of the so-called dynamical
vibration absorber. A dynamical vibration absorber is a one-degree of freedom
system, usually mass on a spring, which is connected to the main system as
shown in Fig. 14.

Although such a dynamical absorber can change the overall dynamics
substantially, it usually need only be physically small in comparison with
the main system, and does not require an increase of excitation force. It can
be easily added to the existing system without major changes of design or

f(X) = kX + kc X
3

        C

          X
F cos wt

  ka

         Y

m

ma

Fig. 14. Dynamical damper as chaos controller
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construction. This contrasts with devices based on feedback control, which
can be large and costly.

To explain the role of dynamical absorbers in controlling chaotic behav-
ior let us consider the Duffing oscillator, coupled with an additional linear
system:

X ′′ + aX ′ + bX + cX3 + d(X − Y ) = B0 +B1 coswt , (20a)

Y ′′ = e(Y −X) = 0 , (20b)

where a, b, c, d, e, B0, B1, and w are constants. Here d and e are the charac-
teristic parameters for the absorber, and we take e as the control parameter.

It is well known that the Duffing’s oscillator shows chaotic behavior for
certain parameter regions. As has been mentioned in the previous section,
in many cases the route to chaos proceeds via a sequence of period doubling
bifurcations, and in such cases this method provides an easy way of switching
between chaotic and periodic behavior. Figure 15 shows a two-dimensional
view of the chaotic behavior in Duffing’s oscillator. Figure 16 shows a plot of
variable X across time [0, 350]. Figure 17 shows a plot of variable X ′ across
time. And finally, Fig. 18 shows a three-dimensional view of the strange
attractor.

-1 -0.5 0 0.5 1

Simulation of Duffing Equation

y

x
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-0.5

0

0.5

1

Fig. 15. Chaotic behavior in Duffing’s oscillator
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Fig. 16. Plot of variable X across time for Duffing’s oscillator
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Fig. 17. Plot of variable X ′ across time for Duffing’s oscillator
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Fig. 18. Simulation of Duffing’s oscillator (20) for e = 0.01

Let us consider the parameters of (20a) to be fixed at values a = 0.077, b =
0, c = 1.0, B0 = 0.045, B1 = 0.16, and w = 1.0, then we can find [5] that we
have chaos for e ∈ [0, 0.10], and we can control this chaos by increasing e
above 0.10. As this method is designed mainly for experimental applications,
we shall now briefly suggest some guidelines for applying it:

(1) The coupled system has to be as simple as possible.
(2) The coupling e should be chosen as small as possible.
(3) If it is possible one should couple the controller in such a way that the

locations of the fixed points of the original system are not changed.

2.3 Method Selection

Although the methods described in the previous sections have been developed
mainly by physicists and mathematicians, generally most of them can be
applied to control engineering systems.

In particular, the nonfeedback methods can practically always be used.
Their applications are straightforward and do not require special complicated
controllers to be used. The main disadvantage of these methods is that the
goal of controlling has to be determined by trial and error method.

The motivations for using feedback systems to control chaos are the fol-
lowing: feedback controllers are easy to implement, especially in electrical
systems, they can perform the job automatically, and stabilize the overall
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control system efficiently. On the other hand, conventional feedback con-
trollers are designed for nonchaotic systems. A chaotic system’s sensitivity
to initial conditions may lead to the impression that in chaotic systems their
sensitivity to small errors makes them very difficult. Such an impression may
lead to the argument that once the control is initiated there is no need for
further monitoring of the system’s dynamics, nor feeding back this informa-
tion in order to sustain the control. Indeed, it turns out that conventional
feedback control of chaotic systems is generally difficult, but not impossible.
Recently, Castillo and Melin [12–14] used neural networks and fuzzy logic for
identification and control of chaotic systems. In many cases, a specially imple-
mented feedback method can guarantee stabilization of the dynamic system.
To summarize, the selection of the controlling method has to be based on the
following:

(1) The goal of controlling (e.g., if the suppression of chaos is the main goal,
then nonfeedback methods can be applied in an easier way).

(2) The level of noise in the system (e.g., if the level of noise is large, then
Pyragas’s methods can be more effective than the OGY approach).

(3) The particular characteristics of the system. (Generally, in electrical sys-
tems one can try to use both feedback and nonfeedback methods. In
mechanical systems where the suppression of chaos is the main goal of
controlling, nonfeedback methods are recommended.)

3 Towards a Theory of Fuzzy Chaos

For a given dynamical system expressed as a nonlinear differential equation:

dy
dt

= f(t,y) y(0) = y0 . (21)

or as nonlinear difference equation:

yt+1 = f(yt, . . .) y(0) = y0 . (22)

We can have many different types of dynamic behaviors, for the above
equations, depending on the parameter values, and also depending on the
analytical properties of the function f . Also, there exists a fundamental dif-
ference between (1) and (2), namely, that differential equations can only
exhibit chaos when they are at least three-dimensional. However, difference
equations can exhibit chaos even for the one-dimensional case.

In particular, we can have “chaotic behavior,” defined formally as sensi-
tive dependence on initial conditions for many real dynamical systems [2].
However, in numerical simulations we usually have uncertainty related to nu-
merical errors in the methods and also in the initial values. For this reason,
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it is very difficult to identify precisely real chaotic behavior [15–17]. We can
relax the traditional mathematical definition of “chaos” by using the theory
of fuzzy logic [18], in this way obtaining a new more realistic definition of
chaotic behavior. We assume that we have a dynamical system in the real
line given as

yt = f(yt−1, θ) . (23)

In this case, we can associate chaotic behavior with the number of pe-
riod doublings (or bifurcations) that occur when the parameter θ is varied.
According to this fact, we can state the following definition.

Definition 1. (Chaotic behavior according to period doublings) A one-
dimensional dynamical system shows fuzzy chaos when the number of period
doublings is considered to be large:

IF number of period doublings is large THEN behavior is fuzzy chaos

We can also state a definition of fuzzy chaos based on the fact that complex
behavior is related to the fractal dimension of a strange attractor.

Definition 2. (Fuzzy chaos by the fractal dimension) A one-dimensional dy-
namical system shows fuzzy chaos, when the value of the fractal dimension is
large (close to a numeric value of 2 for the plane):

IF the fractal dimension is large THEN behavior is fuzzy chaos.

Also, the value of the fractal dimension has to be calculated from the time
series using the box counting algorithm.

4 Controlling Chaotic Behavior Using Fuzzy Chaos

In any of the above-mentioned methods for controlling chaos we have that a
specific parameter is used to change the dynamics of the system from a chaotic
to a stable behavior. For example, for the specific case of Duffing’s oscillator
the parameter e of (20b) can be used for controlling the chaotic behavior of
the oscillator. However, the crisp interval [0, 0.10] for parameter e in which
chaotic behavior occurs is not really an accurate range of values. Of course, for
e = 0 we can expect chaotic behavior, but as e increases in value, real chaotic
behavior is more difficult to find. In the crisp boundary of e = 0.10, things are
more dramatic, one can either find cyclic stable behavior or unstable behavior
depending on the conditions of the experiment or simulation. For this reason,
it is more appropriate to use the proposed concept of “fuzzy chaos,” which will
allow us to model the uncertainty in identifying this chaotic behavior. In this
case, a membership function could be defined to represent this uncertainty in
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Table 1. Comparison between the methods for controlling chaos

Traditional Chaos New Fuzzy Chaos
Definition (%) Definition (%)

Chua’s circuit 98.50 99.50
Duffing’s oscillator 96.00 98.50

finding chaotic behavior, and also this is really helpful in controlling chaotic
behavior as we can take action even before completely chaotic behavior is
present. For the case of the Duffing’s oscillator we can define fuzzy rules for
identifying specific dynamic behaviors. For example, chaotic behavior can be
given by the rule

IF e is Small THEN behavior is fuzzy chaos.

In the above fuzzy rule, the linguistic term “small” has to be defined by the
appropriate membership function. Other similar rules can be established for
identifying different dynamic behavior for the system. One obvious advantage
of this approach is that we are able to have relative evidence of chaotic
behavior before there is complete instability. As a consequence of this fact
we can take action in controlling this chaotic behavior sooner than with
traditional methods. A sample fuzzy rule for controlling chaos is as follows:

IF behavior is fuzzy chaos THEN increase is small positive.

This fuzzy rule simply states that when fuzzy chaos is present then we must
increase slightly the value of e. Of course, linguistic terms, like “small posi-
tive,” need to be defined properly. Table 1 shows the comparison between the
methods for controlling chaos for the two dynamic systems considered in this
chapter. The table shows the efficiency and accuracy for controlling chaotic
behavior for the two cases described before. We did consider a sample of 200
different experimental conditions for both dynamical systems, and compare
the relative number of times that a particular method was able to really con-
trol chaotic behavior. The implementation of the fuzzy chaos approach for
behavior identification was done in MATLAB. Figure 19 shows the member-
ship functions of the linguistic variable corresponding to the parameter e, in
which there are three linguistic values.
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Fig. 19. Membership functions for parameter “e”

5 Conclusions

In this chapter we have presented a new theory of fuzzy chaos for nonlinear
dynamical systems. We can apply this theory for behavior identification. We
also presented a new method for controlling nonlinear dynamical systems.
This method is based on a hybrid fuzzy–chaos approach to achieve the control
of a particular dynamical system given its mathematical model.
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Complex Fuzzy Systems
and Their Collective Behavior

Maide Bucolo, Luigi Fortuna, and Manuela La Rosa

Abstract. This work aims at being a contribution for the characterization of a
new class of complex systems built as arrays of coupled fuzzy logic based chaotic
oscillators and an investigation on their collective dynamical features. Different
experiments were carried out varying the parameters related to the single-unit dy-
namics, as Lyapunov exponent, and to the macrosystem structure, as the number
of connections. Four types of global behaviors have been identified and character-
ized distinguishing their patterns as follows: the spatiotemporal chaos, the regular
synchronized behavior, the transition phase, and the chaotic synchronized behavior.
These collective behaviors and the synchronization capability have been highlighted
by defining a mathematical indicator which weights the slight difference among a
wide number of spatiotemporal patterns. To investigate the effects due to the net-
work architecture on the synchronization characteristics, complex fuzzy systems
have been reproduced using fuzzy chaotic cells connected through different topolo-
gies: regular, “small worlds,” and random.

1 Introduction

This chapter discusses the study of the dynamical behavior of spatiotempo-
ral complex systems built by coupling fuzzy logic chaotic units. The artificial
reproduction of phenomena like spatiotemporal chaos and synchronization
constitutes an interesting approach to the study and the understanding of
collective dynamics that are commonly observed in nature [1]. In particu-
lar the synchronization of oscillators is a classical topic related to different
research fields: from circuit theory to biological and social systems. In the
last 10 years literature ever more detailed on synchronization is continuously
dealt [2]; circuits and systems based on synchronization principles are to-
day usually adopted in different applications. The theme of synchronization
has catalyzed an ever increasing scientific attention in the fascinating field of
complex systems and networks.

A review study [3] explores in details the behavior of arrays of a large
number of oscillators by considering both the effects due to the dynamics of
the single unit and those related to the network topology with the question
“how does the global system reach the synchronization?” in mind. More-
over the results shown in [4] represents the key reference in the area of the
“Small World Theory,” and Chaps. 8 and 9 discuss the role played by the

M. Bucolo et al.: Complex Fuzzy Systems and Their Collective Behavior,
StudFuzz 187, 415–437 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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network topology to tame the global dynamics of coupled nonchaotic oscil-
lators. Using the “small-worlds” topology [5], a new complex architecture is
obtained starting from a regular lattices and rewiring some connections with
probabilistic rules. The introduction of these structures in complex system
displays an enhancement in the speed of signal propagation, synchronizabil-
ity, and computational power compared to regular networks with the same
number of elements.

Finally, [6] exploits the possibility of using the network topology to syn-
chronize arrays of chaotic circuits, underlining the value of the results ob-
tained in the case of arrays with nonchaotic oscillators.

Starting from these remarks the role of this chapter is twofold: The first
one is to illustrate a new class of complex systems, the arrays of coupled
fuzzy chaotic oscillators, and the second one, is to give a contribution to
characterize the synchronization of these systems, both in a qualitative and
a quantitative way.

This study of complex systems has focused on the relationships among
the features of the fundamental cell, the architecture of the network under
consideration, and the spatiotemporal dynamics achieved [3]; therefore, their
characterization can be seen from two different points of view as a single-unit
and as a macrosystem. At the single-unit level, the attention is pointed to-
ward the effects of nonlinear dynamics of each unit due to its own parameters,
without taking into account the neighborhood interferences on the collective
behavior. At the macrosystem level, the aim is to correlate the global dy-
namics with the topology of the complex system through the number of the
connections and their spatial distribution.

A generalization of the synchronization principles for an array of fuzzy
logic chaotic based dynamical systems is suggested and evaluated as alterna-
tive approach to build locally connected fuzzy complex systems by varying
both the rules driving the cells and the network architecture. A discrete fuzzy
oscillator that shows a chaotic behavior has been chosen as fundamental unit.
This fuzzy system is obtained through a linguistic description of the stretch-
ing and folding features for an assigned value of the Lyapunov exponent [7].
At macro-level, initially, the considered fuzzy cells have been connected with
a regular topology. Different structures have been implemented using different
parameter values as the Lyapunov exponent and the number of connections,
and a qualitative comparison of their dynamic features have been performed.
The definition of a synchronization index gives the opportunity to quan-
tify the synchronization properties of the considered collective behavior. The
introduction of this index speeds up the process of pattern comparison, and
therefore it is possible to consider a wide number of topologies and archi-
tectures for a more exhaustive and detailed study. In the second phase, the
investigation at the macro-level has been carried on comparing the global
dynamics obtained through different topologies: regular, small worlds, and
random [5].
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In Sect. 2 the features of a regular fuzzy chain have been described choos-
ing the fuzzy chaotic cell and the topology scheme. In the first step a chaotic
fuzzy oscillator with Lyapunov exponent equal to 0.1 has been considered
as fundamental element of the array and the spatiotemporal dynamics have
been opportunely characterized pointing out the synchronization through
both a qualitative pattern analysis and a frequency analysis. The same study
has been carried on varying the features of the chaotic fuzzy oscillator; the
Lyapunov exponent has been set equal to 0.9. In Sect. 3 the definition of a
spatiotemporal synchronization index is explained in details and, above all,
the capability of becoming synchronization quantitative indicator is shown
clearly in the different implemented cases. In Sect. 4 the analysis aims at in-
vestigating on the relationship between the synchronization features and the
complex fuzzy dynamics obtained varying the topology under consideration,
i.e., the regular, the small-world, and the random.

The reported results underline the possibility to extend the principles of
synchronization, as well as auto-organization, to this new class of complex
fuzzy system, as it is evident in the pattern formation. This investigation
opens a new way to see the complex real-world phenomena that sometimes
are not easy to describe using mathematical structures.

2 Complex Fuzzy System

To well characterize the spatiotemporal dynamics of an extended nonlin-
ear fuzzy one-dimensional array, the fundamental choices are to set the dy-
namic of the elementary cell and the network structure. A discrete chaotic
fuzzy oscillator has been chosen as basic brick of this network structure, and
its chaotic behavior is defined varying the Lyapunov exponent in a suitable
range. The macrosystem has been obtained by connecting of a large number
of identical cells in a regular configuration. The study of the global dynamics
of this fuzzy system starts from the characterization of the spatiotemporal
patterns through the visual inspection and the frequency analysis.

2.1 Single Unit: Chaotic Fuzzy Oscillator

Using a linguistic approach it is possible to describe simple object based on
concepts and laws of behavior and interaction. A chaotic fuzzy oscillator has
been characterized using two variables x and d,respectively the nominal value
of the state and the uncertainty on the center value, that generate the de-
sired evolution and perform the stretching and folding features. The discrete
dynamic of this fuzzy oscillator could be considered as a two-dimensional
chaotic map with the following structure:

x (k + 1) = Ψ (x(k), d(k))

d (k + 1) = Φ (x(k), d(k))
(1)
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Table 1. Fuzzy inference system: The rules

x(k)/d(k) Zero Small Large Verylarge

x.large. x.small.left/ x.small.left/ x.small.left/ x.small.right/
left zero medium verylarge large
x.small. x.large.left/ x.large.left/ x.large.left/ x.large.left/
left zero medium verylarge small
x.small. x.large.right/ x.large.right/ x.large.right/ x.large.right/
right zero medium verylarge small
x.large. x.small.right/ x.small.right/ x.small.right/ x.small.left/
right zero medium verylarge large

where Ψ and Φ are the fuzzy inference functions described through a set of
fuzzy rules for each variable as reported in Table 1.

The range of the variables has been chosen according to a suitable embed-
ding zone performing a main oscillatory dynamics summed to an uncertainly
evolution. The designed fuzzy sets are shown in Fig. 1; the relation between
a specific chaotic dynamics and the fuzzy set has been formalized through
the following equations (2) where the center of each membership function is
evaluated starting from a value of the Lyapunov exponent (l).

Cmedium

Csmall
= el

Cverylarge

Clarge
= el .

(2)

Figure 2 shows the chaotic time series generated by a fuzzy oscillator with
l = 0.1.

d(k)

x(k)

x.large.right

x.small.rightx.small.left

x.large.left

verylargelargemediumsmallzero

Csmall Cmedium Clarge Cverylarge

Fig. 1. Fuzzy inference system: the fuzzy sets
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Fig. 2. Time series of the fuzzy chaotic oscillator with l = 0.1

2.2 Macrosystem: Chain of Fuzzy Oscillators

The macrosystem configuration has been set with a regular distribution of the
connections (C), it means that each fundamental fuzzy unit has 2C neigh-
bors, half on its right (C) and half on its left (C). The equations of the
single element of the array have been rewritten according to the number of
oscillators (N) and the diffusion coefficient (D) that weights the information
exchange, as reported in (3):

xi (k + 1) = Ψ

⎛⎝xi(k) +D

⎛⎝−2Cxi(k) +
C∑

j=−C
j �=0

xi+j (k)

⎞⎠ , di(k)

⎞⎠
di (k + 1) = Φ (xi(k), di(k)) i = 1 . . . N

(3)

The state value of each fuzzy oscillator depends on its own state value in the
previous sample time and on the contributions coming from the state values
of the other fuzzy oscillators connected through a bi-directional information
exchange. In this phase the one-dimensional array has been designed coupling
N = 200 discrete fuzzy chaotic oscillators with l = 0.1 through a constant
diffusion coefficient D = 0.005, and the single-unit starts its evolution from
random initial conditions.
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Fig. 3. Spatiotemporal patterns of the fuzzy chains (l = 0.1): (a) C = 4, (b)
C = 16, (c) C = 25, and (d) C = 46

Varying in the fuzzy chain the number of connections for each unit (2C),
four different global dynamics have been observed; the pattern formation
related with these four different collective behaviors are displayed in Fig. 3.
Each spatiotemporal map is built for a particular value of C where the index
associated to each cell (i) is reported versus time in sample. Meanwhile, the
state value of each cell (xi) is represented through a 64-color scale: blue is
for low value and red for high values.

In Fig. 3, particularly, four behaviors can be distinguished with increasing
the numbers of connections (C):

• for C = 4 spatiotemporal chaos (Fig. 3a);
• for C = 16 regular synchronized behavior (Fig. 3b);
• for C = 25 transition phase (Fig. 3c);
• for C = 46 chaotic synchronized behavior (Fig. 3d).

Summarizing the four types of collective behaviors: an initial spatiotemporal
chaos, two types of synchronization, regular and chaotic, and a transition
phase. The behaviors of the nominal value of two cells (xi) are plotted against
the time series trends in Fig. 4 and their Fourier spectra in Fig. 5, where
solid line is for x100 and dotted line is for x101, this glance both in time and
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Fig. 4. Trend of two cells (x100, x101) in the fuzzy chains (l = 0.1): (a) C = 4, (b)
C = 16, (c) C = 25, and (d) C = 46

frequency explains more in details the different spatiotemporal dynamics of
each map.

Considering the spatiotemporal chaos obtained with C = 4, the following
considerations can raise:

• Each chaotic oscillator evolves with its own dynamics according to the
different initial conditions (Fig. 4a).

• The absence of a regular oscillatory behavior is identifiable in the spread
Fourier spectra (Fig. 5a).

Considering the regular synchronized behavior obtained with C = 16, the
results underline that

• for both cells regular oscillations are visible (Fig. 4b).
• for both cells the value of picks in a particular time frequency can be seen

distinctly (Fig. 6b).

Considering the transition phase obtained with C = 25, the results are
that

• the two cells time evolutions become almost the same in long time intervals
(Fig. 4c).



422 M. Bucolo et al.

Fig. 5. Fourier spectrum of two cells (x100, x101) in the fuzzy chains (l = 0.1): (a)
C = 4, (b) C = 16, (c) C = 25, and (d) C = 46

• the spread Fourier spectra show the disappearance of the regular oscillatory
behavior identifiable in the narrow pick (Fig. 5c).

Considering the chaotic synchronized behavior obtained with C = 46, the
results clearly highlight a perfect synchronization of the two cells and the
chaotic feature of the signals:

• The two time series are identical and chaotic showing a precise synchro-
nization in time (Fig. 4d).

• Both cells have a broad band spectra, and these are perfectly superimposed
(Fig. 5d).

The same types of collective behaviors, previously characterized for l =
0.1, have been obtained by maintaining the same structure of chain and
varying the chaotic dynamic of the fuzzy oscillator setting l = 0.9. Also in this
experiment, the previously defined spatiotemporal patterns are recognized:
the spatiotemporal chaos (Fig. 6a), the regular synchronization (Fig. 6b), the
transition phase (Fig. 6c), and the chaotic synchronization (Fig. 6d).

Moreover, the trends of the two cells (x100, x101) and their Fourier spectra
are reported in Figs. 7 and 8. The spatiotemporal chaos is recognizable in the
independent chaotic evolution of the cells and in their spread frequency power
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Fig. 6. Spatiotemporal patterns in the fuzzy chains (l = 0.9): (a) C = 4, (b)
C = 16, (c) C = 25, and (d) C = 46

distribution as reported in Figs. 7a–8a. The regular synchronized behavior
is characterized by a sharp sequence of picks at specific frequency values
(Figs. 7b and 8b). The characteristics of the chaotic synchronized behavior are
shown in Figs. 7d and 8d. These results can be qualitatively compared with
the one obtained for l = 0.1 (Figs. 3–5); as it can be seen the synchronization
reached in the second experiment (l = 0.9, C = 46) is not as well defined as
the one of the first experiment (l = 0.1), it is possible to have the same result
by increasing the number of connections.

3 The Collective Dynamics Through
the Syncronization Index

The exploited collective dynamics underline the necessity to introduce a
mathematical indicator to weight easily the slight difference among a wide
number of spatiotemporal patterns. A synchronization index that suits with
this requirement is presented in this section; its capability is widely investi-
gated by the renewed analysis of the previous experiments and the presen-
tation of new ones. The spatiotemporal analyses dealt previously have been
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Fig. 7. Trend of two cells (x100, x101) in the fuzzy chains (l = 0.9): (a) C = 4, (b)
C = 16, (c) C = 25, and (d) C = 46

extended through this new indicator by tuning in suitable range both the
Lyapunov exponent and the number of connections for a more complete and
detailed study.

This evaluation index has enhanced the procedure for the comparison
and the identification of the complex network features versus the adopted
system parameters, otherwise a direct inspection of all the spatiotemporal
maps should be necessary for each parameter variation, and therefore heavy
computational strength.

3.1 Synchronization Index

The synchronization index has been introduced to evaluate the synchroniza-
tion degree of a system made up of coupled units [8]. Let us collect in the
rows of the matrix A all the N signals generated by the N subunits of the
system and evaluate the covariance matrix as follows: W (NxN) = AAT. The
synchronization index takes into account the eigenvalues of W (the square of
the singular values of the matrix A). If all the signals are uncorrelated, all
the singular values will be no zero. If all the signals are identical, there will
be only one no zero singular value and the rank of the matrix W is equal to
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Fig. 8. Fourier spectrum of two cells (x100, x101) in the fuzzy chains (l = 0.9): (a)
C = 4, (b) C = 16, (c) C = 25, and (d) C = 46

1. Of course if signals are similar but not identical, very small but not null
singular values can be found. The synchronization index is thus defined as the
minimum number m of eigenvalues, whose sum is greater than a percentage
ξ of the trace of W as in (4):

σ = min m

∣∣∣∣∣
m∑

i=1

λ∗i

∣∣∣∣∣ > ξ · Tr (W ) (4)

where λsort
i is one of the ith largest eigenvalue of the covariance matrix W .

Starting from a N coupled systems (N signals), this index is in the range
from 1 (total synchronization) to [ξN ] + 1 (no synchronization) and gives
information about the total number of different dynamics in the system. In
the following experiments, the percentage ξ has been assumed to be the 98%,
and in relation with the number of array elements N = 200 the index range
is 1 ≤ σ(0.98) ≤ 196.

3.2 Synchronization Index Versus Network Parameters

Assuming the Lyapunov exponent of cell to be 0.1 and the fuzzy array struc-
ture to be regular, in the first analysis this synchronization index has been
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Fig. 9. Synchronization index σ versus number of connections C in regular fuzzy
chains with l = 0.1

evaluated to compare the collective dynamics varying the value of the con-
nections c from 1 to 50.

In Fig. 9 the values of the index σ are plotted versus the number of
connections. This graph shows a specific association between the different
ranges of connections and the previously defined spatiotemporal dynamics:

• For 1 < C < 15, high values of σ characterize the spatiotemporal chaos.
• For 15 < C < 20, the system exhibits the increasing of the synchroniza-

tion (regular synchronized behavior) quantified by the decreasing of the
synchronization index.

• For 20 < C < 30, the transition phase takes place and the values of σ
become higher.

• For C > 30, the index decreases to 1 and the chaotic synchronized behavior
is presented.

These results have been compared to the 2D Fourier transform to prove the
feasibility of this index for the analysis of the transitions state in complex
system varying the network parameters.

A characterization of all the spatiotemporal dynamic features of the array
that have been performed through the evaluation of the 2D Fourier trans-
forms is shown in Fig. 10. Looking at the three-dimensional graphs obtained
in relation to the four C values used previously, it is possible to recognize
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Fig. 10. Fourier 2D transform of regular fuzzy chain with l = 0.1. (a) C = 4, (b)
C = 16, (c) C = 25, and (d) C = 46

the initial chaotic state, the transition phase, and two main synchronized
behaviors, the regular one and the chaotic one. Figure 10 can be commented
as follows:

• for C = 4, the spread number of picks both in space frequency and time
frequency is visible (Fig. 10a).

• for C = 16, the value of picks at a particular time frequency becomes bigger
(Fig. 10b).

• for C = 25, the network dynamics performs a transition from the regular
behavior to the chaotic synchronized one (Fig. 10c).

• for C = 46, the distribution of picks, only in the time–frequency axis, proves
the perfect space synchronization of the cells with a chaotic dynamics
(Fig. 10d).

This correspondence between the synchronization index and the 2D Fourier
transform opens the possibility to characterize a large series of experiments
quantifying the influence of the parameters and the network topologies on
complex dynamics.
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Fig. 11. Synchronization index σ versus number of connections C in regular fuzzy
chains varying l

In order to enhance the self-synchronization properties of lattices in rela-
tion to the chaotic dynamics of the fundamental cell, the Lyapunov exponent
l has been varied in a range from 0.1 to 0.9. In Fig. 11 the behavior of the
synchronization index in the regular chains for different Lyapunov exponents
versus the number of connections (C) is described; different collective be-
haviors are clearly distinguished. As the value of the Lyapunov exponent in-
creases, the transition from regularization to chaotic synchronization occurs
with different trends underling nonlinear effects affecting chain behaviors,
and the following considerations can arise:

• The spatiotemporal chaos occurs with a relatively small number of connec-
tions for all values of the Lyapunov exponent.

• The regular synchronized behavior takes place at different degree for dif-
ferent ranges of the number of connections, although the perfect synchro-
nization is for l = 0.9.

• The transition phase is not always present, sometimes varying the number
of connections the spatiotemporal chaos becomes the synchronized dynam-
ics following a smooth trend.

• The chaotic synchronization is typically quantified for all values of the
Lyapunov exponent when the number of connections is C > 30.
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Fig. 12. Small world rewiring scheme [5]

This index does not give a direct distinction between the chaotic synchro-
nization and the regular one, but by the frequecy analysis of the time series
it is possible to have this information quickly.

4 The Collective Behavior Versus the Network Topology

The evolution of high-order complex fuzzy systems has been studied charac-
terizing the effects of the topology on the collective dynamics. The structure
of the regular fuzzy chain has been modified varying the structure of the net-
work connections continuously starting from the regular topology and ending
to the random one, passing through different small worlds topologies.

Regular arrays are highly clustered and their path length grows linearly
with the number of elements N , whereas networks with random connections
are poorly clustered but the mean distance between two vertices grows log-
arithmically with N . The introduction of randomness in a regular chain,
obtained through the small worlds rewiring procedure, interpolates from a
regular network to a random one with the same number of vertices and edges;
an example of a ring changing is shown in Fig. 12.

The initial configuration is the previous regular array with N vertices,
each connected to the same number 2C of neighbors. The rewiring is per-
formed choosing a vertex and an edge and reconnecting them with probabil-
ity p, and the end of the bond to a vertex is chosen uniformly random. All the
duplicate edges are forbidden and all the vertices are processed in clockwise
direction. All small worlds chains have many vertices with sparse connections,
but the graphs never become disconnected guaranteeing the relations (5), as
follows:

N $ 2C $ ln(N) $ 1 (5)
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Fig. 13. Synchronization index σ versus number of connections C in fuzzy chains
with l = 0.1 varying the topology: regular (p = 0), small worlds (p = 0.1, p = 0.5),
and random (p = 1)

This procedure moves the graph structure between regularity (p = 0) and
disorder (p = 1) obtaining new structural properties. An extensive description
of the small world theory is reported in the Appendix A.

Small values of the small-worlds rewiring probability p generate few
rewired connections and give birth to interesting nonlinear effects: the mean
distance of each pair of vertices decreases, but the small number of removed
edges gives clustering characteristics at local level as regular networks. The
random topology with probability p = 1 modifies all the connections.

The analysis of the synchronization performances have been carried out
building chains of N = 200 fuzzy units and with the Lyapunov exponents l
from 0.1 to 0.9 through different topologies. The probability of rewiring p has
been investigated in the entire range from the regular topology value (p = 0)
to the random topology one (p = 1).

In Figs. 13–16 the synchronization index of these fuzzy chains with several
values of the Lyapunov exponent is reported in the case of four rewiring
probabilities (p = 0, p = 0.1, p = 0.5, and p = 1).

The trends of the synchronization index versus the number of connections
for l = 0.1, l = 0.3, l = 0.6, and l = 0.9 are reported in Figs. 13–16,
respectively, and the following considerations may arise:
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Fig. 14. Synchronization index σ versus number of connections C in fuzzy chains
with l = 0.3 varying the topology: regular (p = 0), small worlds (p = 0.1, p = 0.5),
and random (p = 1)

Fig. 15. Synchronization index σ versus number of connections C in fuzzy chains
with l = 0.6 varying the topology: regular (p = 0), small worlds (p = 0.1, p = 0.5),
and random (p = 1)
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Fig. 16. Synchronization index σ versus number of connections C in fuzzy chains
with l = 0.9 varying the topology: regular (p = 0), small worlds (p = 0.1, p = 0.5),
and random (p = 1)

• The range of C related to the occurrence of the spatiotemporal chaos is
not influenced by the rewiring of the connections even if all are modified
(p = 1).

• The transition phase range of C from the regular to the chaotic synchro-
nization is modified by the rewiring of the connections, with the exception
of l = 0.6.

• The chaotic synchronization occurs for the system with p = 1 considering
a fewer number of connections.

The complexity introduced in the network architecture results in decreasing
of the mean path length between two units and enhances the transition to
the chaotic synchronization.

5 Conclusions

This work deals with a new class of complex systems built by coupling fuzzy
logic chaotic units and the study of the their collective spatiotemporal behav-
ior, focusing the attention on the synchronization features. Both qualitative
and quantitative analyses of generated patterns have been carried out through
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the introduction and characterization of a mathematical indicator. A regular
one-dimensional array has been built by fixing the Lyapunov exponent value
of the fuzzy chaotic oscillators and connecting them. Through the visual in-
spection and the frequency analysis four types of global behaviors have been
identified and characterized distinguishing their patterns as follows: the spa-
tiotemporal chaos, the regular synchronized behavior, the transition phase,
and the chaotic synchronized behavior.

A synchronization index that weights easily the slight difference among a
wide number spatiotemporal patterns is defined and validated. By means of
this quantitative indicator the spatiotemporal analyses have been extended
by varying in a suitable range both the Lyapunov exponent and the number of
connections giving a more complete and detailed study. This synchronization
index speeds the procedure for the comparison and the characterization of the
complex network features versus the adopted system parameters, otherwise a
direct inspection of all the spatiotemporal maps should be necessary for each
parameter variation with a heavy computational strength.

By increasing the number of connections it is possible to distinguish spe-
cific ranges for each of the four types of collective behaviors. In order to en-
hance the self-synchronization properties of lattices in relation to the chaotic
dynamics of the fundamental cell the Lyapunov exponent l has been varied
in a range from 0.1 to 0.9.

As the value of the Lyapunov exponent increases, the transition from reg-
ularization to chaotic synchronization occurs with different trends underling
nonlinear effects affecting chain behaviors. The regular synchronized behavior
takes place for different ranges of the number of connections; the transition
phase is not always present; the chaotic synchronization is typically exhibited
for all values of the Lyapunov exponent when the number of connections is
C > 30.

In the last phase, the structure of the regular fuzzy chain has been mod-
ified varying the structure of the network connections continuously starting
from the regular topology and ending to the random one, passing through
the different small worlds topologies.

The trends of the synchronization index versus the number of connections
underline as the complexity introduced in the network architecture results in
decreasing of the mean path length between two units and enhances the tran-
sition to the chaotic synchronization. Moreover, the transition phase range
of the connection number from regular to chaotic synchronization is affected
by the rewiring of the connections.

This study extends the principles of synchronization, auto-organization,
and pattern formation to this new class of complex fuzzy systems suitable
to describe the complex real-world phenomena not easy to describe using
mathematical structures.
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Appendix

Watts and Strogatz [3] have proposed, in 1998, a new complex network ar-
chitecture characterized by a regular lattices rewired in order to introduce
increasing amounts of disorder: the small-worlds theory. Many real networks
are characterized by topologies between order and randomness. A famous
manifestation of small world features is the so-called “six-degrees of separa-
tion” principle by the psychologist Milgram [9]. This concept is based on the
notion that everyone in the world is connected to everybody else through
a chain of six mutual connections. These complex systems are realized to
exhibit both high clustered structures and reduced path lengths.

Two main parameters characterize the anatomy of a generic network and
both are fundamental to investigate the dynamic behavior of the whole sys-
tem:

• average path length and
• clustering coefficient.

Average path length: The distance between two cells in a generic network
is the number of edges along the shortest path between them. The average
path length L is defined as the mean of all the distances between two nodes
and it gives information about the size of the whole network. The higher the
average path length, the higher is the separation between every pair of cells.

Clustering coefficient: The clustering coefficient c is defined as the fraction
of pairs of neighbors of a node which are neighbors to each others. It is
evident that in a large network the cells connected to a particular cell can
be connected with each others too. This is evident if we consider networks
formed by people with a friendship connection. The friend of a friend is
usually a friend. Opposite values of the clustering coefficient can be calculated
for massive and random networks.

The structural characteristics of the networks are fundamental to inves-
tigate the collective behaviors in high dimensional systems constituted by
nonlinear units communicating to reach a common macrobehavior. In recent
studies networks topologies are investigated focusing, in particular, on four
architectures that can be described by using a mathematical model:

• regular coupled networks
• random graphs
• small worlds

Regular coupled networks: Networks like chains, grids, and fully connected
graphs give typical examples of regular structures. The regular configuration
is often adopted to model high-dimensional system to give an order structure
to a complex behavior. This hypothesis focuses the attention on the dynamic
features of the single node when it is both isolated or connected to the others.
The node could be a generic dynamical system with a stable point, a limit
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cycle, or a chaotic behavior. Regular lattices are highly clustered and their
path length grows linearly with the number of edges N.

Random graphs: Erdos and Renyi (ER) [10] have studied random graphs
by varying the number of nodes and links. An ER random graph is obtained
imaging a set of buttons on the floor. With probability p every pair of buttons
is tied with a thread. According to the value of probability p the graph
properties change. The average path length of a random graph is L = p(N −
1). For small values of p, graphs are constituted by separated components. As
p, the number of links, increases the network becomes more compact. When
p ∼= lnN/N the system can be considered as a unique entity. The clustering
coefficient of a random graph is equal to p = L/N % 1. This means that in
a friendship network the probability that two friends are friends themselves
is not greater than the probability that two randomly chosen persons are
connected.

The ER networks are homogeneous systems whose connectivity follows
a Poisson distribution. Each node in the graph is connected to each other
node through short paths and the maximum “degree of separation” grows
with logN. Random graphs are an ideal model but due to their building
simplicity these are used to model gene networks, ecosystems, and spread of
diseases [11, 12].

Small worlds: The introduction of randomness in regular lattices, obtained
through a rewiring procedure, interpolates from a regular network to a ran-
dom one with the same number of vertices and edges. This is the case of
small worlds systems in which in a regular topology are identifiable as small
amounts of irregular connections. Watts and Strogatz (WS) [5] have intro-
duced a new class of networks based on small worlds features that tune a
graph between a regular lattice and a random network. Small world networks
have two fundamental features: short paths and high clustering.

The starting configuration is a ring configuration with N vertices, each
connected to the same number 2C of neighbors. The rewiring is realized
by choosing a vertex and an edge and reconnecting, with probability p, the
end of the bond to a vertex chosen uniformly random over the ring. All the
duplicate edges are forbidden and all the vertices are processed in a clockwise
direction. This procedure tunes the graph between regularity (p = 0) and
disorder (p = 1) obtaining interesting structural properties (see Fig. 12).

In small worlds networks, small values of the rewiring probability p allow
the introduction of few far-connections that give birth to interesting nonlinear
effects. The mean distance of each pair of vertices decreases, but the num-
ber of removed edges is small enough to maintain the same regular network
clustering characteristics at local level.

Average path length and clustering coefficient of small worlds versus
rewiring probability is shown in Fig. 17. The functional study of small-worlds
connectivity for dynamics systems shows an enhancement of network speed
and exchange of information.
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Fig. 17. Average path length L and clustering coefficient c versus rewiring proba-
bility in small worlds networks. The values are normalized by the values of a regular
topology L(0) and c(0) [5]
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Real-Time Identification and Forecasting
of Chaotic Time Series Using Hybrid Systems
of Computational Intelligence

Yevgeniy Bodyanskiy and Vitaliy Kolodyazhniy

Abstract. In this chapter, the problems of identification, modeling, and forecast-
ing of chaotic signals are discussed. These problems are solved with the use of the
conventional techniques of computational intelligence as radial basis neural net-
works and learning neuro-fuzzy architectures, as well as novel hybrid structures
based on the Kolmogorov’s superposition theorem and using the neo-fuzzy neurons
as elementary processing units. The need for the solution of the forecasting problem
in real time poses higher requirements to the processing speed, so the considered
hybrid structures can be trained with the proposed algorithms having high con-
vergence rate and providing a compromise between the smoothing and tracking
properties during the processing of nonstationary noisy signals.

1 Introduction

In many fields of physics, biology, chemistry, economics, medicine, etc. there
is a wide class of deterministic nonlinear systems whose behavior seems to be
random, but is not in fact. Moreover, statistical analysis of signals generated
by such systems (second moments, autocorrelation functions, spectra) indi-
cates that they are broadband random processes generated by a deterministic
object. This phenomenon is quite paradoxical in itself.

Such systems are referred to as chaotic, and are the subject of close atten-
tion for both the theoreticians and experts in many quite different fields [1–8].

Although a chaotic process generated by a nonlinear deterministic system
looks like a stochastic one, it is actually not stochastic. Its most important
feature is the extreme sensitivity to the initial conditions, i.e., if the same
system is started from the initial conditions x(0) and x(0)+ε, where ε is a very
small value, then its trajectories will diverge exponentially with time, tending
to totally different domains of attraction referred to as “strange attractors.”
Using a more rigorous definition, we can say that a strange attractor is an
attracting set in the phase space in which the chaotic trajectories are moving,
but is neither an equilibrium point nor a boundary cycle.

In principle, future behavior of a chaotic system is completely determined
by its past because of its determinism, but in practice any uncertainty or
imprecision in the selection of initial conditions dramatically complicate the
problem of analysis. Recently, artificial neural networks and fuzzy inference

Y. Bodyanskiy and V. Kolodyazhniy: Real-Time Identification and Forecasting of Chaotic
Time Series Using Hybrid Systems of Computational Intelligence, StudFuzz 187, 439–480
(2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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systems due to their universal approximation properties and learning capabil-
ities have been increasingly popular for the analysis and modeling of chaotic
systems [9–14].

Aside from the chaotic motion itself, some other types of behavior similar
to chaos are closely related to nonlinear dynamic systems, first of all:

• transient chaos, which is a motion that looks purely chaotic on a finite
time interval, i.e., the trajectory first develops by the strange attractor,
but then transforms into a periodic or quasiperiodic motion;

• quasiperiodic oscillations, which are the oscillations with two or more ali-
quant frequencies;

• bifurcations, which are abrupt changes of character of motion with a slight
change of one or several system parameters;

• mixtures like “chaos + quasiperiodic oscillations”, and many more.

What all the considered types of behavior have in common is their fractal
structure, i.e., the self-similarity of the analyzed processes in different spa-
tial and temporal scales. In principle, any substantially nonlinear dynamic
system can demonstrate a chaotic behavior with a certain combination of its
parameters. However, in practice, quite a limited number of such structures
were studied and are used. Among them, the most popular are as follows:

• Logistic equation describing the growth of a biological population,

x(k + 1) = wx(k) (1− x(k)) , 0 ≤ w ≤ 4, 0 ≤ x(0) ≤ 1 , (1)

where k = 0, 1, 2, . . . is the current discrete time;
• A modification of (1) [2, 4]⎧⎪⎪⎨⎪⎪⎩

x(k + 1) = w1x(k)− w2x
2(k) ,

x(k + 1) = x2(k) + θ ,
x(k + 1) = 1− w1x

2(k) + w2x(k − 1) ,
x(k + 1) = wx3(k) + (1− w)x(k), and so on ,

(2)

where w1, w2, θ are some scalar parameters;
• The Mackey–Glass model

x(k + 1) = w1x(k) +
w2x(k − τ)

1 + x10(k − τ) , τ ≥ 17 , (3)

where τ is a time delay;
• Two-dimensional Henon mapping{

x(k + 1) = 1− wxx
2(k) + y(k) ,

y(k + 1) = wyx(k) ; (4)

• Mandelbrot equations{
x(k + 1) = x2(k)− y2(k) + θx ,
y(k + 1) = 2x(k)y(k) + θy ; (5)
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• May model
x(k + 1) = x(k) exp(w(1− x(K))) ; (6)

• Holmes model {
x(k + 1) = y(k) ,

y(k + 1) = −wxx(k) + wyy(k)− y3(k) ;
(7)

• Carrey–Yorke model {
x(k + 1) = wx(k) ,

y(k + 1) = y(k) + x2(k)
(8)

and some other using trigonometric functions [13]{
x(k + 1) = sin(k + sin k2) ,

x(k + 1) = x(k) + w sin 2πx(k), and so on .
(9)

Benoit Mandelbrot [5] introduced the set of the so-called fractal equations⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x(k + 1) = wx(k)(1− x(k)) ,
x(k + 1) = x2(k) + θ ,
x(k + 1) = w(x(k) + 1

x(k) ) ,
x(k + 1) = wx2(k) + θ ,
x(k + 1) = wx3(k) + θ ,

(10)

in which x(k) is the complex variable generating some quite complex fractal
geometrical structures.

As we already mentioned, chaos superficially resembles a random process,
but is not random. Thus the problem of modeling and identification of signals
appeared, which consists in the determination of where the nature of the
signals is random or deterministically chaotic. In practice, several methods
are used: from the simplest like the power spectrum and Poincaré mapping
to the more sophisticated, related to Lyapunov numbers, fractal dimension,
and the Hurst exponent.

One of the characteristic features of a chaotic system is the occurrence of
a wide spectrum of frequencies at its output when a harmonic or a constant
signal is fed to the input. Although this spectrum superficially resembles
that of the white noise, the autocorrelation function of a chaotic process, in
contrast to the delta function of the white noise, does not look like a single
spike.

The Poincaré mapping is the phase-plane portrait of the system on the
plane x(k) and ∆x(k) = x(k+ 1)− x(k). If this mapping is “spread” all over
the phase plane, then we have a stochastic process. If we see a deterministic
curve, than we have chaos.
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The Lyapunov exponents are used to check the sensitivity of the system
to the variations of the initial conditions. If the initial conditions in the phase
space are specified as a vector x(0) defined in the hypersphere with a small
radius ε, then this hypersphere will evolve with time into an ellipsoid with
the maximum semiaxis

ε(k) = ε2λk , (11)

where λ is the Lyapunov exponent determined by the expression

λ(x(0), ε) = lim
N→∞

1
N

lg
‖x(N)‖
‖x(0)‖ . (12)

A positive Lyapunov exponent indicates that we have a chaotic signal.
The fractal dimension index characterizes the geometrical structure of

the strange attractor, and is a special measure of filling of the phase space
by the phase portrait of the identified signal. Note that a fractional fractal
dimension is the main indication of the presence of chaos.

Following the results [13], consider an arbitrary nonlinear dynamic sys-
tem, and, having outlined some state y in the neighborhood of its attractor,
describe a small hypersphere of radius ε around this point. Then define the
distribution function of the observations with respect to y as

ρ(y) = lim
N→∞

1
N

N∑
k=1

δ(y − x(k)) , (13)

where δ(y − x(k)) is the n-dimensional delta function and N is the number
of observations.

It is also worthy to note that the function ρ(y) of the strange attractor is
in a way similar to the distribution function of a random variable.

Let us introduce some function f(y) such that
∞∫

−∞
f(y)ρ(y) dy = f <∞ , (14)

being a measure of change in the number of points in the hypersphere while
its radius ε tends to zero.

For the points inside the hypersphere, the following condition holds true

‖y − x(k)‖ < ε (15)

or, what is the same,
ε− ||y − x(k)|| > 0 . (16)

At the same time, the function f(·) can be defined as

f(x) =

⎛⎜⎝ 1
N − 1

N∑
l=1
l �=k

h(ε− ||y − x(l)||)

⎞⎟⎠
q−1

(17)
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where q is a nonnegative integer number and h(x) is the Heaviside function

h(x) =
{

1 if x ≥ 0 ,
0 otherwise . (18)

Substituting then (13) and (17) into (14), we obtain the expression

R(q, ε) =

∞∫
−∞

⎛⎜⎝ 1
N − 1

N∑
l=1
l �=k

h(ε− ||y − x(l)||)

⎞⎟⎠
q−1 (

1
N

N∑
k=1

δ(y − x(k))
)

dy ,

(19)
which, taking into account the obvious relation for the delta function

∞∫
−∞

f(y)δ(y − x(k))dy = f(x(k)) , (20)

can be rewritten as

R(q, ε) =
1
N

1∑
k=1

⎛⎜⎝ 1
N − 1

N∑
l=1
l �=k

h(ε− ||x(k)− x(l)||)

⎞⎟⎠
q−1

. (21)

The function (21) is referred to as correlation, and has a meaning of
probability that two points x(k) and x(l) in the neighborhood of the attractor
are situated at the distance of ε from each other. The limit behavior of this
function when ε→ 0 is described by the relation

R(q, ε) = ε(q−1)Dq , (22)

where the exponent Dq is referred to as the fractal dimension of the attractor.
Taking the logarithm of (22), we can formally define the fractal dimension as
the expression

Dq = lim
ε→0

logR(q, ε)
(q − 1) log ε

, (23)

which for q = 223 assumes a simple form often used for calculations and
called in this case the correlation dimension of the attractor D2.

2 Identification of Chaotic Signals in Real Time Using
the Hurst Exponent

The methods for the identification of chaos considered above have one com-
mon disadvantage: they cannot be used in real time. As a consequence, it
is difficult to determine the moments when the properties of the observed
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signals are changing. This difficulty can be overcome with the index popular
in the analysis of fractal time series, which is referred to as Hurst exponent
H [3]. This index is related to the correlation function and is used for the
estimation of the chaotic or stochastic character of the identified time series.

The Hurst exponent for an arbitrary time series can be computed as

S(k)
σ(k)

= (αk)H , (24)

where S(k) is the range of the sequence of accumulated values y(l, k), which
is calculated according to the expressions⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

S(k) = max
1≤l≤k

y(l, k)− min
1≤l≤k

y(l, k) ,

y(l, k) =
∑k

l=1(x(l)− x̄(l)) ,

x̄(l) = 1
l

∑l
p=1 x(p) ,

x̄(k) = 1
k

∑k
l=1 x(l);

(25)

σ(k) is the standard deviation

σ(k) =

√√√√1
k

k∑
l=1

(x(l)− x̄(k))2 ; (26)

and α is a nonnegative parameter, chosen empirically in the general case.
As one can see, the Hurst exponent can be calculated from a sample

of observations. The estimates obtained in such a way are averaged. For
real-time calculation, the expressions (25) and (26) should be rewritten in a
recursive form. It can be readily seen that

x̄(k + 1) = x̄(k) +
1

k + 1
(x(k + 1)− x̄(k)) , (27)

σ2(k + 1) = σ2(k) +
1

k + 1
(
(x(k + 1)− x̄(k + 1))2 − σ2(k)

)
, (28)

y(l, k + 1) = y(l, k) + (x(k + 1)− x̄(k + 1)) , (29)
ymax(k + 1) = max {ymax(k), y(l, k + 1)}

= ymax(k)− 0, 5(1− sign(ymax(k)− y(l, k + 1)
× (ymax(k)− y(l, k + 1))) , (30)

ymin(k + 1) = min {ymin(k), y(l, k + 1)}
= ymin(k)− 0, 5(1− sign(ymin(k)− y(l, k + 1)
× (ymin(k)− y(l, k + 1))), (31)

S(k + 1) = ymax(k + 1)− ymin(k + 1) , (32)

whence
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H(k + 1) =
logS(k + 1)− log σ(k + 1)

logα+ log(k + 1)
. (33)

Analysis of the expression (33) shows that the result of calculations
strongly depends on the undetermined parameter α and the size of the avail-
able sample. This circumstance can lead to obtaining qualitatively opposite
results for the same system.

This problem can be easily solved with neural network techniques. Let us
rewrite (24) as

log
S(k)
σ(k)

= H logα+H log k , (34)

and introduce the training signal

d(k) = log
S(k)
σ(k)

, (35)

and an adjustable structure like an adaptive linear associator

y(k) = θ +H log k (36)

and use the Widrow–Hoff learning algorithm for artificial neural networks to
find the estimates of the searched parameters:(

θ(k + 1)
H(k + 1)

)
=

(
θ(k)
H(k)

)
+
d(k)− θ(k)−H(k) log k

1 + (log k)2
·
(

1
log k

)
, (37)

logα(k + 1) =
θ(k + 1)
H(k + 1)

. (38)

An architecture for the calculation of the Hurst exponent H and the
parameter α is shown in Fig. 1.

Observing in real time the variations of the Hurst exponent, we can make
conclusions about the nature of the analyzed signal. Oscillations of H(k)
about the level of 0.5 indicate that the time series is of stochastic nature;
sharp deviations from this value are a sure sign of the occurrence of chaotic
motion in the system.

3 Dynamic Reconstruction of Chaotic Signals
with Known Structure

A more complex problem in the analysis of chaotic signals is the dynamic
reconstruction, which consists in the recovery of the model generating the an-
alyzed time series on the basis of the sample (x(0), x(1), x(2), . . . , x(k), . . .).
Here, similarly to the classical identification problem [15, 16], this problem
can be considered in two aspects: parametric reconstruction, when the struc-
ture of the model is known and only the parameters must be recovered, and
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Fig. 1. Scheme for the computing of the Hurst exponent

structural reconstruction, when neither the structure nor the parameters are
known a priori.

First consider the situation when the reconstructed signal is generated by
the simplest Mandelbrot model (10)

xc(k + 1) = x2
c(k) + θc , (39)

where {
xc(k) = x1(k) + ix2(k) ,

θc = θ1 + iθ2, i =
√
−1 .

(40)

It is supposed that the parameters θ1 and θ2 are unknown.
Such a time series can be obtained using the elementary scheme shown in

Fig. 2.
Having rewritten (39) as

x(k + 1) =
(
x1(k + 1)
x2(k + 1)

)
=

(
x2

1(k)− x2
2(k)

2x1(k)x2(k)

)
+

(
θ1
θ2

)
(41)

=
(
Ψ1(xc(k))
Ψ2(xc(k))

)
+

(
θ1
θ2

)
= Ψ(xc(k)) + θ ,

then introducing the error vector

e(k) =
(
e1(k)
e2(k)

)
= xc(k)I2 − x (k) = xc(k)I2 − ψ (xc(k − 1))− θ (42)

and the learning criterion in which I2 = [1, 1]T
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E(k) =
1
2

∥∥e(k)∥∥2 =
1
2

∥∥x̃(k)− θ∥∥2
, (43)

we can write the recursive procedure for its minimization

θ(k + 1) = θ(k) + η(k) (x̃(k)− θ(k)) , (44)

where
x̃(k) = x(k)I2 − Ψ(xc(k − 1)), I2 = (1, 1)T . (45)

It can be readily seen that (45) coincides with the Kohonen learning
rule [17]; at the same time the recovered parameters can be used to obtain a
pair of predicted values of the observed time series as

x̂(k + 1) = Ψ(xc(k)) + θ(k + 1) . (46)

Consider a more complicated structure of a complex-valued chaotic process

x(k + 1) =
(
x1(k + 1)
x2(k + 1)

)
=

(
w11

(
x2

1(k)− x2
2(k)

)
+ θ1

w21x1(k)x2(k) + θ2

)
=

(
w11Ψ1(xc(k)) + θ1
w21Ψ2(xc(k)) + θ2

)
=

(
w11 θ1
w21 θ2

)
&

(
Ψ1(xc(k)) 1
Ψ2(xc(k)) 1

)
(47)

× I2 = W & Ψ(xc(k))I2 ,

where & is the symbol of Scott (component-wise) product.
Having rewritten (47) component-wise{

x1(k + 1) = (w11, θ1)(Ψ1(xc(k)), 1)T = w1Ψ1(Xc(k)) ,

x2(k + 1) = (w21, θ2)(Ψ2(xc(k)), 1)T = w2Ψ2(Xc(k)) ,
(48)
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we can adjust the unknown parameters with the conventional Widrow–Hoff
algorithm in the form⎧⎨⎩w1(k + 1) = w1(k) + η x(k)−w1(k)Ψ1(xc(k−1))

1+Ψ2
1 (xc(k−1))

ΨT
1 (xc(k − 1)) ,

w2(k + 1) = w2(k) + η x(k)−w2(k)Ψ2(xc(k−1))
1+Ψ2

1 (xc(k−1))
ΨT

2 (xc(k − 1))
(49)

and calculate one-step ahead predictions with these parameters

x̂(k + 1) = W (k + 1)& Ψ(xc(k))I2 . (50)

The complex-valued prediction of the real-valued process x(k) can be
“contracted” in some way to obtain more precise results. For this purpose,
the simplest additive form can be used

x̂(k + 1) = cx̂1(k + 1) + (1− c)x̂2(k + 1) , (51)

where c is a nonnegative parameter, determining the accuracy of the predic-
tion.

Introducing ((k + 1)× 1) vectors of signals and errors⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X(k) = (x(1), x(2), . . . , x(k))T ,

X̂(k) = (x̂(1), x̂(2), . . . , x̂(k))T ,

X̂i(k) = (x̂i(1), x̂i(2), . . . , x̂(k))T , i = 1, 2 ,

V (k) = X(k)− X̂(k) ,

Vi(k) = X(k)− X̂i(k), i = 1, 2 ,

V (k) = cVi(k) + (1− c)V 2(k)

(52)

and solving the differential equation

∂‖V (k)‖2
∂c

= 0 , (53)

we obtain the following two expressions:⎧⎨⎩ c(k) = V T
2 (k) V2(k)−V1(k)

‖V2(k)−V1(k)‖2 ,

1− c(k) = V T
1 (k) V1(k)−V2(k)

‖V1(k)−V2(k)‖2 .
(54)

Substituting (54) into the last equation of (52), we obtain

V (k) = V T
2 (k)

V2(k)− V1(k)
‖V2(k)− V1(k)‖2

V1(k) + V T
1 (k)

V1(k)− V2(k)
‖V1(k)− V2(k)‖2

V2(k)

=
(
V1(k)V T

2 (k)− V2(k)V T
1 (k)

) V1(k)− V2(k)
‖V1(k)− V2(k)‖2

, (55)
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whence

‖V (k)‖2 =
(∥∥(‖V2(k)‖2 − V T

1 (k)V2(K)
)
V1(k)

+
(
‖V1(k)‖2 − V T

1 (k)V2(k)
)
V2(k)

∥∥2)× ‖V1(k)− V2(k)‖−4 . (56)

Using (56), it is easy to obtain the system of inequalities⎧⎪⎨⎪⎩
‖V (k)‖2 − ‖V1(k)‖2 = − (‖V1(k)‖2−V T

1 (k)V2(k))2

‖V1(k)−V2(k)‖2 ≤ 0 ,

‖V (k)‖2 − ‖V2(k)‖2 = − (‖V2(k)‖2−V T
1 (k)V2(k))2

‖V1(k)−V2(k)‖2 ≤ 0 ,
(57)

indicating that the accuracy of the prediction (51) cannot be worse than the
accuracy of any of the components of (50).

For real-time operation, a recursive form is required, which can be ob-
tained by introducing new variables⎧⎪⎪⎨⎪⎪⎩

V21(k) = V2(k)− V1(k) ,
e1(k + 1) = x(k + 1)− x̂1(k + 1) ,
e2(k + 1) = x(k + 1)− x̂2(k + 1) ,
e21(k + 1) = e2(k + 1)− e1(k + 1)

(58)

and rewriting (54) as⎧⎨⎩ c(k + 1) = η(k)
η(k+1)c(k) + e2(k+1)e21(k+1)

η(k+1) ,

η(k + 1) = η(k) + e221(k + 1).
(59)

Taking into account the following obvious expressions,{
V21(k) = X̂1(k)− X̂2(k) ,
e21(k + 1) = x̂1(k + 1)− x̂2(k + 1)

(60)

we finally obtain⎧⎪⎨⎪⎩ c(k + 1) = η(k)
η(k+1)c(k) +

e2(k+1)
(
x̂1(k+1)−x̂2(k+1)

)
η(k+1) ,

η(k + 1) = η(k) +
(
x̂1(k + 1)− x̂2(k + 1)

)2

(61)

Figure 3 shows the scheme of the neuron for the dynamic reconstruction
of the chaotic process according to (49), (50), and (61).

Similar schemes can be constructed for any of the chaotic models (1–10),
assuming that the internal structure of the process is known.

4 Dynamic Reconstruction and Forecasting of Chaotic
Signals with Radial Basis Function Networks

Consider the situation when there is no information available on the structure
of the system that generates the chaotic signal, and there is only a sample of
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Fig. 3. Neuron for dynamical reconstruction of chaos

observations x(k), distorted in the general case by an additive random noise
ξ(k) with the bounded second moment. In such a situation, there is a prob-
lem of structural reconstruction whose possibility of solution is determined
by the so-called Taken’s geometric delay embedding theorem [13]. This the-
orem states that the behavior of a nonlinear dynamic system can be approx-
imated with sufficient accuracy by some nonlinear transformation f(x(k))
of the vector of observations X(k) = (x(k − 1), x(k − 2), . . . , x(k − d))T ≡
(x1(k), x2(k), . . . , xd(k))T, where d is a positive integer number satisfying the
condition

d ≥ 2n+ 1 , (62)

where n is the dimensionality of the state vector of the system x(k − i) ≡
xi(k), i = 1, 2, . . . , d.

To solve the problem of the dynamic structural reconstruction, it is nat-
ural to use artificial neural networks whose efficiency is explained first of all
by their universal approximation properties in combination with a relatively
compact representation of the modeled nonlinear system. In [14] it was pro-
posed to use radial basis function (RBF) networks [18, 19] with one hidden
layer with nonmonotonic (most often Gaussian) activation functions.

The most important advantage of the RBF networks consists in shorter
training time as compared to the conventional multilayer networks trained
by means of the error back-propagation technique. At the same time, the
construction and training of an RBF network requires the use of at least two
procedures. The first one is for the setting of the basis function parameters,
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and the second one is for the training of the output layer weights. Besides that,
when the value of delay d is increased in order to improve the approximation
properties, the so-called curse of dimensionality is encountered, which leads
to exponential growth of the computational complexity and impossibility of
processing of the incoming observations in real time.

To alleviate the above-mentioned problems, it is advisable to develop
high-performance learning procedures for the RBF networks that would be
able to tune not only the output layer weights in real time, but also the
basis functions that is important for efficient identification of complex chaotic
systems.

The architecture of the network under study is shown in Fig. 4 and cor-
responds to that of the generic RBF networks. We consider, without loss of
generality, a one-output network.
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Fig. 4. Radial basis function network

The network output is calculated according to the following equation:

ŷ(k) = w0 +
h∑

i=1

wiΦi

(∥∥X(k)− Ci

∥∥2

R−1
i

)
=

h∑
i=0

wiϕi(X(k)) = wTϕ(X(k)),

ϕ0(X(k)) ≡ 1, ϕi(X(k)) = Φi(
∥∥X(k)− Ci

∥∥2

R−1
i

), i = 1, . . . , h,

X(k) = (x1(k), x2(k), . . . , xd(k))T, w = (w0, w1, . . . , wh)T,
ϕ(X(k)) = (1, ϕ1(X(k)), . . . , ϕh(X(k)))T , (63)

where ŷ(k) is the network output at time instant k, X(k) is the d-dimensional
input vector, h is the number of hidden layer units (basis functions), Φi(·) is
the ith basis function, Ci is the d-dimensional prototype vector (center) of
the ith basis function, R−1

i is the (d×d) matrix that determines the region of
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influence of the ith basis function, ϕi(·) is the ith generalized basis function, w
is the vector of tunable synaptic weights, and ϕi(·) is the nonlinear regression
vector.

The symbol ‖ · ‖2
R−1

i

stands for vector norm with respect to the matrix

R−1
i . This norm is calculated as follows:∥∥X − Ci

∥∥2

R−1
i

= (x− Ci)T R−1
i (x− C) . (64)

The most widely used RBFs are the multidimensional Gaussian functions,
in general form defined as

Φi

(∥∥X − Ci

∥∥2

R−1
i

)
= exp

(
− 1

2

∥∥X − Ci

∥∥2

R−1
i

)
, (65)

and Ri are often diagonal matrices [20]:

Ri = diag(σ2
i,1, σ

2
i,2, . . . , σ

2
i,d) , (66)

where σi,j are the width parameters, j = 1, . . . , d. In general case, the matri-
ces Ri are nondiagonal, symmetric, and positively defined [13].

It is useful to note that the following equation

(X − Ci)TR−1
i (X − Ci) = 1 (67)

defines a hyperellipsoid centered at Ci with axes determined by the eigenvec-
tors of the matrix Ri. We propose [21] the use of the quadratic radial basis
functions (QRBFs) whose output is nonzero only inside a hyperellipsoidal
support (receptive field), i.e.,

Φi

(∥∥∥X − Ci

∥∥∥2

R−1
i

)
= max

{
0, 1−

∥∥∥X − Ci

∥∥∥2

R−1
i

}
. (68)

Note that in [22], the QRBFs are also used, but their receptive fields are
hyperspherical, i.e., each basis function has equal radii in all dimensions. The
use of hyperellipsoidal supports of arbitrary orientation, determined by the
matrices Ri, will improve the approximation accuracy of the network. These
receptive field matrices Ri, i = 1, . . . , h, can be viewed as the covariance
matrices of the corresponding clusters.

One-dimensional Gaussian function and a QRBF are shown in Fig. 5.
The QRBF is localized, requires less computational efforts as compared with
the Gaussian RBF, and allows us to derive efficient and yet simple learning
procedures.

The task is to choose at every iteration k such parameters w(k),
Ci(k), R−1

i (k) that would minimize the local error function

E(k) =
1
2
(d(k)− ŷ(k))2 =

1
2
e(k)2 , (69)
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Fig. 5. One-dimensional QRBF with R = 1 (solid line) and a Gaussian function
with σ = 1/3 (dashed line), defined on the same universe of discourse

where d(k) is the target output and e(k) is the modeling error at time instant
k.

Consider the gradient-descent learning procedures⎧⎨⎩
w(k + 1) = w(k)− ηw∇wE(k) ,
Ci(k + 1) = Ci(k)− ηCi

∇ci
E(k), i = 1, . . . , h ,

R−1
i (k + 1) = R−1

i (k)− ηR−1
i
∂E(k)/∂R−1

i , i = 1, . . . , h ,
(70)

where ∇wE,∇ci
E, are the gradients of the error function (69) with respect

to the corresponding parameter vectors; ∂E/∂R−1
i is the derivative of the

error function with the respect to the matrix R−1
i ; and ηw, ηC , ηR are the

learning rates.
For an arbitrary type of the basis functions Φi(·), the gradients ∇wE,

∇ci
E and the derivatives ∂E/∂R−1

i are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇wE(k) = −e(k)ϕ(x(k)) ,

∇ci
E(k) = 2e(k)wiΦ

′
i

(∥∥X(k)− Ci(k)|
∥∥2

R−1
i (k)

)
×R−1

i (k)(X(k)− Ci(k)) ,

∂E(k)/∂R−1
i = −e(k)wiΦ

′
i

(∥∥X(k)− Ci(k)|
∥∥2

R−1
i (k)

)
× (X(k)− Ci(k))(X(k)− Ci(k))T ,

(71)

where Φ′
i(·) is the derivative of the ith basis function with respect to its

argument, which is given by the vector norm (64).
For the basis function (68), the derivative Φ′

i(·) is as follows:
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Φ′
i

(∥∥∥X(k)− Ci(k)
∥∥∥2

R−1
i (k)

)
=

⎧⎨⎩−1,
∥∥X(k)− Ci(k)

∥∥2

R−1
i (k)

< 1 ,

0,
∥∥X(k)− Ci(k)

∥∥2

R−1
i (k)

≥ 1.
(72)

That is, the derivative Φ′
i(·) of a QRBF equals –1 when the input vector

X(k) is inside the receptive field, and 0 otherwise.
Using the expressions (70) and (71), we obtain the complete set of learning

procedures for all the parameters of a QRBF network:⎧⎪⎪⎨⎪⎪⎩
w(k + 1) = w(k) +∆w(k + 1) ,

Ci(k + 1) = Ci(k) +∆Ci(k + 1), i = 1, . . . , h ,

R−1
i (k + 1) = R−1

i (k) +∆R−1
i (k + 1), i = 1, . . . , h ,

(73)

where the update of the output layer weights ∆w(k) is calculated according
to the equation

∆w(k + 1) = ηwe(k)ϕ(X(k)) , (74)

and the updates for the hidden layer parameters∆Ci(k+1) and ∆R−1
i (k+1)

are calculated as

∆Ci(k + 1) = −2ηCe(k)wi(k)Ψi(k)(k)R−1
i (k)(X(k)− Ci(k)) , (75)

∆R−1
i (k + 1) = −ηRe(k)wi(k)Ψi(k)(X(k)− Ci(k))(X(k)− Ci(k))T , (76)

where Ψi(k) = Φ′
i(
∥∥X(k)− Ci(k)‖2R−1

i (k)
), i = 1, . . . , h.

It can be readily seen from (73)–(76) that the parameters of the ith QRBF
are updated only when its output is nonzero. This happens when the input
vector is inside the corresponding receptive field. Thus, at every time instant
only the QRBFs close to the current input are updated. So the learning pro-
cedures (73)–(76) resemble the competitive learning rule of the selforganizing
maps [17].

It is also very important that the proposed learning procedures do not
involve any calculations of nonlinear functions, and are completely based on
linear operations.

The convergence properties of the introduced procedures depend on the
learning rates ηw, ηc, and ηR. These learning rates can be selected heuristi-
cally by the trial and error method and depend on many factors, such as the
size of the network and the variance of the inputs. Too small learning rates
result in slow learning, and too big learning rates may result in oscillatory
behavior or divergence of the learning procedures.

In [23], a fast adaptive learning procedure for a neuro-fuzzy network is
proposed. The procedure is characterized by higher learning rate as com-
pared with the conventional gradient descent learning, and is quite simple
computationally at the same time. Since the RBF networks and neuro-fuzzy
networks are functionally equivalent [24], similar learning methods can be
used in both.
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Using the procedure, described in [23], we can write the update for the
output layer parameters:⎧⎨⎩∆w(k + 1) = r−1

w (k)e(k)ϕ(X(k)) ,

rw(k) = αwrw(k − 1) +
∥∥ϕ(X(k))

∥∥2
,

(77)

where 0 ≤ αw ≤ 1 is the forgetting factor for the weights and r−1
w (k) is the

learning rate which is recursively computed at every iteration.
Introducing vectors

gi(k) = −2wi(k)Ψi(k)(k)R−1
i (k)(X(k)− Ci(k)) , (78)

we can use a similar procedure for the tuning of each QRBF center:{
∆Ci(k + 1) = r−1

ci
(k)e(k)gi(k), i = 1, . . . , h ,

rCi
(k) = αCrCi

(k − 1) + ‖gi(k)‖2 ,
(79)

where 0 ≤ αC ≤ 1 is the forgetting factor for the centers and r−1
Ci

(k) is the
learning rate of the ith center.

For the tuning of the receptive field matrices R−1
i , we propose the follow-

ing modification of the procedure (79):{
∆R−1

i (k + 1) = r−1
Ri

(k)e(k)Gi(k), i = 1, . . . , h ,

rRi
(k) = αRrRi

(k − 1) + Tr(GT
i (k)Gi(k)) ,

(80)

where 0 ≤ αR ≤ 1 is the forgetting factor for all the matrices R−1
i , r−1

Ri
(k) is

the learning rate of the matrix R−1
i , and the matrices Gi are computed as

follows:
Gi(k) = wi(k)Ψi(k)(x(k)− Ci(k))(x(k)− Ci(k))T . (81)

Substituting (78) and (81) into (79) and (80) respectively, we finally ob-
tain⎧⎨⎩∆Ci(k + 1)= − 2r−1

Ci
(k)e(k)wi(k)Ψi(k)R−1

i (k)(X(k)−Ci(k)), i = 1, . . . , h ,

rCi
(k) = αCrci

(k − 1) + 4w2
i (k)Ψ2

i (k)‖X(k)− Ci(k)‖2R−2
i (k)

,

(82)
where ‖X(k) − Ci(k)‖2R−2

i (k)
= (R−1

i (k)(X(k) − Ci(k)))T(R−1
i (k)(X(k) −

Ci(k))), and⎧⎪⎨⎪⎩
∆ R−1

i (k + 1) = r−1
Ri

(k)e(k)wi(k)Ψi(k)(x(k)− Ci(k))
× (x(k)− Ci(k))T, i = 1, . . . , h ,

rRi
(k) = αRrRi

(k − 1) + w2
i (k)Ψ2

i (k)‖X(k)− Ci(k)‖4 .
(83)
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In the learning procedures (82) and (83), each basis function has two
individual learning rates for the center and the receptive field matrix. The
learning rates are computed recursively at every time step and depend on
the forgetting factors αC and αR. The forgetting factors can be selected in
the same manner as for the linear identification procedures, usually between
0.95 and 1.0.

To demonstrate the applicability of the proposed algorithms, a QRBF
network was trained online to predict a chaotic time series, generated by the
well-known Mackey–Glass time-delay differential equation [1]:

ẋ(t) =
0.2x(t− τ)

1 + x10(t− τ) − 0.1x(t) . (84)

The values of the time series at each integer point were obtained by means
of the fourth-order Runge-Kutta method. The time step used in the method
was 0.1, initial condition x(0) = 1.2, delay τ = 17, and x(k) was derived for
k = 0, . . . , 51, 000. The values x(k − 18), x(k − 12), x(k − 6), and x(k) were
used as inputs (d = 4) to predict the value of x(k + 6).

The basis functions were created with the help of subtractive cluster-
ing [25] of 500 data points for k = 118, . . . , 617. The clustering procedure
discovered 10 clusters, whose parameters were used for the initialization of
10 hidden layer units (h = 10). We selected initial receptive fields as hyper-
spheres with the radius of 3σ = 0.4689, where the parameter σ was found by
the clustering procedure. Initial output layer weights were set to zero.

The results of the initialization of the hidden layer units are presented in
Fig. 6, where the projections of the receptive fields and the chaotic process
trajectory are shown on the phase plane (x(k), x(k− 6)). The numbers from
1 to 10 indicate the centers of the corresponding basis functions.

We tested both the procedures with constant learning rate (74)–(76) and
with adaptive learning rate (77), (82) and (83). At first, only the output layer
weights were trained with corresponding procedures, while the hidden layer
parameters remained unchanged after the initialization. Then we trained the
output layer weights and the basis function centers, while the receptive field
matrices remained unchanged. Finally, the weights, centers, and receptive
field matrices were trained simultaneously. For comparison, we also used the
exponentially weighted recursive least-squares method (RLS) for the adjust-
ment of the output layer weights in combination with procedures (75), (76),
(82)and (83).

In all the experiments, we trained the QRBF network with the same ini-
tial parameters online for k = 118, . . . , 50, 117. Then we used the trained
network to predict the data points from the checking data set for k =
50, 118, . . . , 50, 617. To estimate the forecast accuracy, we calculated the root
mean squared error on the checking data (RMSECHK). The results are shown
in Table 1.

In procedures (74)–(76), we used the following learning rates, found by
the trial and error method: ηw = 0.05, ηC = 0.05, ηR = 1. In procedures (77),
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Fig. 6. Two-dimensional projections of the chaotic trajectory and initial receptive
fields

(82), and (83) the forgetting factors αw, αc, αR were equal to 0.99. The same
value was used for the forgetting factor in the RLS method.

The best forecast accuracy was achieved with the procedures (77), (82),
and (83) in the sixth experiment. The forecast of the data from the checking
set is shown in Fig. 7. The solid line represents the real chaotic process, and
the dashed line represents the forecast. The error is shown in the same figure
under the real process and forecast plots, and is very small.

Table 1. Summary of experiments

Adaptation Method

No. Weights Centers Receptive Fields RMSECHK

1 (74) None None 0.0735
2 (74) (75) None 0.0196
3 (74) (75) (76) 0.0162
4 (77) None None 0.0547
5 (77) (82) None 0.0193
6 (77) (82) (83) 0.0089
7 RLS None None 0.0559
8 RLS (75) None 0.0261
9 RLS (75) (76) 0.0169

10 RLS (82) None 0.0175
11 RLS (82) (83) 0.0097
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Fig. 7. Forecast of the Mackey–Glass time series after 50,000 time steps of online
learning using the procedures (77), (82), and (83)

Interesting enough is that the use of the procedure (77) in the sixth ex-
periment provided better result than the use of much more computationally
expensive RLS method in experiment 11. The resulting projections of the re-
ceptive fields on the phase plane (x(k), x(k−6)) are presented in Fig. 8. Note
that the QRBF centers have moved, and the shapes of the projections of the
receptive fields transformed from circles into ellipses of arbitrary orientation.

Thus, experimental results confirm high forecast accuracy, provided by
the considered nonconventional QRBF network. High performance of the
network is achieved due to the use of efficient learning algorithms.
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Fig. 8. Two-dimensional projections of the chaotic trajectory and receptive fields
after 50,000 iterations of online learning using the procedures (77), (82), and (83)
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5 Forecasting of Chaotic Sequences
Using Neuro-Fuzzy Networks

Artificial neural networks are essentially a kind of learning “black box,”
whose properties are not revealed even during the learning process. Non-
interpretability of the neural networks is the factor that limits their real-
world applications. It also stimulates the emergence and development of the
so-called neuro-fuzzy systems [26–28] within the soft computing paradigm.

They combine the linguistic interpretability of fuzzy systems with the
learning and universal approximation capabilities of neural networks. Hence,
they are an effective tool for the approximation of arbitrary functional rela-
tions.

Although a large number of advanced learning procedures for neuro-fuzzy
systems have been proposed till now, many of them [26, 29–31] rely on the
error back-propagation [32, 33] technique based on the gradient descent al-
gorithm for parameter learning.

Along with its simplicity and satisfactory performance in solving many
problems, it has some essential drawbacks that complicate its use for real-
time information processing, such as slow convergence, sensitivity to noise,
and dependence of its performance on the heuristically selected learning rate.

In [34–36] it is shown that fuzzy systems possess universal approxima-
tion capabilities, i.e., they can be used to model various nonlinear systems,
described by the following equation:

y(k) = f(X(k)) + ξ(k) , (85)

where y(k) is the output of the system, X(k) = (x1(k), . . . , xd(k))T is the
input vector, k = 0, 1, 2, . . . is the discrete time index, d is the number of
inputs, f(·) is an arbitrary function, unknown in the general case, and ξ(k)
is a stochastic disturbance with bounded second moment. We consider here,
without loss of generality, a single-output system.

It is also assumed that the function f(x) is defined on a hyperbox

xj(k) ∈ [xmin
j , xmax

j ], j = 1, . . . , d , (86)

where xmin
j and xmax

j are the known lower and upper bounds of the jth input.
Let the system (62) be approximated by a model

ŷ(k) = f̂(x(k)) , (87)

where f̂(·) is the function approximating f(·).
Below we will consider the implementation of the model (87) as a Takagi–

Sugeno fuzzy model [37] with linear rule consequents. The universal approxi-
mation properties of such models were proven in [38, 39]. The Takagi–Sugeno
models can also be trained with the learning algorithms similar to those of
artificial neural networks [29]. Such fuzzy systems with neural network-like
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learning capabilities are called neuro-fuzzy systems [27, 31]. They can be used
to model unknown nonlinear functional relations in the similar way as neural
networks, retaining at the same time the structure of fuzzy rules, which is
much better understandable than the knowledge in a trained neural network.

Let a neuro-fuzzy model contain nR rules

IF x1 IS X(R)
1,i AND . . .AND xd IS X(R)

d,i THEN ŷ = fi(X) , (88)

X
(R)
1,i = Xj,Ri,j

, i = 1, . . . , nR, j = 1, . . . , d ,

where xj is the jth input, ŷ is the output of the model, X(R)
j,i is the linguistic

label (fuzzy set [40]) of the jth input in the antecedent of the ith rule, R is
the matrix (nR× d) that determines the structure of the rule base, and fi(x)
is the linear function in the consequent of the ith rule:

fi(x) = θ0,i +
d∑

j=1

θj,ixj = ΘY
i X̃ , (89)

where Θi = (θ0,i, θ1,i, . . . , θd,i)T is the vector of the consequent parameters
of the ith rule, θ0,i, θ1,i, . . . , θd,i are scalars, and X̃ = (1, XT)T is the ex-
tended input vector. The discrete time index k is left out for simplicity in the
description of the neuro-fuzzy model.

The linguistic value X(R)
j,i is defined by the membership function

µ
X

(R)
j,i

(xj) =
{
µj,m(xj , ωj,m), m = Ri,j , Ri,j > 0 ,
1, Ri,j = 0 , (90)

where µj,m is the mth membership function of the jth input, and ωj,m is the
vector of parameters of the membership function µj,m.

Each row of the matrix R corresponds to one rule. The row index i in
(90) corresponds to the number of a particular rule, while the column index
j corresponds to the number of an input in the antecedent of that rule.
The element Ri,j of the matrix R determines the number of the membership
function of the jth input in the antecedent of the ith rule. For example, if
R2,3 = 5, then the 5th membership function of the 3rd input is used in the
antecedent of the 2nd rule.

We will assume that all the membership functions are of the Gaussian
type:

µj,m(xj , ωj,m) = exp

(
− (xj − cj,m)2

2σ2
j,m

)
, (91)

ωj,m = (cj,m, σj,m)T ,

where cj,m and σj,m are the center and width parameters of the mth mem-
bership function of the jth input, respectively.
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The output of the model is calculated according to [41]:

ŷ =
∑nR

i=1 wi(X)fi(X)∑nR

i=1 wi(X)
=

nR∑
i=1

w̄i(X)fi(X) , (92)

w̄i(X) =
wi(X)
wΣ(X)

, wΣ(X) =
nR∑
i=1

wi(X) , (93)

where wi(X) is the firing strength of the ith rule and w̄i(X)is the normalized
firing strength.

For the current input vector X, the output of the neuro-fuzzy model will
be calculated as a combination of the outputs of the local linear models with
the weights w̄i(X) according to (92).

To simplify further transformations, let us introduce the following nota-
tion for the membership function of the jth input in the antecedent of the
ith rule:

µ
(R)
j,i (xj) = µ

X
(R)
j,i

(xj) , (94)

and calculate the firing strength of the ith rule as

wi(X) =
d∏

j=1

µ
(R)
j,i (xj) . (95)

After that, introducing a vector (nR(d+1)×1) of the consequent parame-
ters Θ = (ΘT

1 , . . . , Θ
T
nR

)T and an auxiliary input vector Φ = (w̄i(X)X̃T, . . . ,

w̄nR
(X)X̃T)T, we can transform (92) into a more compact form:

ŷ = ΘTΦ . (96)

The structure of the neuro-fuzzy network is defined by the matrix R. One
membership function can contribute to the calculation of antecedents of sev-
eral rules, but each rule will have its own linear model in the consequent part,
and the values of the consequents are calculated independently for each rule.
This is because the consequents (89) of the Takagi–Sugeno fuzzy rules (88)
are local linear models, each model corresponding to a specific region in the
input space, determined by the combination of the antecedent membership
functions of that particular rule.

Each rule must have a unique combination of membership functions with
not more than one membership function from each input. According to (88)–
(95), the specific structure of the model (the structure of the connections
between the first and the second layers which determine the input space
partitioning) will be defined by the matrix R. Examples of matrices R and
the corresponding rule bases and neuro-fuzzy model structures will be given
below.

As shown in [27], the Takagi–Sugeno fuzzy systems can be represented as
five-layer fuzzy neural networks. Examples of such neuro-fuzzy networks are
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Fig. 9. Neuro-fuzzy network with grid partitioning of the input space: (a) Network
architecture; (b)Membership functions and rule activation hyperboxes

shown in Figs. 9 and 10. The first layer is used for the fuzzification of the
inputs. In the second layer, the firing strengths of fuzzy rules are calculated.
The third layer is the normalization layer. In the fifth layer, the values of
the rule consequents are calculated and multiplied by the normalized firing
strength of the respective rules. The fifth layer performs the defuzzification,
i.e., the crisp value of the output ŷ is obtained according to (92).

In order to demonstrate the input space partitioning and the rule activa-
tion hyperboxes (numbered from I to IV), the networks depicted in Figs. 9
and 10 have only two inputs. In the general case, the number of membership
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Fig. 10. Neuro-fuzzy network with scatter partitioning of the input space: (a)
Network architecture; (b) Membership functions and rule activation hyperboxes

functions of each input can be arbitrary, and the number of the rules will be
determined by the specific structure of the neuro-fuzzy network.

The tunable parameters in the neuro-fuzzy network shown in Figs. 9 and
10 are found only in the first and fourth layers. These are the antecedent
parameters (of membership functions) and the consequent parameters (of
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the local linear models). The nodes with the tunable parameters are shown
as squares.

A network with grid partitioning of the input space is shown in Fig. 9. It
corresponds to the following matrix:

R =

⎛⎜⎜⎝
1 1
1 2
2 1
2 2

⎞⎟⎟⎠
and four rules:⎧⎪⎪⎨⎪⎪⎩

IF x1 IS X1,1 AND x2 IS X2,1 THEN ŷ = f1(X) ,
IF x1 IS X1,1 AND x2 IS X2,2 THEN ŷ = f2(X) ,
IF x1 IS X1,2 AND x2 IS X2,1 THEN ŷ = f3(X) ,
IF x1 IS X1,2 AND x2 IS X2,2 THEN ŷ = f4(X) .

In the calculation of the firing strengths according to (95), the first member-
ship function of the first input µ1,1 will be denoted by µ(R)

1,1 in the first rule,

and by µ(R)
1,2 in the second rule [(90) and (94)].

The input space is scatter-partitioned in the network in Fig. 10. The
matrix

R =

⎛⎝ 1 1
2 2
3 3

⎞⎠
defines three rules:⎧⎨⎩

IF x1 IS X1,1 AND x2 IS X2,1 THEN ŷ = f1(X) ,
IF x1 IS X1,2 AND x2 IS X2,2 THEN ŷ = f2(X) ,
IF x1 IS X1,3 AND x2 IS X2,3 THEN ŷ = f3(X) .

Each membership function is used in only one rule.
The structure of the model is usually not known a priori. It can be de-

termined from the available data by means of fuzzy clustering algorithms
[25, 42], or it can be constructed during the process of learning, as is done
in the resource-allocating [22], incremental [43], self-constructing [31], and
evolving [44] networks.

Since the antecedent and consequent parameters of the neuro-fuzzy model
are unknown in the general case, they must be determined by means of learn-
ing methods.

To simplify further transformations, let us introduce a vector (nΩ × 1) of
the antecedent parameters of the neuro-fuzzy model

Ω = (ΩT
1 , . . . ,Ω

T
d )T , (97)

where Ωj = (ωT
j,1, . . . , ω

T

j,n
(µ)
j

)T is the vector (n(µ)
j nω × 1) of the parameters

of membership functions of the jth input, n(µ)
j is the number of membership
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functions of the jth input, and nω is the number of parameter per membership
function [nω = 2 for the Gaussian function (91)].

The total number of the antecedent parameters is

nΩ = nω

nx∑
j=1

n
(µ)
j . (98)

The problem of learning in a neuro-fuzzy network consists in choosing the
parameter vectors Ω(k) and Θ(k) that would minimize the error function at
every iteration k

E(k) =
1
2
e2(k) , (99)

where e(k) = y(k)− ŷ(k) is the modeling error, y(k) is the actual output of
the modeled system (target value, or the training sample) at time instant k,
and ŷ(k) is the output of the neuro-fuzzy model according to (96):

ŷ(k) = ΘT(k − 1)Φ(k) , (100)

where
Φ(k) = (w̄1(X(k))X̃T(k), . . . , w̄nR

(X(k))X̃T(k))T . (101)

The tuning of the antecedent parameters is a nonlinear optimization prob-
lem, since the system output depends nonlinearly on the components of the
vector Ω, as can be easily seen in (91)–(95). The learning in neuro-fuzzy net-
works is usually implemented via the error back-propagation [32], based on
the gradient descent optimization method. But this method converges quite
slowly. Much higher rate of convergence can be achieved with the second-
order methods [45], such as the Hartley [46] or Marquardt algorithm [47].
The second-order procedures are usually used for batch learning, when the
network parameters are updated once per number of training samples, com-
prising one training data set (usually several hundred samples or more). One
cycle of batch learning is called an “epoch.” The network parameters are
updated at the end of every epoch.

Here we use the ideas of the second-order learning to derive adaptive
real-time learning procedures. It is assumed that the network parameters are
updated every time a training sample is presented. One iteration corresponds
to one presentation of a training sample, followed by the immediate parameter
update.

We can write the generalized Hartley–Marquardt algorithm for tuning of
the antecedent parameters in the form

Ω(k + 1) = Ω(k) + λ(J(k)JT(k) + η(k)L)−1J(k)e(k) , (102)

J(k) = ∇Ωŷ(k) = (∇T
Ω1
ŷ(k), . . . ,∇T

Ωd
ŷ(k))T , (103)

where J(k) is the gradient vector (nΩ× 1) of the system output with respect
to the parameters of all membership functions at time instant k, η(k) is a
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scalar regularizing parameter, L is a diagonal positively defined regularizing
matrix (nΩ × nΩ), and λ is a scalar gain.

The vector J(k) consists of the gradients of the system output with respect
to the parameters of the membership functions of all inputs. In turn, the
gradient ∇Ωj

ŷ consists of the gradients of the system output with respect to
the parameters of the membership functions of the jth input (the discrete
time k is left out for clarity):

∇ΩJ
ŷ =

(
∇T

ωj,1
ŷ, . . . ,∇T

ω
j,n

(µ)
j

ŷ
)T

=

(
∂ŷ

∂vj,1
,
∂ŷ

∂σj,1
, . . . ,

∂ŷ

∂v
j,n

(µ)
j

,
∂ŷ

∂σ
j,n

(µ)
j

)T

, j = 1, . . . , d. (104)

The partial derivatives, constituting the gradients ∇Ωj
ŷ, can be calculated

using the chain rule, as is usually done with the back-propagation method [32]
(the arguments of the functions are left out for simplicity):

∂ŷ

∂cj,m
=

⎛⎜⎝ nR∑
i=1

∀i(Ri,j=m)

(
∂ŷ

∂w̄i
· ∂w̄i

∂wi
· ∂wi

∂µ
(R)
j,i

)⎞⎟⎠ ∂µj,m

∂cj,m
, (105)

∂ŷ

∂σj,m
=

⎛⎜⎝ nR∑
i=1

∀i(Ri,j=m)

(
∂ŷ

∂w̄i
· ∂w̄i

∂wi
· ∂wi

∂µ
(R)
j,i

)⎞⎟⎠ ∂µj,m

∂σj,m
, (106)

where j = 1, . . . , d, m = 1, . . . , n(µ)
j ,

∂ŷ

∂w̄i
= fi , (107)

∂w̄i

∂wi
=
∂ (wi/wΣ)
∂wi

=
wΣ − wi

w2
Σ

, (108)

∂wi

∂µ
(R)
j,i

=
d∏

n=1
∀n(n �=j)

µ
(R)
n,i , (109)

∂µj,m

∂cj,m
=
µj,m

σ2
j,m

(xj − cj,m),
∂µj,m

∂σj,m
=
µj,m

σ3
j,m

(xj − cj,m)2 . (110)

Introducing the following notation

δj,m =
nR∑
i=1

∀i (Ri,j=m)

(
∂ŷ

∂w̄i
· ∂w̄i

∂wi
· ∂wi

∂µ
(R)
j,i

)

=
nR∑
i=1

∀i(Ri,j=m)

⎛⎜⎝fi
wΣ − wi

w2
Σ

d∏
n=1

∀n(n �=j)

µ
(R)
n,i

⎞⎟⎠ , (111)
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and substituting (110) and (111) into (105) and (106), we obtain

∂ŷ

∂cj,m
= δj,m

µj,m

σ2
j,m

(xj − cj,m),
∂ŷ

∂σj,m
= δj,m

µj,m

σ3
j,m

(xj − cj,m)2. (112)

To reduce the computational complexity of (102), we can use the matrix
inversion lemma:

(J JT + η L)−1 = η−1L−1 − η
−1L−1 J JTη−1L−1

1 + JTη−1L−1 J
. (113)

Having done the following evident transformations(
η−1L−1 − η

−1L−1 J JT η−1L−1

1 + JTη−1L−1 J

)
J

=
(
η−1L−1 − η

−2 L−1J JTL−1

1 + η−1JTL−1 J

)
J

=
(
η−1L−1 + η−2 JTL−1J L−1 − η−2 L−1J JTL−1

1 + η−1JTL−1 J

)
J

=
(
L−1 + η−1JTL−1J L−1 − η−1L−1J JTL−1

η + JTL−1 J

)
J

=
L−1J + η−1JTL−1J L−1J − η−1L−1J JTL−1J

η + JTL−1 J

=
L−1J

η + JTL−1 J
(114)

and substituting the result of (114) into (102), we obtain [48]

Ω(k + 1) = Ω(k) + λ
L−1 J(k)

η(k) + JT(k)L−1 J(k)
e(k) . (115)

When η(k) = 0 and L is the identity matrix, the (115) can be regarded
as a nonlinear modification of the Widrow–Hoff algorithm [49]. Since the
regularizing matrix L is usually diagonal, its inversion is trivial and does not
increase the computational load significantly. When the matrix L is constant,
its inverse can be computed beforehand. The transformation (114) eliminates
the inversion of the matrix (nΩ × nΩ) in (102), and the resulting equation
(10) is strictly equivalent to (102).

To provide smoothing properties to the learning algorithm, let us rewrite
the denominator of (115) as follows:

η(k) = α (η(k − 1) + JT(k − 1)L−1 J(k − 1)) = α q(k − 1) , (116)
q(k) = η(k) + JT(k)L−1 J(k) , (117)

where 0 ≤ α ≤ 1 is a forgetting factor.
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Substituting (116) and (117) into (115), we obtain{
Ω(k + 1) = Ω(k) + λ q−1(k)L−1 J(k) e(k) ,

q(k + 1) = α q(k) + JT(k)L−1 J(k), 0 ≤ α ≤ 1.
(118)

It can be easily seen in (96) that Φ = ∇Θŷ, so we can write the learning
algorithm for the consequent parameters similar to (118):{

Θ(k + 1) = Θ(k) + σ r−1(k)M −1 Φ(k)e(k) ,

r(k + 1) = β r(k) + ΦT(k)M −1 Φ(k), 0 ≤ β ≤ 1 ,
(119)

where σ and M are the scalar gain and the regularizing matrix, respectively.
To demonstrate the applicability of the proposed algorithms, a neuro-

fuzzy network was trained to predict the Mackey–Glass chaotic time series [1].
In the experiment, the network was trained in two modes: batch sequential
learning (parameters are updated as every training sample is presented, but
the training is performed for many epochs on the same training set) and
online learning (parameters are updated as every sample is presented, the
training is performed for one “epoch,” and the number of iterations equals
the size of the training set in the batch mode times the number of epochs in
the batch mode).

In the batch mode, 500 values from the generated data for k = 118, . . . , 617
were used as the training data set, and the succeeding 500 values for
k = 618, . . . , 1117 were then used as the testing data set. A four input-one
output neuro-fuzzy network with 2 Gaussian membership functions per input
and 16 rules, forming a grid partition, was created. The network was trained
for 100 epochs (500 iterations each) with the procedures (118), and (119).
The parameters of the learning algorithm were as follows: α = β = 0.95,
λ = ρ = 1, L and M were the identity matrices of the corresponding di-
mensions. Initial values were q(0) = 10, 000, r(0) = 1. The resulting plots
are shown in Fig. 11. The two curves, representing the actual (thick line)
and predicted (dashed line) values, are almost indistinguishable. The fore-
cast error is shown in Fig. 11 as a thin line below the plots of the actual and
predicted values. To estimate the quality of the results obtained, we used the
root mean squared errors on the training data set (RMSETRN) and testing
data set (RMSECHK).

The same network was also trained using the ANFIS learning rules [29].
The results were also compared with those obtained using the Neuro-Fuzzy
Function Approximator (NEFPROX) in [50]. All the results are summarized
in Table 2.

The ANFIS hybrid learning rule provides the best results among the meth-
ods. It employs the recursive least squares estimate (RLSE) for tuning of the
consequent parameters, and is more complex computationally.

This complexity increases quadratically as the number of tuning parame-
ters grows, in contrast to the proposed learning procedures (118) and (119),
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Fig. 11. The Mackey–Glass time series, six-step ahead forecast, and forecast error
(batch learning, 100 epochs)

whose computational complexity increases linearly when the regularizing ma-
trices L and M are diagonal. Thus, for systems with large number of tuning
parameters, the proposed method should be preferred.

The NEFPROX system [50] also includes time-consuming procedures,
while providing less accurate results in comparison to those provided by the
proposed method (118), (119). In NEFPROX, which is based on the fuzzy
perceptron [51] and is capable of extracting fuzzy rules from data, the em-
phasis is placed on the interpretability of the rules.

The other ANFIS learning rule, based only on the the back-propagation
algorithm, was unable to provide satisfactory approximation after 100 train-
ing epochs. At the same time, this learning rule is more computationally
expensive than the proposed procedures (118) and (119) with diagonal regu-
larizing matrices, because the length of the step in the parameter space in the
ANFIS back-propagation learning rule is calculated as the Euclidean norm,
involving the operation of extraction of the square root.

In the online mode of learning, the same neuro-fuzzy network was trained
with the procedures (118) and (119) for 50,000 iterations (50,000 training

Table 2. Comparison of different learning methods in the Mackey–Glass time series
prediction

Method # Epochs # Rules RMSETRN RMSECHK

Hybrid ANFIS 100 16 0.0083246 0.0083428
Back-propagation ANFIS 100 16 0.30724 0.30717
NEFPROX 216 129 0.0315 0.0332
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Fig. 12. The Mackey–Glass time series, six-step ahead forecast, and forecast error
(online learning, 50,000 iterations)

samples for t = 118, . . . , 50,117. The parameters of the learning procedures
were the same as in the previous run. After 50,000 iterations the training was
stopped, and the succeeding 500 points for t = 50,118, . . . , 50,617 were used
as the testing data set to compute the forecast (Fig. 12).

The ANFIS learning rule relies on the exponentially recursive least squares
algorithm for the tuning of the consequent parameters. This algorithm is
known to be unstable in the real-time operation, and the forgetting factor
must be carefully chosen between 0.95 and 1.0 to avoid instability. Forgetting
factors close to 1 may prevent the model from adequate tracking of the rapidly
changing parameters. In this experiment, forgetting factors smaller than 0.999
caused numerical instability of the ANFIS learning algorithm. The proposed
learning methods retain numerical stability for any values of the forgetting
factors between 0 and 1.

6 Modeling and Forecasting of Chaotic Sequences Using
Neo-Fuzzy Kolmogorov’s Networks

The requirements for the improvement of the approximation properties as
well as the acceleration of information processing call for the development of
new architectures and learning algorithms that would outperform the con-
ventional ones used in the problems of modeling and forecasting of chaotic
signals.

In this section, a new architecture, called Fuzzy Kolmogorov’s Network
(FKN) containing two layers of neo-fuzzy neurons (NFNs) [52, 53] in both the
hidden and output layer parameters, is constructed, so it can be trained with
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very fast and computationally efficient procedure. This architecture is based
on the Kolmogorov’s superposition theorem (KST) [54], stating that any
continuous function of d variables can be exactly represented by superposition
of continuous functions of one variable and addition:

f(X) =
2d+1∑
l=1

gl

⎡⎣ d∑
j=1

Ψl,j(xj)

⎤⎦, (120)

where X ∈ [xmin
1 , xmax

1 ]× · · ·× [xmin
d , xmax

d ], gl(·) and Ψl,j(·) are some contin-
uous univariate functions, and Ψl,j(·) are independent of f(·). Aside from the
exact representation, the KST can be used for the construction of parsimo-
nious universal approximators, and has thus attracted the attention of many
researchers in the field of soft computing.

Hecht-Nielsen was the first to propose a neural network implementa-
tion of KST [55], but did not consider how such a network can be con-
structed. Computational aspects of approximate version of KST were studied
by Sprecher [56, 57]. Igelnik and Parikh [58] proposed the use of spline func-
tions for the construction of Kolmogorov’s approximation. Yam et al. [59]
proposed the multiresolution approach to fuzzy control, based on the KST,
and proved that the KST representation can be realized by a two-stage rule
base. They demonstrated that the exponential growth in number of rules can
be avoided via the two-stage fuzzy inference, but did not show how such a
rule base could be created from data. Lopez-Gomez and Hirota developed the
Fuzzy Functional Link Network (FFLN) [60] based on the fuzzy extension of
the Kolmogorov’s theorem. The FFLN is trained via fuzzy delta rule, whose
convergence can be quite slow.

The KST-based universal approximator proposed here has a simple struc-
ture and optimal linear learning procedures with high rate of convergence.
The FKN (Fig. 13) comprises two layers of NFNs [52] and is described by
the following equations [61–63]:

ŷ = f̂(X) = f̂(x1, . . . , xd) =
h∑

l=1

f
[2]
l (o[1,l]) ,

o[1,l] =
d∑

j=1

f
[1,l]
j (xj), l = 1, . . . , h , (121)

where h is the number of hidden layer neurons, f [2]
l (o[1,l]) is the lth nonlinear

synapse in the output layer, and o[1,l] is the output of the lth NFN in the
hidden layer, and f [1,l]

j (xj) is the jth nonlinear synapse of the lth NFN in
the hidden layer.

The equations for the hidden and output layer synapses are
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Fig. 13. FKN with d inputs and h neo-fuzzy neurons in the hidden layer

f
[1,l]
j (xj) =

m1∑
p=1

µ
[1]
j,p(xj)w

[1,l]
j,p ,

f
[2]
l (o[1,l]) =

m2∑
i=1

µ
[2]
l,i (o

[1,l])w[2]
l,i , l = 1, . . . , n, j = 1, . . . , d , (122)

where m1 and m2 are the number of membership functions per input in
the hidden and output layers respectively, µ[1]

j,h(xj) and µ[2]
l,i (o

[1,l]) are the

membership functions, and w[1,l]
j,p and w[2]

l,i are the tunable synaptic weights.
Nonlinear synapse is a single input–single output fuzzy inference system

with crisp consequents, and is thus a universal approximator [34] of univariate
functions. It can provide a piecewise-linear approximation of any functions
gl(·) and Ψl,j(·) in (120). So the FKN, in turn, can approximate any function
f(x1, . . . , xd) on the input space hyperbox.

The output of the FKN is computed as the result of two-stage fuzzy
inference:

ŷ =
h∑

l=1

m2∑
i=1

µ
[2]
l,i

⎡⎣ d∑
j=1

m1∑
p=1

µ
[1]
j,p(xj)w

[1,l]
j,p

⎤⎦w[2]
l,i . (123)
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The description (123) corresponds to the following two-level fuzzy rule
base:

IF xj IS Xj,p THEN o[1,1] = w
[1,1]
j,p d AND . . .AND o[1,h] = w

[1,h]
j,p d ,

j = 1, . . . , d, p = 1, . . . ,m1 , (124)

IF o[1,l] IS Ol,i THEN ŷ = w
[2]
j,ph, l = 1, . . . , h, i = 1, . . . ,m2 , (125)

where Xj,p and Ol,i are the antecedent fuzzy sets in the first and second
level rules, respectively. Each first level rule contains n consequent terms
w

[1,1]
j,p d, . . . , w

[1,h]
j,p d, corresponding to h hidden layer neurons.

Total number of rules is

NFKN
R = d ·m1 + h ·m2 , (126)

that is, it depends linearly on the number of inputs d.
The rule base is complete, as the fuzzy sets Xj,p in (124) completely cover

the input hyperbox with m1 membership functions per input variable. Due
to the linear dependence (126), this approach is feasible for input spaces
with high dimensionality d without the need for clustering techniques for the
construction of the rule base.

Straightforward grid-partitioning approach with m1 membership func-
tions per input produces (m1)d fuzzy rules, leading to combinatorial explosion
and being practically not feasible for d > 4.

The set of rules (124), (125) in an FKN can be interpreted as a grid-
partitioned fuzzy rule base

IF x1 IS X1,1 AND . . . AND xd IS Xd,1 THEN ŷ = f̂(c[1]1,1, . . . , c
[1]
d,1) ,

...
IF x1 IS X1,m1 AND . . . AND xd IS Xd,m1 THEN ŷ = f̂(c[1]1,m1

, . . . , c
[1]
d,m1

) ,
(127)

with total of (m1)d rules, whose consequent values are equal to the outputs
of the FKN computed on all the possible d-tuples of prototypes of the input
fuzzy sets c[1]1,1, . . . , c

[1]
d,m1

.
The weights of the FKN are determined by means of a batch-training

algorithm proposed in [62–64]. A training set containing N samples is used.
The minimized error function is

E(t) =
N∑

k=1

[y(k)− ŷ(t, k)]2 = [Y − Ŷ (t)]T [Y − Ŷ (t)] , (128)

where Y = [y(1), . . . , y(N)]T is the vector of target values, and Ŷ (t) =
[ŷ(t, 1), . . . , ŷ(t, N)]T is the vector of network outputs at epoch t.

Yamakawa et al. [52] proposed the use of gradient descent-based learning
for the NFN. Although this method can be directly applied to the output
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layer, it would also require the use of the back-propagation technique [32] for
the hidden layer. Besides that, the gradient descent-based learning procedure
converges very slowly.

However, since the nonlinear synapses (122) are linear in parameters, we
can employ direct linear least squares (LS) optimization instead of derivative-
based methods. To formulate the LS problem for the output layer, rewrite
(123) as

ŷ = W [2]Tϕ[2](o[1]), W [2] =
[
w

[2]
1,1, w

[2]
1,2, . . . , w

[2]
n,m2

]T

, (129)

ϕ[2](o[1]) =
[
µ

[2]
1,1(o

[1,1]), µ[2]
1,2(o

[1,1]), . . . , µ[2]
n,m2

(o[1,n])
]T

.

The LS solution will be

W [2] =
(
Φ[2]TΦ[2]

)−1

Φ[2]TY [2], Y [2] = Y , (130)

where Φ[2] =
[
ϕ[2](o[1](1)), . . . , ϕ[2](o[1](N))

]T
.

Now we have to determine the hidden layer weights. The use of triangular
membership functions enables the linearization of the second layer around
o[1,l]:

f
[2]
l (o[1,l]) = a

[2]
l (o[1,l])o[1,l] + b[2]l (o[1,l]) , (131)

a
[2]
l (o[1,l]) =

w
[2]
l,q+1 − w

[2]
l,q

c
[2]
l,q+1 − c

[2]
l,q

, b
[2]
l (o[1,l]) =

c
[2]
l,q+1w

[2]
l,q − c

[2]
l,pw

[2]
l,q+1

c
[2]
l,q+1 − c

[2]
l,q

, (132)

where w[2]
l,q and c[2]l,q are the weight and center of the pth membership function

in the lth synapse of the output layer, respectively. The membership functions
in an NFN are chosen such that only two adjacent membership functions q
and q+1 fire at a time [53].

With respect to (121), (123), and (131), we obtain the following expression
for the linearized FKN:

ŷ =
n∑

l=1

d∑
i=1

m1∑
h=1

a
[2]
l (o[1,l])µ[1]

i,h(xi)w
[1,l]
i,h +

n∑
l=1

b
[2]
l (o[1,l]) . (133)

Rewrite the previous equation as follows:

ŷ = W [1]Tϕ[1](x) + θ[1](x) ,

W [1] =
[
w

[1,1]
1,1 , w

[1,1]
1,2 , . . . , w

[1,1]
d,m1

, . . . , w
[1,h]
d,m1

]T

,

ϕ[1](x) =
[
ϕ

[1,1]
1,1 (x1), ϕ

[1,1]
1,2 (x1), . . . , ϕ

[1,1]
d,m1

(xd), . . . , ϕ
[1,h]
d,m1

(xd)
]T

ϕ
[1,l]
j,p (xj) = a

[2]
l (o[1,l])µ[1,l]

j,p (xj), θ[1](x) =
h∑

l=1

b
[2]
l (o[1,l]) . (134)
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Introducing vector Θ[1] =
[
θ[1](x(1)), . . . , θ[1](x(N))

]T
and matrix Φ[1] =[

ϕ[1](x(1)), . . . , ϕ[1](x(N))
]T

and noticing that Ŷ = W [1]TΦ[1] +Θ[1], we can
formulate the LS problem for the hidden layer weights:

Y − (Φ[1]W [1] +Θ[1]) = (Y −Θ[1])− Φ[1]W [1] = 0 . (135)

The solution of the LS problem is

W [1] =
(
Φ[1]TΦ

)−1
Φ[1]TY [1], Y [1] = Y −Θ[1] . (136)

The solutions (130) and (136) are not unique when matrices Φ[q]TΦ[q] are
singular (q = 1, 2 is the layer number). To avoid this, instead of (130) and
(136) at every epoch t we find

W [q](t) =
(
Φ[q]T(t)Φ[q](t)

)+

Φ[q]T(t)Y [q](t) , (137)

where (·)+ is the symbol of matrix pseudo-inverse [64].
The FKN is trained via a two-stage derivative-free optimization proce-

dure without any nonlinear operations. In the forward pass, the output layer
weights are calculated. In the backward pass, calculated are the hidden layer
weights. The number of tuned parameters in the hidden layer is S1 = dm1h,
in the output layer S2 = hm2, and total S = S1 + S2 = h(dm1 +m2). Thus,
in the forward pass, a matrix S2 × S2 is inverted, and in the backward pass
inverted is a matrix S1×S1. For comparison, the nonlinear LS methods, such
as the Gauss–Newton and Levenberg–Marquardt procedures, require the in-
version of a matrix S×S. Since the number of calculations in matrix inversion
is proportional to S3 and it will always hold that S3 > S3

1 +S3
2 , the proposed

training method is much faster.
Hidden layer weights are initialized deterministically using the formula

w
[1,l]
p,j = exp

{
−j [m1(l − 1) + p− 1]

d(m1h− 1)

}
, (138)

p = 1, . . . ,m1, j = 1, . . . , d, l = 1, . . . , h,

broadly similar to the parameter initialization technique based on ratio-
nally independent random numbers, which was proposed in [58] for the Kol-
mogorov’s spline network. The output layer weights of the FKN are initialized
with zeros.

We used the FKN in two experiments. In the first one, it was trained
to predict the time series generated by the chaotic Mackey–Glass time-
delay differential equation (84). From the generated data, 500 values for
t = 118, . . . , 617 were used as the training data set, and the next 500 for
t = 618, . . . , 1117 as the checking data set. The FKN used for prediction
had 4 inputs as in the previous experiments, 9 neurons in the hidden layer
with 3 membership functionsper input, and 1 neuron in the output layer with
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Table 3. Results of six-step ahead prediction of the Mackey–Glass time series

Network Parameters Epochs RMSETRN RMSECHK

FKN 153 50 0.0028291 0.004645
MLP 145 50 0.002637 0.003987

5 membership functionsper synapse (153 adjustable parameters altogether).
In the six-step ahead prediction, it demonstrated a performance similar to
that of a two-hidden layer perceptron with 145 parameters trained with the
Levenberg–Marquardt procedure. Both networks were trained for 50 epochs.

Root mean squared error on the training and checking sets (RMSETRN

and RMSECHK) was used to estimate the accuracy of predictions. The results
are listed in Table 3. Actual time series, the prediction provided by the FKN,
and prediction error are shown in Fig. 14.

It can be readily seen that the results are very close in accuracy, but the
computational complexity of the FKN and its learning algorithms is about
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Fig. 15. Emulation of the Mackey–Glass time series

a order of magnitude lower than that of the Multi Layer Perceptron (MLP)
with the Levenberg–Marquardt procedure. This circumstance makes the FKN
more preferable for the identification and forecasting in real time.

The second experiment consisted in the emulation of the Mackey–Glass
time series by the FKN. The values of the time series were fed into the FKN
only during the training stage. three thousand values for t = 118, . . . , 3117
were used as the training set. The FKN had 17 inputs corresponding to the de-
lays from 1 to 17, 5 neurons in the hidden layer with 5 membership functions
per input, and 1 neuron in the output layer with 7 membership functions per
synapse (total 460 adjustable parameters). The FKN was trained to predict
the value of the time series one step ahead.

The training procedure converged after 52 epochs with the final value
of RMSETRN = 0.000318, and the last 17 values of the time series from
the training set were fed to the inputs of the FKN. Then the output of the
network was connected to its inputs through the delay lines, and subsequent
1,000 values of the FKN output were computed. As can be seen from Fig.
15, the FKN captured the dynamics of the real time series very well. The
difference between the real and emulated time series becomes visible only
after about 500 time steps. The emulated chaotic oscillations remain stable,
and neither fade out nor diverge. In such a way, the FKN can be used for
long-term chaotic time series predictions.



478 Y. Bodyanskiy and V. Kolodyazhniy

7 Conclusions

Some issues of identification and forecasting of the chaotic signals and sys-
tems by means of the hybrid computational intelligence techniques were con-
sidered in this chapter. The efficiency of the architectures that implement
kernel approximation (radial basis function networks, neuro-fuzzy networks,
neo-fuzzy Kolmogorov’s networks) as well as specialized learning algorithms
with high rate of convergence and information processing were demonstrated.
Examples of the processing of chaotic time series confirm the efficiency of the
considered approach.
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Fuzzy–Chaos Hybrid Controllers
for Nonlinear Dynamic Systems

Keigo Watanabe, Lanka Udawatta, and Kiyotaka Izumi

Abstract. Controlling of chaos is an interesting research topic while employing of
deterministic chaos for controlling is more interesting. This chapter focuses on em-
ploying and utilizing of inherent chaotic features in a nonlinear dynamical system in
a useful manner. When it comes to employing deterministic chaos, there are tremen-
dous advantages such as low-energy consumption, robustness of the controller per-
formance, information security, and simplicity of employing chaos whenever it has
chaotic attractive features in the original systems itself. If the original system does
not have chaotic properties, deterministic chaos will be introduced to the system.
Keeping these objectives, the control algorithm is constructed in order to control
nonlinear systems, which exhibit chaotic behavior. We introduce two phases of con-
trol: First phase uses open-loop control forming a chaotic attractor or using chaotic
inherent features in a system itself. Fuzzy model based controller is employed un-
der state feedback control in the second phase of control. The Henon map and
the three-dimensional Lorenz attractor, which have chaotic attractive features in
their original systems, are taken into consideration so as to utilize the benefits of
chaos. Then, a two-link manipulator is considered to illustrate the design procedure
with employing deterministic chaos. Simulation results show the effectiveness of the
proposed controller.

1 Introduction

Recent advances in artificial intelligence (AI) backed by various soft comput-
ing techniques have been significantly explored and applied to practical situ-
ations in machine learning, systems control, intelligent planning and schedul-
ing, uncertain reasoning, data mining, natural landscape understanding and
translation, computer vision, virtual reality, and games [1]. Not only these
soft computing techniques can be employed to handle this kind of complicated
situations, but also we can apply them for achieving better performance to
control complex systems, especially by using the concepts in neural networks,
fuzzy reasoning, and evolutionary computation. Complicated dynamics in
nonlinear systems makes real-time implementation difficult and therefore AI
techniques are an attractive alternative in controlling such systems. Gleaning
the searching and learning abilities of evolutionary computation [2] to fulfill
the ultimate control objective with any fuzzy or neuro controllers is a rich
option. These techniques have been applied to many problems in different
instances and succeeded.

K. Watanabe et al.: Fuzzy–Chaos Hybrid Controllers for Nonlinear Dynamic Systems,
StudFuzz 187, 481–506 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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Fuzzy reasoning [3–5] and chaos theory [6–8] are two important fields in
this research area, especially when dealing with nonlinear systems control.
In particular, research over the past few decades shows a rapid development
of fuzzy model based control theory which brings up scientist into a new era
in controlling nonlinear systems [5, 9]. In fact, the concept can be applied
very well to nonlinear dynamical systems [10–12]. On the other hand, chaos
theory plays an important role in analyzing dynamical systems. We basically
focus on these two important fields and bring a novel concept for controlling
nonlinear dynamical systems.

In the field of controlling nonlinear dynamical systems that show chaotic
features, the approaches adopted so far can be categorized into two groups
in large. One approach is to curb the chaotic dynamics of a system in or-
der to reduce the system to a manageable level [13], so that conventional
nonlinear control methodologies can be employed. The other approach is to
intentionally activate chaotic dynamics in a normal nonlinear dynamic sys-
tem to exploit some of the latent characteristics of chaotic attractors [14–16].
It ia stated that in a nonlinear dynamical system, a chaotic attractor can be
formed by an appropriate usage of open-loop control [6, 17].

This research simply focuses on employing useful chaos while ensuring
the stability condition of the overall system. Here, we introduce two phases
of control. First phase uses an open-loop controller. Once the system has en-
tered a specified area, the open-loop control is cut off and the second phase
of control scheme is adopted. Moreover, a conceptual control algorithm is
presented by introducing a fuzzy model based controller by employing pow-
erful linear matrix inequalities (LMIs) available to date for stability analysis.
Here, the second phase of control is carried out by constructing a convex
fuzzy attractive domain while eliminating the local minima problem with the
help of evolutionary computation [14, 18] or recently developed semidefinite
programming algorithms. For this purpose, the state feedback gain schedul-
ing of the control system in the second phase is achieved by solving a set of
LMIs via an optimization technique based on evolutionary computation. In
addition, the present method has the advantage of solving LMIs either using
evolutionary computation as proposed in [19] or recently developed power-
ful semidefinite programming tools based on convex optimization algorithms
available to date in mathematical literature.

The rest of the chapter is organized as follows: Theoretical review on
chaos and fuzzy systems is given in Sect. 2, whereas Sect. 3 focuses on the
concept of the present controller. Further details on hybrid controller design
are given in Sect. 4. Stability and gain scheduling of the closed-loop system
are presented in Sect. 5. Three design examples: the Henon map, the Lorenz
attractor, and a two-link manipulator with simulation results are presented
in Sects. 6, 7, and 8 respectively. Finally, concluding remarks are given in
Sect. 9.
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2 Review of Chaos and Fuzzy Systems

2.1 Chaotic Systems

Even though there is no generally accepted definition for chaos, it is worth to
absorb something from the history to explore the subject. In 1963, Edward
Lorenze, a meteorologist and the first experimenter in chaos, described his
model of weather prediction phenomena with a set of nonlinear differential
equations. He was working on a problem of weather prediction, with a set
of 12 equations to model and predict the weather [6]. Unfortunately, system
did not forecast the weather conditions as expected. However, his computer
program did theoretically predict what the weather might be. From this set
of equations, it is concluded that the system does sensitively depend on initial
conditions. At that time, there were only two kinds of order previously known:
a steady state, in which the variables never change, and periodic behavior,
in which the system goes into a loop, repeating itself indefinitely. Lorenz’s
equations were definitely in order, they always followed a spiral. They never
settled down to a single point, but since they never repeated the same thing,
they were not periodic either. He called the image he got when he graphed the
equations the Lorenz attractor (see Fig. 1). As a result, Lorenz’s discoveries
were not acknowledged until years later, when they were rediscovered by
others. But it gave a break through, leading to a new research field called
chaos. For example, Hennon map is one of the available chaotic systems for
analyzing chaos (see Fig. 1b).

Recently, development of chaos theory brings up scientist into a new era in
analyzing nonlinear systems. It is known that the chaos exhibits a determin-
istic random behavior. Yet it needs more investigation on such nonlinear sys-
tems in designing control algorithms. Among the various methods available
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to analyze such nonlinear systems, there exist fixed point analysis, lineariza-
tion, Poincare map, homoclinic orbits and Horseshoes, Lyapunov method,
spectral analysis, fractal, etc. [7–12, 14, 18, 20]. Still these types of analyti-
cal methods are categorized under classical techniques of exploring chaos. In
general, chaotic systems have the following properties:

• Spectrum of a chaotic system is not solely of discrete frequencies, but has a
continuous, broad-band nature. This noise-like spectrum is characteristic of
chaotic systems. The analytical calculation of the Fourier transform is quite
complicated for practical systems, but numerical methods are straightfor-
ward. When the data are discrete, it is possible to employ an algorithm
like FFT.

• Chaotic systems have the property of sensitive dependence on initial con-
dition so called butterfly effect. For a given two different initial conditions,
arbitrarily close to one another, the two trajectories generated by each
starting point will be diverged for a given time. Therefore, the long-term
behavior of the chaotic system can never be predicted, but still it is con-
fined to a specific domain Γ ∈ �n and the trajectory is bounded. This
confirms the property: deterministic systems exhibit random behavior.

• Another classical technique for analyzing dynamical systems is from
Poincare map [7]. It replaces the flow of an nth-order continuous-time sys-
tem with an (n − 1)th-order discrete-time system. It observes the motion
stroboscopically, viewing the phase-space. This phenomenon is explored by
Henri Poincare and some details on the Poincare map for various attractors
are given in Table 1.

• For an attractor, construction must outweigh expansion such that the
Lyapunov exponents behave as given in Table 1.

• Next method of classifying attractors is to use the concept of dimension:
capacity, information dimension, correlation dimension, and Lyapunov di-
mension. Classification of attractors by dimension is quite straightforward.
Simple attractor has integer dimension, while strange attractors have frac-
tional dimension.

The first consumer product to exploit chaos theory was produced in 1993
by Goldstar Company in the form of a revolutionary washing machine. Later,

Table 1. Different types of attractors and their properties

Attractor Poincare map Lyapunov exponent Spectrum

Equilibrium Does not exit 0 > λ1 ≥ · · · ≥ λn Does not exit
Periodic 1 ≤ points λ1 = 0, 0 > λ2 ≥ · · · ≥ λn Components
2-periodic 1 ≤ closed curves λ1 = λ2 = 0, 0 > λ3 ≥ · · · ≥ λn Components
k-periodic 1 ≤ (k − 1)-tori λ1 = · · · = λk = 0, 0 > λk+1 ≥ · · · ≥ λn Components
Chaotic Continuum points λ1 > 0;

∑n
l=1 λi < 0 Continuous
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there are many theoretical and practical advancements in this research area
[21, 22].

2.2 Fuzzy Reasoning Based Systems

Fuzzy logic and fuzzy set theory provide a rich and meaningful addition
to standard logic, defining a useful rule base, especially for the purpose of
intelligent systems and engineering control. The basic idea of “fuzzy logic”
was suggested by Prof. L.A. Zadeh [3, 4] and the first implementation of
fuzzy logic controller was reported by Mamdani and Assilian [23, 24]. Later,
Takagi–Sugeno (TS) fuzzy models became more popular due to its simplicity
and easiness of implementing on practical controllers [9]. The main feature
of TS-type fuzzy model is that it expresses the local dynamics of each fuzzy
rule by linear dynamical model. In fact, research over the past two decades
shows a rapid development of fuzzy model based control theory that brings
up scientist into a new era in controlling nonlinear systems [25–27].

Fuzzy logic or fuzzy reasoning is a departure from classical two-valued sets
and logic that uses “soft” linguistic (large, hot, tall) system variables and a
continuous range of truth values in the interval [0, 1], rather than strict binary
(1 or 0) decisions and assignments. If X is a collection of objects denoted by
x, then a fuzzy set A in X is defined as a set of ordered pairs

A = {(x, µA(x)) | x ∈ X} (1)

where µA is called the membership for the fuzzy set A. Function µA maps
each element of X to a membership grade (or membership value) between 0
and 1 (included).

When the system to be controlled has complex nonlinear dynamics it
is not easy to control such a nonlinear system using conventional meth-
ods; therefore, fuzzy reasoning based controllers are an attractive alternative.
Fuzzy controllers provide a new direction toward the realization of control-
ling such a class of nonlinear systems. Blending of chaos with fuzzy rules,
in order to capture the hidden nonlinearities of the system to be controlled,
will be useful in developing such controllers. For example, in [28], the de-
sign criterion of a genetic algorithm (GA) based neural fuzzy controller is
presented for an antibreak system. In practical situations, design engineer
needs to define the desired fuzzy membership functions according to appli-
cation. Typical examples are Gaussian and triangular membership functions
as shown in Fig. 2.

3 Concept of the Controller

Inherent chaotic characteristics can be useful in moving a system to various
points in state space confining to a specific domain Γ ∈ �n. If the original
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µ µ

(a) Gaussian membership functions (b) Triangular membership functions

Fig. 2. Typical membership functions

system does not have chaotic attractive features, a suitable open-loop control
input will be introduced to create chaos in order to fulfill the desired con-
trol objective. In this concept, this feature is promoted to drive the system
states to a predefined convex domain C ∈ �n+1 with aid of an appropriate
open-loop control excitation on the nonlinear system. The domain C must
be a convex region which consists of a well-defined fuzzy rule-base and the
construction details are given in the next section. Once it reaches to the pre-
defined fuzzy attractive domain, open-loop input is cut off and a fuzzy model
based controller is employed under state feedback control to achieve desired
target. This design concept is shown in Fig. 3 for a two-dimensional case.
Here it is intended to drive the system states from point P1 to point P3. In
the first phase of control, chaotic attractive features drive the system from
point P1 to point P2. Then, from P2 to P3 is systematically achieved via a
fuzzy model based regulator.

The feedback controller design is based on multiple linearizations around
a single equilibrium point, i.e., so called off-equilibrium linearizations. It is
known that the off-equilibrium linearization will significantly improve the
transient dynamics of the control system for a general control problem [5].
Rather, it is interesting to note that such a technique is useful for constructing

+ℜ∈
•

•

ℜ∈Γ +ℜ∈

+++

Fig. 3. Fuzzy – chaos hybrid control scheme. The left part denotes the concept of
this control method and the right part shows the detailed convex fuzzy attractive
domain, where OLC denotes the open-loop control and FMC is the fuzzy model
based control
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a globally stable fuzzy attraction domain without trial and error compared
to the method proposed in [6, 17].

3.1 Open-Loop Control Using Chaos

Let the trajectory φt : �n �→ �n be a solution to a linearized model with
initial condition α0 and λ̂1, λ̂2, . . . , λ̂n be the eigenvalues of the linearized
equation. Taking,

mi(t) = exp[λ̂it] (2)

The dynamical system trajectory φt will be chaotic and attractive if the
Lyapunov exponents λ1, λ2, . . . , λn of the above linearized model are such
that

λ1 > 0 (one of the Lyapunov exponents),
n∑

i=1

λi < 0 (3)

where

λi = lim
t→∞

1
t

ln[mi(t)] (4)

Since the control technique of the first phase is realized through the chaotic
attractor Γ ∈ �n, robustness of the system is guaranteed even for large dis-
turbances. Chaotic attractors have particular domains such that the system
states always drive toward the safe attractive region. Therefore, this advan-
tage cannot be gained by classical control schemes like PI, PID, and others.

3.2 Closed-Loop Control Using Fuzzy Model Based Regulators

Nonlinear dynamic continuous-time systems (CS) can be described by non-
linear differential equations (or difference equations for discrete-time systems
(DS)) as

ẋ = F (x ,u) for CS

x (t+ 1) = F (x ,u) for DS
(5)

where x ∈ �n is the state vector and u ∈ �m gives the control input vector
of the systems. The equilibrium points (x̄ , ū) (or fixed points) of the dynamic
system satisfy

ε = {(x ,u) ∈ �n+m | F (x̄ , ū) = 0} for CS

ε = {(x ,u) ∈ �n+m | x̄ = F (x̄ , ū)} for DS
(6)

Here, it is proposed to select a suitable set of off-equilibrium points [23] such
that all the subsystems compose a convex region C ∈ �n+1 which keeps the
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equilibrium point (x̄ , ū) ∈ C approximately on the center of gravity of the
convex region as shown in Fig. 3. More generally, n-dimensional state space
system needs at least n+1 off-equilibrium points which represent the convex
region to ensure the stability of a particular subsystem [19, 29–34]. Neglecting
higher order terms, we obtain a linearized model around any arbitrary point
(x 0,u0) ∈ C as follows:

ẋ = A0(x − x 0) +B0(u − u0) + F (x 0,u0) for CS

x (t+ 1) = A0(x − x 0) +B0(u − u0) + F (x 0,u0) for DS
(7)

where

A0 =
∂F

∂x
(x 0,u0)

B0 =
∂F

∂u
(x 0,u0)

For example, two-dimensional state space model needs three off-equilibrium
points such that the equilibrium point lies on the center of mass of an equi-
lateral triangle keeping its corners on the three off-equilibrium points. The
dynamics of the nonlinear system are approximated near an arbitrary point
(x 0,u0) ∈ C. Then, (7) can be rewritten in the form

ẋ = A0x +B0u + d0

x (t+ 1) = A0x +B0u + d0

(8)

where d0 = F (x 0,u0)−A0x 0 −B0u0.
Note here that an arbitrary point (x 0,u0) need not be an equilibrium

point (x̄ , ū).
Fuzzy models from Takagi–Sugeno consist of a set of IF–THEN rules for

the above approximated systems. The ith plant rule of each subsystems for
both continuous-time and discrete-time fuzzy systems is given by

IF z1(t) is Mi1 and . . . and zp(t) is Mip

THEN

⎧⎨⎩
ẋ (t) =Aix (t) +Biu(t) + d i

x (t+ 1) =Aix (t) +Biu(t) + d i

y(t) =Cix (t), i = 1, . . . , r

(9)

where r is the number of fuzzy rules and Mij (i = 1, . . . , r and j = 1, . . . , p)
are the fuzzy sets. The state vector is x (t) ∈ �n, the input vector is u(t) ∈
�m, and the output vector is given by y(t) ∈ �q. Ai, Bi, and Ci are the
system parameter matrices and d i is the offset term of the ith fuzzy model.
For a given state, z1(t), . . . , zp(t) are the premise variables (or antecedent
inputs).

Subjecting to the parallel distributed compensation, we can design the
following fuzzy regulators:
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Regulator rule i :
IF z1(t) is Mi1 and . . . and zp(t) is Mip

THEN u(t) = −Ki[x (t)− x r] + ur, i = 1, . . . , r (10)

for the fuzzy models (9), where x r is a state reference trajectory, ur is the cor-
responding input trajectory, and Ki is the local feedback gain matrix. Thus,
the fuzzy regulator rules have linear state-feedback laws in the consequent
parts and the overall fuzzy regulator can be reduced to

u(t) = −
r∑

i=1

hi(z (t))Ki[x (t)− x r] + ur (11)

where

z (t) = [z1(t), . . . , zp(t)] (12)

wi(z (t)) =
p∏

j=1

Mij(zj(t)) (13)

hi(z (t)) =
wi(z (t))∑r
l=1 wl(z (t))

(14)

for all t, in whichMij(zj(t)) denotes the confidence (or grade) of membership
of zj(t) in Mij .

4 Fuzzy–Chaos Hybrid Controller

In order to control the original nonlinear system with a chaotic input in the
open-loop system and a fuzzy controller in the closed-loop system, a fuzzy–
chaos hybrid control scheme is proposed here. Such a control scheme can be
considered in two cases, depending on the choice of equilibrium points as the
reference. In this case, the fuzzy–chaos hybrid control can be implemented
by

IF
r∑

i=1

wi(z (t)) ≡ 0 THEN u(t) = û(t)

ELSE (15)

u(t) = −
r∑

i=1

hi(z (t))Ki[x (t)− x̄ ] + ū

where û(t) is an open-loop input to make the original nonlinear system
chaotic and (x̄ , ū) is the prespecified equilibrium point which would be stabi-
lized. Figure 4 shows the hybrid controller. If the stabilized equilibrium point
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Fig. 4. Fuzzy–chaos hybrid control scheme

is arbitrary among all the equilibrium points, the above fuzzy–chaos hybrid
control can be modified as follows:

IF
r∑

i=1

wi(z (t)) ≡ 0 THEN u(t) = û(t)

ELSE (16)
imax = max{h1(z (t)), . . . , hr(z (t))}
u(t) = −Kimax [x − x̄max] + ūmax

where imax denotes the rule number that has largest rule confidence, Kimax is
the corresponding feedback gain matrix, and (x̄max, ūmax) is an equilibrium
point existing in the fuzzy attractive domain constructed by using the imaxth
rule. Schematically, further explanation on the largest confidence when it
comes to the controller design is given in Fig. 5.

5 Stability of the Closed-Loop Controller

The stability of a nonlinear control system is systematically checked by the
well-known Lyapunov stability theorems. Here, the stability of the closed-
loop system of (9) is explained ensuring the stability. Off-equilibrium models
P1, P2, . . . , Pn+1 associated with the convex domain are shown in Fig. 3.

Tanaka et al. [27] or Tanaka and Wang [35] have verified that the equi-
librium of the fuzzy system described by the TS fuzzy model (9) is asymp-
totically stable in the large if there exists a common positive definite matrix
P and semidefinite matrix Q such that for a decay rate problem in CS

GT
iiP + PGii + (s− 1)Q+ 2αP < 0 (17)
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(
Gij +Gji

2

)T

P + P
(
Gij +Gji

2

)
−Q+ 2αP ≤ 0 (i < j) (18)

where feedback gains are denoted by Ki(i = 1, . . . , r) such that Gij = Ai −
BiKj , if u(t) = −Kix (t) and 1 < s < r. Note that as far as the speed
response is concerned, it is important to set the largest Lyapunov exponent
α > 0 and the condition given by V̇ (x (t)) ≤ −2αV (x (t)) for all trajectories
is equivalent to (17) and (18).

For a discrete fuzzy control system, the system will be asymptotically
stable if there exist a common positive definite matrix P and a common
positive semidefinite matrix Q such that

GT
iiPGii − α2P − (s− 1)Q < 0 (19)(

Gij +Gji

2

)T

P

(
Gij +Gji

2

)
− α2P −Q ≤ 0 (i < j) (20)

where α < 1.
Notice that if r is large, it might be difficult to find the common positive

definite matrix P and a common positive semidefinite matrix Q. In such sit-
uations, this relaxed stability condition with s improves performance when it
determines the common P and Q in order to find the gains [27]. Engineering
design often involves several objectives. Therefore, determination of feedback
gains of the closed-loop system can be carried out by either an evolutionary
computational based algorithm as proposed in [18, 19], or recently developed
interior-point methods using LMI tool up to date [33]. Moreover, LMIs are
presented to fulfill a systematic design and the system designer has the flex-
ibility of including and optimizing other constraints [5, 36] when using any
evolutionary computation approach [2, 37].

For a continuous dynamical system, (17) and (18) can be rearranged to
formulate the following optimization problem:
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Maximize α
subjected to X > 0, Y ≥ 0 (21)

−XAT
i −AiX +MT

i B
T
i +BiMi − (s− 1)Y − 2αX ≥ 0 (22)

2Y −XAT
i −AiX −XAT

j −AjX +MT
j B

T
i

+BiMj +MT
i B

T
j +BjMi − 4αX ≥ 0 (i < j) (23)

where X = P−1,Mi = KiX, and Y = XQX.
For a discrete system, the decay rate α is given by ∆V (x (t)) ≤

(α2 − 1)V (x (t)). The following LMIs are equivalent to the (19) and (20):

Minimize
β subjected to X > 0, Y ≥ 0 (24)[

βX − (s− 1)Y XAT
i −MT

i B
T
i

AiX −BiMi X

]
> 0 (25)

[
βX + Y

1/2{AiX +AjX −BiMj −BjMi}

1/2{AiX +AjX −BiMj −BjMi}T
X

]
≥ 0 (26)

where X = P−1,Mi = KiX, and Y = XQX and β is selected as α2 =
β (α < 1).

6 Design Example 1: Henon Map

In this example, the chaotic system, Henon map, is presented to illustrate the
proposed design procedure. The nonlinear dynamic equations of the Henon
map are given by

x1(t+ 1) = −1.4x2
1 + x2 + 1

x2(t+ 1) = 0.3x1

(27)

For simplicity, the uncontrolled Henon map, starting from (−0.3, 0.0) is given
in Fig. 1. Here, the points 1, 2, 3, 4, and 5 denote the first consequent five
points respectively.

The open-loop control input to the system (27) u is selected as in (28) in
implementing the desired control algorithm:

x1(t+ 1) = −1.4x2
1 + x2 + 1 + u

x2(t+ 1) = 0.3x1

(28)

Fixed points of the system of difference (27) are satisfied as the (6), re-
sulting two fixed points (0.6314, 0.1894) and (−1.1314, −0.3394). Therefore,
we can design two convex regions that correspond to two fixed points.
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6.1 Construction of Two Fuzzy Attractive Domains

Here we select a triple point subregion (Aix (t) +Biu(t) for i = 1, 2, 3) such
that it surrounds the fixed point (xa = 0.6314, xb = 0.1894) as shown in
Fig. 6. The equilibrium point lies on the center of mass of an equilateral
triangle having the coordinates (xa1, xb1), (xa, xb2), and (xa3, xb1) in order
to determine the common P and common Q. In order to construct the fuzzy
attractive domain that corresponds to a particular fixed point, it is necessary
to determine the maximum size of the convex region. By varying the length
xa − xa1 of the triangle as shown in Fig. 6, it is possible to change the size
of the fuzzy attractive domain with respect to a particular fixed point. By
increasing the width xa−xa1, it is possible to increase the size of the convex
domain of the first fixed point (stability details are given in Table 2).

Fig. 6. Tripple point subsystem (i = 1, 2, 3) and its membership functions

Table 2. Design parameters for various xa − xa1

xa − xa1 Common P and Q Stability

0.05 Exist Stable
0.1 Exist Stable
0.2 Exist Stable
0.3 Exist Stable
0.4 Does not exist Not guaranteed

> 0.4 Does not exist Not guaranteed
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For example, taking (xa−xa1) = 0.2, three linearized models corresponded
to the first fixed point are given as

A1 =
[
−1.4878 1

0.3 0

]
, B1 =

[
1
0

]
; A2 =

[
−1.7678 1

0.3 0

]
, B2 =

[
1
0

]

A3 =
[
−2.0478 1

0.3 0

]
, B3 =

[
1
0

]
The same procedure is repeated to select the next subdomain (Aix (t) +
Biu(t) for i = 4, 5, 6) around the second fixed point and the three linearized
models are given as

A4 =
[

3.4478 1
0.3 0

]
, B4 =

[
1
0

]
; A5 =

[
3.1678 1

0.3 0

]
, B5 =

[
1
0

]
A6 =

[
2.8878 1

0.3 0

]
, B6 =

[
1
0

]
The points P1(A1, B1), P2(A2, B2), . . . , P6(A6, B6) on the Henon map are
shown in Fig. 7.

6.2 Calculation of Feedback Gains

Gain scheduling of the above problem can be formulated as an optimization
problem with the LMIs of (25) and (26) and it is solved by using an op-
timization technique based on evolutionary computation [18, 19]. Here we
obtain the common P and common Q for the first fixed point guaranteeing
the stability. We obtained the P1 and Q1 as follows at β = 0.86 (s = 3):

P1 =
[

699.633 71.9250
71.9250 812.871

]
, Q1 =

[
27.3824 0.9216
15.8108 38.907

]
Similarly, P2 and Q2 matrices associated with the second fixed point can be
obtained as follows at β = 0.96 (s = 3):

P2 =
[

633.277 29.3221
29.3221 656.3649

]
, Q2 =

[
55.4408 30.5980
30.5980 76.9469

]
The gainsK1,K2, andK3 are obtained as below providing the global stability
of the fuzzy control system for the first subsystem:

K1 = [−0.8292 1.0092] , K2 = [−2.1818 0.5875] ,
K3 = [−2.0672 1.4699]

Similarly, the gains K4, K5, and K6 are obtained for the second subsystem
as follows:

K4 = [3.4272 0.7360] , K5 = [3.8298 1.5356] ,
K6 = [2.6047 0.8615]
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6.3 Simulation Results

Based on the methodology, as proposed in Sect. 2, the Henon map is con-
trolled by a fuzzy–chaos hybrid controller. Since the system has been already
a chaotic, it can be used for the first phase of control with no input (û = 0).
Once the system states reach to one of the above two subdomains, fuzzy con-
troller will drive the system toward the fixed point. For example, by using
the above gains Ki (i = 1, 2, 3), the fuzzy controller is constructed from the
following IF–THEN rule base:

R1 : IF x1 is PS AND x2 is PS THEN K = K1

R2 : IF x1 is P AND x2 is PB THEN K = K2

R3 : IF x1 is PB AND x2 is PS THEN K = K3

(29)

where PS, P, and PB represent the words positive, small, positive, and posi-
tive big, respectively. In order to verify the above design procedure in Sects. 2
and 3, the proposed fuzzy–chaos hybrid controller is applied to the chaotic
system (27). Here we allow the system to drive its states toward one of the
above two fixed points chaotically. The rule base (8) was employed here to
construct the controller as follows:

IF
6∑

i=1

wi(z (t)) ≡ 0

u = û = 0
ELSE
u = −Kimax [x − x̄ imax ] (i = 1, . . . , 6) (30)

where Kimax is the gain which corresponds to wimax(k) (i = 1, . . . , 6).
Figure 7 shows the resulting trajectory of the chaotic system controlled

by the proposed controller starting from (−0.3, 0).

7 Design Example 2: Lorenz Attractor

The system of equations of Lorenz attractor is given by the following differ-
ential equations:

dx
dt

= −δ(x− y)
dy
dt

= −xz + rx− y (31)

dz
dt

= xy − bz

Here, the terms δ, r, and b have the values δ = 10, r = 28, and b = 8/3,
respectively.
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Fig. 7. Trajectory of the controlled Henon map starting from point 1(−0.3, 0)

Phase trajectory of the uncontrolled Lorenz attractor starting from (1, 1, 1)
is shown in Fig. 1. System of differential equations in (31) has three fixed
points numerically (0, 0, 0), (8.4853, 8.4853, 27), and (−8.4853, −8.4853, 27).

The control input u1 is selected to control the system shown in (31) and
it is given as in (32) in implementing the desired control system:

ẋ1 = −δ(x1 − x2) + u1

ẋ2 = −x1x3 + rx1 − x2 (32)
ẋ3 = x1x2 − bx3

where, x1, x2, and x3 represent the states of the variables x, y, and z, respec-
tively, i.e., the system state vector is defined by xT = [x1 x2 x3].

7.1 Construction of the Fuzzy Attractive Domain

The fixed point (8.4853, 8.4853, 27) is selected as the reference point
in order to illustrate the design procedure. Therefore, the convex region
which corresponds to this fixed point is constructed using four subsystems
(Aix (t) + Biu(t) for i = 1, 2, 3, 4) such that it surrounds the fixed point
(8.4853, 8.4853, 27) as explained in [29, 32]. The equilibrium point is kept
the center of mass of a tetrahedron having the coordinates of corners P1, P2,
P3, and P4 as shown in Table 3 in order to determine the common P and
common Q.

Based on the methodology proposed in Sect. 2, the Lorenz attractor is
controlled by a fuzzy–chaos hybrid controller. Since the system has been
already a chaotic, it can be used for the first phase of control with no input
(û = 0) and a simplified version of the control algorithm is presented in the
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Table 3. Coordinates of the fuzzy attractive domain

Pi x1 x2 x3

P1 −1.5091 2.7139 22.3235
P2 18.4858 2.7184 23.2978
P3 8.4839 20.0168 22.3233
P4 8.4882 8.4795 38.9072
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Fig. 8. Fuzzy attractive domain and membership for variable x

next subsection. Once the system states reach to the fuzzy attractive domain,
fuzzy controller will drive the system toward the fixed point. Constructed
fuzzy attractive domain using the concept explained in [29] is shown in Fig. 8.
For example, triangular fuzzy memberships for the variable x1 (i.e., x) is also
given in Fig. 8. Here, the terms PB, P, and N represent the words positive
big, positive, and negative, respectively. The rule base for variable x1 can be
simply implemented as follows:

R1 : IF x1 is N AND x2 is . . . AND x3 is . . . THEN K = K1

R2 : IF x1 is PB AND x2 is . . . AND x3 is . . . THEN K = K2

R3 : IF x1 is P AND x2 is . . . AND x3 is . . . THEN K = K3

R4 : IF x1 is P AND x2 is . . . AND x3 is . . . THEN K = K4

(33)

Four linearized models corresponding to the selected fixed point are as follows:

A1 =

⎡⎣ −10 10 0
5.6765 −1 1.5091
2.7139 −1.5091 −2.6667

⎤⎦ ; B1 =

⎡⎣1
0
0

⎤⎦
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A2 =

⎡⎣ −10 10 0
4.7022 −1 −18.4858
2.7184 18.4858 −2.6667

⎤⎦ ; B2 =

⎡⎣1
0
0

⎤⎦
A3 =

⎡⎣ −10 10 0
5.6767 −1 −8.4839
20.0168 8.4839 − 2.6667

⎤⎦ ; B3 =

⎡⎣1
0
0

⎤⎦
A4 =

⎡⎣ −10 10 0
−10.9072 −1 −8.4882
8.4795 8.4882 −2.6667]

⎤⎦ ; B4 =

⎡⎣1
0
0

⎤⎦
These four linearized models are used to determine the gains of the fuzzy
attractive domain in the second phase of control as explained in Sect. 2.

7.2 Controller

Simplified version of the total controller can be expressed as follows:

IF
4∑

i=1

wi(z (t)) ≡ 0 THEN u(t) = u1 = 0

ELSE (34)

u(t) = u1 = −
4∑

i=1

hi(z (t))Ki[x (t)− x̄ ]

7.3 Simulation Results

The optimization algorithm presented in (21)–(23) is applied to the system
(Aix (t) + Biu(t) for i = 1, 2, 3, 4) in order to determine the desired gains
of the feedback controller. Using an optimization technique based on the
evolutionary computation as explained in [19] solves the LMIs. The following
common P and Q are obtained:

P =

⎡⎣9992.43 197.338 297.654
197.338 7393.03 8.59565
297.654 8.59565 7361.84

⎤⎦

Q =

⎡⎣6454.36 648.724 1872.85
648.724 283.821 496.334
1872.85 496.334 3520.69

⎤⎦
Following gains were obtained at α = 1.0:



Fuzzy–Chaos Hybrid Controllers for Nonlinear Dynamic Systems 499

K1 =
[
−3.8845 13.6663 0.7498

]
K2 =

[
4.2118 13.4469 −1.3512

]
K3 =

[
8.0471 13.4239 7.8422

]
K4 =

[
7.8300 3.1779 −1.8896

]
Note that the triangular fuzzy membership functions are selected similar to
that in [32] keeping the desired width of each triangle.

The controlled three-dimensional view of the Lorenz attractor starting
from (1, 1, 1) is presented in Fig. 9 under the proposed control scheme.
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Fig. 9. Three-dimensional view of the controlled Lorenz attractor

8 Design Example 3: Two-link Robot Arm

8.1 Manipulator Modeling

Two-link manipulator in Fig. 10 is taken into consideration in order to employ
deterministic chaos in the first phase of control. Joint torque vector [τ1 τ2]

T

of the manipulator is given in the dynamic (35) as follows:[
τ1
τ2

]
= M

[
θ̈1
θ̈2

]
+ (θ̇1θ̇2)B + C

[
θ̇22
θ̇21

]
+ F

[
θ̇1
θ̇2

]
+ G (35)

where inertia matrix is given by
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Fig. 10. Two-link manipulator

M =
[
m2l

2
2 + 2m2l1l2c2 + (m1 +m2)l21 m2l

2
2 +m2l1l2c2

m2l
2
2 +m2l1l2c2 m2l

2
2

]
B ,C ,F , and G represent the Coriolis, centrifugal, viscous friction, and grav-
ity terms, respectively:

B =
[
−m2l1l2s2

0

]
; C =

[
0 −m2l1l2s2

m2l1l2s2 0

]

F =
[
f1 0
0 f2

]
; G =

[
m2l2gc12 + (m1 +m2)l1gc1

m2l2gc12

]
Here, the terms ci, si, and cij are given by cos θi, sin θi, and cos(θi + θj),
respectively [38, 39]. The above dynamical system can be implemented using a
set of nonlinear differential equations by introducing state variables as follows:

x1 = θ1 angle of joint 1;
x2 = θ̇1 angular velocity of joint 1;
x3 = θ1 angle of joint 2;
x4 = θ̇2 angular velocity of joint 2.

Defining the system state vector as xT = [x1 x2 x3 x4], it is found that
one of the equilibrium points is at [−π/2, 0, 0, 0]. In the next section,
we construct a convex domain around [−π/2, 0, 0, 0] so as to illustrate the
design procedure explained in Sect. 2. Therefore, it requires minimum number
of five off-equilibrium points (n + 1 = 5) to construct the fuzzy attractive
domain.

8.2 Design of Open-Loop Controller

As proposed in Sect 2, if the original system does not have chaotic properties,
deterministic chaos will be introduced into the system. The open-loop con-
troller can be constructed by applying a periodic torque (τ1 = A+B cosωt)
to the joint 1 and the position of the attractive domain will be changed ac-
cording to the DC component (A), amplitude (B), and the frequency (ω).
The manipulator parameters are
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Table 4. Different A, B, and ω values for constructing different attractors

Torque τ1 A B ω

T1 −18 4 10
T2 −15 4 10
T3 −10 4 10
T4 0 4 10
T5 10 4 10

m1 = 3 kg, m2 = 4 kg
l1 = 0.3 m, l2 = 0.3 m
f1 = 0.8 kg s−1, f2 = 0.8 kg s−1

g = 9.81 m s−2

Table 4 gives different values for A, B and ω for constructing correspond-
ing attractors in Fig. 11. In this design, we set the torque parameters of joint
1 as A = 0, B = 4, and ω = 10 in order to drive the system state vector
xT = [θ1, θ̇1, θ2, θ̇2] toward the equilibrium point [−π/2, 0, 0, 0] forming
a chaotic attractor around [−π/2, 0, 0, 0].

8.3 Design of Closed-Loop Controller

In this case, we construct the convex domain around the equilibrium point
[−π/2, 0, 0, 0] as proposed in [19]. Gain scheduling of the closed-loop con-
troller can be carried out using the LMIs. Fuzzy attractive domain is con-
structed with five off-equilibrium points Pi, (i = 1, 2, . . . , 5) and the points are
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Fig. 11. Construction of different attractors corresponding to torques from τ1 = T1

to τ1 = T5
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given in Table 5. Rest of the design procedure of the closed-loop controller is
similar to the two examples illustrated above. After the optimization process
based on the evolutionary computation for determining the common P and
common Q, the following common P and Q were obtained at α = 9.99:

P =

⎡⎢⎢⎣
67.2854 9996.0412 3497.1003 409.0776

9996.0412 3023.2453 2058.9513 471.4612
3497.1003 2058.9513 732.5273 9999.7477
409.0776 471.4612 9999.7477 2636.7672

⎤⎥⎥⎦

Q =

⎡⎢⎢⎣
3858.9581 103.2063 5996.9195 2204.3101
103.2063 5025.5096 5936.5655 920.3096

5996.9195 5936.5655 1887.9925 1042.4371
2204.3101 920.3096 1042.4371 2255.1776

⎤⎥⎥⎦
Following gains were obtained:

K 1 =
[
−0.9903 −3.2081 0.4705 0.5111

2.6385 0.1614 −1.2647 1.4867

]
K 2 =

[
−1.0152 −2.6399 −1.2049 −1.1647
−1.5773 −2.1621 0.4410 1.0741

]
K 3 =

[
−4.8227 −3.1958 −1.1226 −1.0493
−0.5121 −0.7764 1.7699 1.2797

]
K 4 =

[
−0.0710 −2.1731 −2.7916 −1.2194

2.3181 −0.9752 4.2792 0.9927

]
K 5 =

[
−0.8204 −2.5124 −0.9432 −1.6543
−3.3369 −2.2102 0.5640 −0.0133

]

Figure 12 shows the resulting phase trajectories of the controlled system
starting from [−2π/5, 0, − π/3, 0].

8.4 Position Control

It is supposed to control the position from (0.3,−1.8) to (0.2,−0.5). As pro-
posed in the previous section, the open-loop controller can be constructed by

Table 5. Coordinates of the fuzzy domain

Pi x1 (rad) x2 (rad/s) x3 (rad) x4 (rad/s)

P1 −1.6708 −0.0578 0.0993 −0.0701
P2 −1.4709 −0.0578 −0.0001 0.0944
P3 −1.5707 0.1155 −0.0974 0.1154
P4 −1.6559 −0.0875 −0.0999 −0.0577
P5 −1.4747 0.0917 0.1000 −0.0577
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Fig. 12. Controlled phase trajectories

applying a periodic torque (τ1 = 15 + 4 cos 10t) to the joint 1 keeping the
second joint as underactuated condition (τ2 = 0). The manipulator parame-
ters are unchanged. For position control, fuzzy attractive domain points are
given in Table 6. The common P , common Q, and feedback gains of the fuzzy
controller are as follows:

P =

⎡⎢⎢⎣
1264.4601 9992.9647 3773.5421 4226.5646
9992.9647 5412.4919 4033.8524 818.5849
3773.5421 4033.8525 713.5202 9999.8147
4226.5646 818.5849 9999.8147 3280.0809

⎤⎥⎥⎦

Q =

⎡⎢⎢⎣
1302.1423 1349.6125 2505.7693 4506.9873
1349.6125 1834.4586 5682.6848 2506.8759
2505.7693 5682.6848 5321.6209 6244.7572
4506.9873 2506.8759 6244.7573 2630.8178

⎤⎥⎥⎦
Here, α = 8.5

Table 6. Coordinates of the fuzzy domain for position control

Pi x1 (rad) x2 (rad/s) x3 (rad) x4 (rad/s)

P1 −0.8299 −0.0577 5.3539 0.0911
P2 −0.6299 −0.0576 5.4399 0.0911
P3 −0.7301 0.1155 5.5376 0.1154
P4 −0.8018 0.0843 5.3401 −0.0577
P5 −0.6325 −0.0965 5.5401 −0.0577
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Fig. 13. Controlled phase trajectories: position control

K 1 =
[
−1.2569 −4.6736 −3.6240 −4.0328
−3.3365 −2.5719 2.3216 5.05332

]
K 2 =

[
−5.6195 −6.5955 −1.7853 −0.8748
−1.4306 −1.7681 2.6193 1.4209

]
K 3 =

[
−3.3699 −3.8742 −1.2319 −1.0718
−7.7198 −5.4325 2.8976 6.4647

]
K 4 =

[
1.6034 −4.2976 1.0405 −2.8926

−1.3812 0.2503 0.7967 2.8737

]
K 5 =

[
−1.4642 −6.1780 −3.9840 −2.6404

0.2588 −1.6819 −2.1839 −0.1882

]

Controlled phase trajectories of the two-link manipulator for position con-
trol are given in Fig 13.

9 Conclusions

A methodology for controlling chaotic systems using fuzzy model based reg-
ulators has been presented to employ and utilize inherent chaotic features
of nonlinear dynamical systems. This approach differs from the others in re-
garding well-defined stability criteria for the closed-loop stability with the
aid of a fuzzy model based regulator. Without deforming chaotic features in
a nonlinear system, a systematic design procedure has been presented. De-
signer can have the choice of selecting one of the optimization algorithms
mentioned in this chapter when constructing the fuzzy attractive domain,
in which a global solution is obtained so as to achieve the desired stability
condition of the closed-loop system. Simulation results given by three differ-
ent examples show the effectiveness of the present controller and the ability
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of employing and utilizing deterministic chaos. According to the results, the
tracking performance of the proposed fuzzy–chaos hybrid controller confirms
the applicability of the proposed algorithm.
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Fuzzy Model Based Chaotic Cryptosystems

Chian-Song Chiu and Kuang-Yow Lian

Abstract. In this chapter, we address a fuzzy model based chaotic cryptosystem.
For the crytosystem, the plaintext (message) is encrypted using the superincreas-
ing sequence formed by chaotic signals at the drive system side. The resulting
ciphertext is embedded to the output or state of the drive system and is sent to
the response system end. The plaintext is retrieved via the synthesis approach for
signal synchronization. We show that the chaotic synchronization problem can be
solved using linear matrix inequalities. The advantages of this crytosystem are the
systematic methodology of fuzzy model based design suitable for well-known Lure
type discrete-time chaotic systems; flexibility in selection of chaotic signals for se-
cure key generator; flexibility of masking the ciphertext using either the state or
output; multiuser capabilities; and a time-varying superincreasing sequence. In light
of the above advantages, the chaotic communication structure has a higher-level of
security compared to traditional masking methods. In addition, numerical simula-
tions and DSP-based experiments are carried out to verify the validity of theoretical
results.

1 Introduction

Many fuzzy model based design, in recent years, are carried out using Takagi–
Sugeno (TS) fuzzy models [1, 2]. The main concept is that the fuzzy IF–THEN
rules have consequent parts which represent local linear models. Then the
overall output of the fuzzy system represents the input to output relationship
of any general nonlinear system in an interesting region. Using analogous
discussions to that of linear control, many objectives are achievable in a
unified manner. The stability of such fuzzy model based systems relies on
finding a common symmetric positive matrix and results in a linear matrix
inequalities (LMIs) problem [3]. Powerful numerical toolboxes are then used
to solve these problems. Since this control approach proposes the advantage
of straighforwardness for investigating nonlinear systems with ripe analysis
tools of linear control, mass research has focused on this topic.

On the other hand, chaotic dynamics are deterministic, but extremely
sensitive to initial conditions. Even infinitesimal changes in initial condi-
tion will lead to an exponential divergence of orbits. The pioneering work of
Carroll and Pecora [4] has led to many works regarding synchronization of
two chaotic systems [5, 6], where two chaotic systems with suitable coupling

C.-S. Chiu and K.-Y. Lian: Fuzzy Model Based Chaotic Cryptosystems,
StudFuzz 187, 507–525 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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produce identical oscillations. Many theories [5–9] have been proposed to
achieve the synchronized manner from master–slave configuration. This
master–slave configuration consists of the original chaotic system as a drive
system to provide a driving signal to synchronize another system called the
response system. In addition, chaotic signals are typically broadband, noise-
like, and difficult to predict; therefore, they can be used in various context
for masking information-bearing waveforms. They can also be used as mod-
ulating waveforms in spread spectrum systems. The idea of chaotic mask-
ing [10, 11] is to directly add the message in a noise-like chaotic signal at the
transmitter’s end, while chaotic modulation [12–15] is by injecting the mes-
sage into a chaotic system as a spread-spectrum transmission. Later, at the
receiver, a coherent detector with some signal processing is employed to re-
cover the message. But the signal masking or parameter modulation approach
to chaotic communications only provides a lower level of security as stated
in [16]. Therefore recent works have considered the use of basic cryptosystem
theory to add to the security of chaotic communications [17–19].

In this chapter, a higher level security methodology, namely, the fuzzy
model based chaotic cryptosystem is proposed. First, Lure type discrete-time
chaotic systems are exactly represented by TS fuzzy models. Then using a
chaotic signal, which can be flexibly chosen to be (a) an output of the TS
fuzzy chaotic drive system or (b) any state in which the synchronization error
approaches zero, a superincreasing sequence is generated. The cryptosystem
methodology is briefly given as follows. The plaintext (message) is encrypted
using the superincreasing sequence at the drive system side which results in
the ciphertext. In light of the previous works [20–22], the ciphertext may
be added to the output or state of the drive system. Then this ciphertext
embedded scalar signal is sent to the response system end. Following the de-
sign of a response system, chaotic synchronization between the drive and re-
sponse system is achieved by solving LMIs. Since synchronization is ensured,
which means internal states of the drive and response system are same, we
regenerate the same superincreasing sequence and recover the ciphertext at
the response system end. Finally, using the regenerated superincreasing se-
quence, the ciphertext is decrypted into the plaintext. This chaotic cryptosys-
tem approach has several advantages: (i) the TS fuzzy model representation
is general for most well-known Lure type discrete-time chaotic systems; (ii)
the synchronization problem using LMIs are systematic and straightforward,
which may be solved by powerful software toolboxes; (iii) the superincreasing
sequence generated by chaotic signals is time varying; (iv) there exists a flex-
ible choice for whether the ciphertext is embedded in the state or output of
the drive system; and (v) multiuser capabilities. In light of the above advan-
tages, the proposed chaotic cryptosystem has a systematic design, whereas
a higher level of security is provided compared to traditional signal masking
methods.
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The rest of the chapter is organized as follows: In Sect. 2, the chaotic
cryptosystem structure and algorithm are introduced. In Sect. 3, the TS
fuzzy model synchronization method is given. Section 4 illustrates the chaotic
cryptosystem using discrete-time chaotic system as an example, while two
numerical simulations are performed. In Sect. 5, DSP-based experiments are
also carried out to verify the theoretical results. Finally, some conclusions are
given in Sect. 6.

2 Chaotic Cryptosystem Structure

In traditional chaotic communications, the synchronization of drive-response
system was exploited. This direct signal masking based approach often pro-
poses setbacks in security, as stated in [16]. Therefore applying cryptosystem
theory, the message encoded using a chaotic signal provides a higher level of
security and multiuser capabilities. Now, we introduce some basic cryptosys-
tem terminology.

The composite message vector N to be transmitted is the plaintext, which
is encoded by using the superincreasing sequence Si. The encoded plaintext
results in the ciphertext E(·). The process of recovering the plaintext from
the ciphertext is the decryption function Ê(·). Encryption and decryption
process use the keys K and K̂, respectively. The definition of a superincreas-
ing sequence is as follows:

Definition 1. A real sequence {Si}�
i=1 is called a superincreasing sequence if

the following is satisfied Sj >
∑j−1

i=1 Si, ! ≥ j > 1 and all Si > 0.

Note that in traditional superincreasing problems [23, 24], the sequence is
a set of positive integers. The superincreasing sequence used here is modified
where a set of positive real numbers is considered.

The proposed secure communication framework consists of three main
components:

(a) Chaotic model component: This consists of a TS fuzzy model representing
discrete-time chaotic systems.

(b)Encrypting component: This consists of a superincreasing sequence {Si},
i = 1, . . . , !, where ! is the number of messages, and a plaintext N =
[n1 n2 . . . n�] with the message ni ∈ {0, 1}. The superincreasing sequence
along with plaintext combines into a ciphertext as follows:

E(N(t),K (t) ,K (t− 1) , . . . ,K (t− !+ 1)) = S (t)N (t)T ≡ E (t) ,

where E(·) is an encryption function that makes use of the superincreasing
sequence S (t) = [S1 (t) S2 (t) . . . S� (t) ] formed by the key signal K(t −
i), i = 0, . . . , ! − 1. The sequence of the key, i.e., K (t) , K (t− 1) , . . . ,
K (t− !+ 1) , may be (i) output of the TS fuzzy chaotic drive system or
(ii) any state in which the synchronization error approaches zero.
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(c) Decrypting component: This consists of a TS fuzzy model discrete-time
chaotic response system generating the same key as the encryption compo-
nent. Achieving Ê (·) → E(·) and K̂ (·) → K (·), the plaintext is obtained
from decrypting the ciphertext Ê(t) as follows:

N̂(t) = D(K̂(t), Ê(N(t), K̂ (t) , K̂ (t− 1) , . . . , K̂ (t− !+ 1))) ,

where D(·) is an decryption function that makes use of the recovered key
K̂(t− i), i = 0, . . . , !− 1.

The structure above is depicted in a block diagram in Fig. 1. We now
explain in details the algorithm for the chaotic cryptosystem.

CHAOTIC

TRANSMITTER

ENCRYPTION

PUBLIC CHANNEL

CHAOTIC

RECEIVER

DECRYPTION

( )tN

( )tN̂
( )tm ( )tm̂

( )tK ( )tK̂

( )ty ( )tŷ

User 1
User 2

User

Receiver 1
Receiver 2

Receiver

Fig. 1. Block diagram of chaotic encryption methodology

Drive system

1. Generate a superincreasing sequence {Si (t)}, where S1 (t) = |K (t)| + τ ,
Sj (t) =

∑j−1
i=1 Si (t) + |K (t− j + 1)|+ τ,∀j = 2, . . . , ! and τ > 0.

2. Form the encryption function E(t) = S (t)N (t)T.
3. Modify encryption function E(t) into ξ(t) = (E − H(t)/2)/(γH(t)/2),

where H =
∑�

i=1 Si and γ is a scalar such that ξ(t) ∈ (−0.01 0.01)
is sufficiently small as to not destroy the chaotic characteristics of the
masking signal.

4. Add ξ (t) to the masking signal and send a scalar coupling signal to re-
sponse system.

Response system

1. Design a TS fuzzy response system to recover the signal ξ̂(t) from syn-
chronization.

2. Generate a superincreasing sequence {Ŝi (t)}, i = 1, . . . , !, from the key
signal obtained from synchronization, i.e., Ŝ1 (t) = |K̂ (t) | + τ , Ŝj (t) =∑j−1

i=1 Ŝi (t) + |K̂ (t− j + 1) |+ τ , ∀j = 2, . . . , ! and τ > 0.
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3. Demodify ξ̂(t) to obtain Ê (t) = ξ̂(t)(γĤ (t) /2) + Ĥ (t) /2.
4. Decrypt the message using the superincreasing sequence from Step 3 of

the response system design and the following algorithm:

V̂ = Ê
For i = ! down to 1
Begin
If V̂ − Ŝi > −ε
n̂i = 1
V̂ = V̂ − Ŝi

Else n̂i = 0
END

where 0 < ε < τ .

Notice that if n� (t) = 1 (or n� (t) = 0), then E (t) ≥ S� (t) or (E (t) ≤
S� (t) − τ). After the transient time, the response system is synchronized to
the drive system. This means that Ê (t) = E (t) and therefore Ŝ� (t) = S� (t).
Finally n̂� (t) = 1 (or n̂� (t) = 0) from the above algorithm and the other
plaintext n̂�−1 (t) . . . n̂1 (t) are recovered by the iteration loop.

Remark 1. When the cryptosystem simultaneously serves ! users, the plain-
textN consists of multiusers’ messages, i.e., one bit of each user is transmitted
in one time. If considering only one user service, ! bits of the user’s message
are simultaneously transmitted. This means that the advantages of the cryp-
tosystem are (i) multiuser capabilities, (ii) high data transmission rate for
one user, (iii) high-frequency efficiency, and (iv) a higher level of security
compared to traditional chaotic communications.

Remark 2. In comparison, traditional cryptosystems often take constant pa-
rameters as the secure key, such as chaotic parameters. In contrast, the pro-
posed approach uses time-varying internal states of chaotic systems as the
secure key such that the cryptosystem has more flexibility and higher secu-
rity. Moreover, since the selection of K (·) is not public, the secure key for
decryption K̂ (·) cannot be easily obtained from a pure chaotic synchroniza-
tion. In other words, the cryptosystem still works even though attackers have
gotten the ciphertext ξ(t) and internal states.

3 Takagi–Sugeno Fuzzy Modeling for Chaotic Systems

Since the chaotic cryptosystem in the previous section illustrates the im-
portance of obtaining same keys K̂ (·) = K (·) and the same ciphertexts
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ξ̂ (·) = ξ (·), we now give detailed explanation of the synchronization method-
ology. Consider a general discrete-time nonlinear dynamic equation as follows:

x(t+ 1) = f(x(t)) , (1)

where x ∈ Rn is the state vector and f (·) is a nonlinear function appropriate
dimension. Then the fuzzy model is composed of the following rules:

Plant Rule i : IF z1(t) is F1i and · · · and zg(t) is Fgi

THEN x(t+ 1) = Aix(t) + bi(t), i = 1, 2, . . . , r, (2)

where z1(t) ∼ zg(t) are the premise variables which consist of the states of the
system; Fji (j = 1, 2, . . . , g) are the fuzzy sets; r is the number of fuzzy rules;
Ai is a system matrix with appropriate dimension; and bi(t) ∈ Rn denotes
the bias term.

Now focus on how to construct a TS fuzzy model (2) which exactly rep-
resents the nonlinear system (1). First, consider a scalar nonlinear system
x(t + 1) = a (x) where a (x) is only dependent on a state variable x, and
it is assumed that x varies among a universe of discourse Ω. Assume that
the nonlinear term can be represented in the form φ (x)x, i.e., we assume
φ (x) = a (x)/x exists. Notice that the bias term bi(t) in (2) arises if we
cannot extract x from the nonlinear term. Then the nonlinear system is rep-
resented by

Rule i : IF z is Fi THEN x(t+ 1) = dix ,

which has the following inferred output:

x(t+ 1) =
r∑

i=1

µi(z) dix .

The membership function Fi is assumed to be normalized and is denoted
by µi(z), i.e., satisfying 1 ≥ µi(z) ≥ 0 and

∑r
i=1 µi(z) = 1. To represent

φ(x) =
∑r

i=1 µi(z) di exactly, we must suitably assign µi(z) and di. As an
example, for the rule base containing only two rules, i.e., r = 2, we can choose

µ1 =
−d2
d1 − d2

+
1

d1 − d2
φ(x), µ2 = 1− µ1 ,

where d1 and d2 are determined such that µi(z) ∈ [0 1] for all x ∈ Ω.
Second, consider a system x(t + 1) = f (x), where the vector f(x) with

a nonlinear term φ (z)xk appear at some lth entry. Accordingly, the system
may be expressed as

Rule i : IF z is Fi THEN x(t+ 1) = Āix+A0x ,
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where A0x denotes the linear part and the normalized membership function
for Fi is denoted by µi(z). Then µi(z) and di can be determined according
to the above case. The fuzzy system is inferred as follows:

x(t+ 1) =
r∑

i=1

µi (z) Āix+A0x ,

where
∑r

i=1 µi (z) Āix is to represent φ (x)xk. Notice that all entries of Āi

are zeroes except for the (l, k)-entry is di. Then we have

x(t+ 1) =
r∑

i=1

µi (z)Aix = f(x)

by defining Ai = Āi +A0.
Third, the basic modeling technique is extended to deal with a vector

function including two nonlinear terms, i.e., f(x) = f1(x)+f2(x)+A0x. The
nonlinear terms are, respectively, assumed with the following forms: f1(x) =∑q1

i1=1 µ1i1(z1)A1i1x and f2(x) =
∑q2

i2=1 µ2i2(z2)A2i2x. Then, the following
extension is obtained:

Rule k : IF z1 is F1i1(k) and z2 is F2i2(k)

THEN x(t+ 1) = (A1i1(k) +A2i2(k) +A0)x (3)

where the indices i1(k) and i2(k) are defined as follows:

i1(k) =
[
k − 1
q2

]
+ 1 i2(k) = k −

[
k − 1
q2

]
q2 .

where [·] denotes the floor function. Let µ1i1(k) and µ2i2(k) denote the nor-
malized membership functions of F1i1 and F2i2 , respectively. A formula for
the multiindex is

q1∑
i1=1

q2∑
i2=1

µi1µi2 =
q1q2∑
k=1

µi1(k)µi2(k) . (4)

For the fuzzy system (3), the inferred output is

x(t+ 1) =
q1q2∑
k=1

µ1i1(k)(z1)µ2i2(k)(z2)(A1i1(k) +A2i2(k) +A0)x . (5)

According to (4), the right-hand side of (5) leads to
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q1∑
i1=1

q2∑
i2=1

µ1i1 (z1)µ2i2 (z2) (A1i1 +A2i2 +A0)x

=
q1∑

i1=1

q2∑
i2=1

µ1i1 (z1)µ2i2 (z2)A1i1x

+
q1∑

i1=1

q2∑
i2=1

µ1i1 (z1)µ2i2 (z2)A2i2x+A0x

=
q1∑

i1=1

µ1i1 (z1)A1i1x+
q2∑

i2=1

µ2i2 (z2)A2i2x+A0x

= f1(x) + f2(x) +A0x ,

which is equal to f(x). Note that µ1i1 and µ2i2 are regarded as normalized
membership functions by assuming

∑q1
i1=1 µ1i1 =

∑q2
i2=1 µ2i2 = 1 and 1 ≥

µkm(z) ≥ 0 for each k and m.
We do not extend the above fuzzy modeling technique to a more general

nonlinear system, since most well-known continuous-time and discrete-time
chaotic systems have at most two nonlinear terms. Actually, the well-known
Lure type discrete-time chaotic systems can be exactly represented by TS
fuzzy models with only one premise variable. To further simplify the design
of the response system, an intuitive choice is to let the premise variable as
the output signal. In light of the above, the general form of TS fuzzy models
for chaotic systems is written as follows:

Plant Rule i : IF y(t) is Fi THEN x(t+ 1)
= Aix(t) + bi(t), i = 1, 2, . . . , r , (6)

where the scalar variable y(t) will be taken as the output signal. The overall
inferred output can be written as

x(t+ 1) =
r∑

i=1

µi(y(t)) {Aix(t) + bi(t)} ,

y(t) = Cx(t) ,

where µi(y(t)) = ωi(y(t))∑ r
i=1 ωi(y(t)) with ωi(y(t)) = Fi(y(t)) ≥ 0.

TS fuzzy models for several well-known Lure type discrete-time chaotic
systems are given in Table 1 and the details can be found in [20].

4 Chaotic Cryptosystem Using Discrete-time Systems

In this section, the ciphertext is masked by either state or output of a chaotic
system, and the modulation process is carried out by injecting the masking
signal into the fuzzy chaotic transmitter. Then the masked signal is sent to
the fuzzy chaotic receiver, where the ciphertext is extracted according to the
masking methods. This idea is explained in the following:
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Table 1. Takagi–Sugens fuzzy model of lure type discrete-time chaotic systems

Chaotic 
Systems 

Dynamical Equations Fuzzy Sets System Matrices Bias Terms

Hénon map 

2
1 1 2

2 1

( 1) 1.4 ( ) 0.3 ( )

( 1) ( )

x t x t x t

x t x t

+ = − +
+ =

1
1 1 12

1
2 1 12

( ) (1 )

( ) (1 )

2

F x x d

F x x d

d

= +
= −
=

1 2
0.3 0.3

;
1 0 1 0
d d

A A
−= =

1 2

1.4
0

b b=

=

Lozi map 
1 21

2 1

( 1) 3 1.8 ( )( )

( 1) 0.25 ( )

x t x tx t

x t x t

+ = − +
+ =

1 1 1

2 1 1

( )

( ) 1

3.5

F x dx

F x dx

d

=

= −
=

1 2
0 1

0.25 0
A A= =

1

2

3 1.8
0

3
0

d
b

b

−=

=

Cubic map 

)()1(

)(2.0

)()(77.2)1(

12

2

3
111

txtx

tx

txtxtx

=+
−

−=+

5

)/1()(

)/1()(
2
12

1
12

2
12

1
11

=
−=

+=

d

dxxF

dxxF

−+
=

−−
=

01

2.077.2

01

2.077.2

2

1

d
A

d
A

0
21

=
= bb

Three- di-
mensional 

system )(33.0)1(

)()(33.0)1(

)()(1)1(

13

312

2
121

txtx

txtxtx

txtxtx

−=+
+=+

++=+ 1
1 1 12

1
2 1 12

( ) (1 )

( ) (1 )

F x x d

F x x d

= +
= −

5=d

−

−
=

−
=

0033.0

1033.0

01

0033.0

1033.0

01

2

1

d

A

d

A

=

=

0

0

1
21 bb

4.1 Ciphertext Masked by State

First, consider the ciphertext be masked by chaotic states. Although users’
messages can be encrypted by the algorithm in Sect. 2, higher security is
required in some applications. To this end, let the fuzzy chaotic transmitter
with ciphertext ξ embedded to be

Transmitter Rule i : IF y(t) is Fi

THEN x(t+ 1) = Aix(t) + bi(t)
x(t) = x(t) +Msξ(t)
y(t) = Cx(t) ,

where x(t) ∈ Rn represents the composed states that mask the ciphertext ξ;
Ms = [m1 . . . mn ]T ∈ Rn with mj ∈ [0, 1] for j = 1, 2, ..., n, denotes a public
state masking key which specifies the state used to mask the ciphertext; and
y(t) is the coupling signal which is transmitted to a receiver through a public
channel. The inferred output of the transmitter is

x(t+ 1) =
r∑

i=1

µi(y(t))[Aix(t) + bi(t) +AiMsξ(t)] ,

y(t) = Cx(t) + CMsξ(t) . (7)
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The modulation form (7) can be regarded as an extension of modulated
chaotic communications. To recover the message, the fuzzy receiver is de-
signed as

Receiver Rule i : IF y(t) is Fi

THEN x̂(t+ 1) = Aix(t) + bi(t) + Li(y(t)− ŷ(t))
ŷ(t) = Cx̂(t) ,

where x̂(t) denotes the estimate of state x(t); ŷ(t) denotes the estimate of
output y(t); and Li ∈ Rn is a design vector. The fuzzy inferred receiver can
be expressed in the form

x̂(t+ 1) =
r∑

i=1

µi(y(t))[Aix̂(t) + bi(t) + Li(y(t)− ŷ(t))] ,

ŷ(t) = Cx̂(t) . (8)

Define the error signal x̃ (t) = x (t)− x̂ (t) and ỹ (t) = y (t)− ŷ (t). From (7)
and (8), the error system is obtained as

x̃(t+ 1) =
r∑

i=1

µi(y(t)) [(Ai − LiC)x̃(t) + (Ai − LiC)Msξ(t)] , (9)

ỹ(t) = Cx̃(t) + CMsξ(t) . (10)

For simplicity, an exact linearization technique is used here to yield (A1 −
L1C) = (Ai − LiC) = A, for i > 1. Then the state masking key Ms will be
properly chosen such that the ciphertext can be extracted from ỹ as (10).

Theorem 1. Consider the chaotic transmitter (7) and receiver (8). If there
exist a common positive definite matrix P, α > 0, and design gain Li such
that matrix A is nilpotent as well as the following LMI problem

minimize
P, Wi

α

subject α > 0, P > 0[
αI (PA1 −W1C − PAi −WiC)T

PA1 −W1C − PAi −WiC P

]
> 0

for all 1 < i ≤ r

(11)

with Wi = PLi, is feasible. Then the state masking key Ms is properly chosen
from (for j = 0, 1, ..., n− 1)

CA
j
Ms =

{
um, if j = l ,

0, otherwise ,
(12)

where l ∈ {1, 2, . . . , n} is the number of the steps up to the initial recovery of
the message and um �= 0 is an unmasking constant. The ciphertext is recov-
ered according to ξ(t− l) = 1

um
ỹ(t) as well as all states of chaotic transmitter

and receiver are synchronized after n steps.
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Proof. For the chaotic communication system satisfying LMIs (11), the error
system (9) is reduced to

x̃(t+ 1) = Ax̃(t) +AMsξ(t) , (13)

where A = A1−L1C = Ai−LiC and the gains Li is obtained as Li = P−1Wi

from the solutions P and Wi. This leads to the solution of the error system
(13) to be

x̃(t) = A
t
x̃(0) +

t∑
j=1

A
j
Msξ(t− j) ,

ỹ(t) = CA
t
x̃(0) + CMsξ(t) +

t∑
j=1

CA
j
Msξ(t− j) . (14)

Due to this matrix A is nilpotent, i.e., A
n

= 0, then after n steps (t ≥ n) the
output error becomes

ỹ(t) =
n−1∑
j=0

CA
j
Msξ(t− j) .

According to (12), the recovered ciphertext ξ(t−l) = 1
um
ỹ(t). Moreover, since

synchronization is achieved, K̂ (t)→ K (t) after the transient time.

Remark 3. A stronger result is obtained if the LMI problem (11) is feasible
and A is stable. In this case, the state masking keyMs can be properly chosen
to satisfy AMs = 0 such that the error solution (14) becomes

x̃(t) = A
t
x̃(0) ,

ỹ(t) = CA
t
x̃(0) + CMsξ(t) .

Then, the ciphertext is extracted from ξ(t) = ỹ(t)/(CMs).

When the conditions in Theorem 1 or Remark 1 are satisfied, the chaotic
transmitter and receiver are synchronized. In other words, the internal states
of the chaotic system x1 (t) , . . . , xn (t) can be taken as the secure key K (t),
while the decryption secure key K̂ (t) is available in the receiver end. There-
fore, the cryptosystem components mentioned in Sect. 2 are complete. The
following is an application example.

Example 1. Here we use the discrete-time Henon map to illustrate the above
chaotic cryptosystem design. The Henon map is as follows:

x1(t+ 1) = −x2
1(t) + 0.3x2(t) + 1.4 ,

x2(t+ 1) = x1(t) ,
y(t) = x1(t) . (15)
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Take x1(t) as the premise variable of the fuzzy rules, Henon map in the fuzzy
representation (6) consists of x(t) = [x1(t) x2(t) ]T, C = [1 0 ], the fuzzy
sets F1(y(t)) = 1

2 (1 + y(t)
d ) and F2(y(t)) = 1

2 (1− y(t)
d ), and

A1 =
[
−d 0.3

1 0

]
, A2 =

[
d 0.3
1 0

]
, b1 = b2 =

[
1.4
0

]
,

where d = 2 and x1(t) ∈ [−d d]. According to Theorem 1, the design vectors
are obtained as L1 = [−d 1 ]T and L2 = [d 1 ]T. In turn, the closed-loop
error dynamics (13) is written as

x̃(t+ 1) =
[

0 0.3
0 0

]
x̃(t) +

[
0 0.3
0 0

] [
m1

m2

]
ξ(t) .

Thus, the ciphertext will be masked by the state x1 (t), i.e., we select the
state masking key as Ms = [1 0 ]T. Moreover, assume that the number of
multiusers are set to 8 and the plaintexts are randomly binary [0 1]. Through
the transmission, the encryption and decryption algorithm in Sect. 2 are
applied, whereas the state x1 (t) be taken as the output which generates the
secure key K (t). Then, applying the chaotic transmitter (7) and receiver (8),
the cryptosystem is completed. In Fig. 2, we illustrate the chaotic coupling
signal; scaled ciphertext m (·), m̂ (·) (dotted line); encrypting function E (·),
Ê (·) (dotted line); and chaotic phase portrait, respectively. In Figs. 3a–b,
u1 ∼ u4 are the first four user plaintext transmitted (total of eight users) and
error between the recovered plaintext and original plaintext of users u1 ∼ u4.

4.2 Ciphertext Masked by Output

Let the ciphertext ξ(t) to be directly added into the output of the chaotic
system. The chaotic transmitter is expressed in a TS fuzzy representation as

Transmitter Rule i : IF ȳ(t) is Fi

THEN x(t+ 1) = Aix(t) + bi(t) + LiMoξ(t)
ȳ(t) = Cx(t) +Moξ(t), i = 1, 2, . . . , r ,

where the gains Li, i = 1, 2, . . . , r, will be determined later, and Mo is a
public output masking key which masks the ciphertext by a constant. The
fuzzy inferred result for the chaotic transmitter is obtained as

x(t+ 1) =
r∑

i=1

µi(ȳ(t))
{
Aix(t) + bi(t) + Liȳ(t)

}
,

ȳ(t) = Cx(t) +Moξ(t) , (16)

where Ai = Ai − LiC. To recover the ciphertext, the chaotic fuzzy receiver
is designed as
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Fig. 2. (a) Chaotic coupling signal; (b) encryption function E(·), Ê(·) (dotted line);
(c) scaled ciphertext m(t), m̂(t); and (d) phase portrait
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Fig. 3. (a) Plaintext transmitted my users 1 to 4 (total eight users) and (b) error
between original message and recovered message of user 1 to 4
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Receiver Rule i : IF y(t) is Fi

THEN x̂(t+ 1) = Aix̂(t) + bi(t) + Li (ȳ(t)− ŷ(t))
ŷ(t) = Cx̂(t), i = 1, 2, . . . , r .

The overall receiver is inferred in the following:

x̂(t+ 1) =
r∑

i=1

µi(y(t)) {Aix(t) + bi(t) + Li (ȳ(t)− ŷ(t))} ,

ŷ(t) = Cx̂(t) . (17)

Let error signals x̃(t) ≡ x(t) − x̂(t) and ỹ (t) ≡ ȳ(t) − ŷ(t) and according to
(16) and (17), the error dynamics of x̃(t) is expressed as

x̃(t+ 1) =
r∑

i=1

µi(y(t))(Ai − LiC)x̃(t) , (18)

ỹ(t) = Cx̃(t) +Moξ(t) . (19)

The stability conditions for (19) is derived using the Lyapunov method. The
main result is addressed here.

Theorem 2. Consider the chaotic transmitter (16) and receiver (17). The
ciphertext can be recovered from ξ(t) = 1

Mo
ỹ(t) and all states of chaotic trans-

mitter and receiver are synchronized in an asymptotic manner if there exist
a common positive definite matrix P and gains Li, for i = 1, 2, . . . , r, such
that the following LMIs are satisfied:[

P (PAi −WiC)T

PAi −WiC P

]
> 0, for all i , (20)

where Wi ≡ PLi.

Proof. Given a Lyapunov function candidate as V (x̃(t)) = x̃T(t)P x̃(t) > 0.
Taking difference of V (t) along the error dynamics (18) yields

( V (x̃(t)) = V (x̃(t+ 1))− V (x̃(t))

=
r∑

i=1

µ2
i (y(t))x̃

T(t)[A
T

i PAi − P ]x̃(t)

+
r∑

i<j

µi(y(t))µj(y(t))

·x̃T(t)[A
T

i PAj +A
T

j PAi − 2P ]x̃(t) , (21)

where P > 0 and Ai = Ai − LiC. Notice that if A
T

i PĀi − P < 0, then
A

T

i PAj +A
T

j PAi − 2P < 0. This means if there are P and Li such that the
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conditions (20) are held, then A
T

i PAi − P < 0 by Schur complement. Let
−Q denote the maximum negative definite matrix of A

T

i PAi − P for all i.
Then (V (x̃(t)) ≤ −x̃T(t)Qx̃(t) < 0. Thus, the synchronization error x̃(t)
converges to zero as t→∞. According to the (19), ỹ(t) converges to Moξ(t)
as t→∞.

Since the convergent rate of the synchronization error x̃(t) affects the
transmission performance, the decay rate design for chaotic cryptosystems
can be performed by solving LMIs problems as follows:

Chaotic Cryptosystem with decay rate:

minimize
P,Wi

β

subject to P > 0, 0 < β < 1[
βP (PAi −WiC)T

PAi −WiC P

]
> 0, for all i ,

where Wi ≡ PLi. The (21) becomes ∆V (x̃(t)) ≤ −(1 − β)V (x̃(t)), with
parameter β tuning the decay rate.

Example 2. Consider the above chaotic cryptosystem using the discrete-time
Henon map (15). Assume the cryptosystem serves eight users whose the plain-
texts are randomly binary [0 1]. Let the state x1 (t) be the output which
generates the secure key K (t). The cyphertext, which is obtained from the
encryption algorithm in Sect. 2, is added at the output of the drive system
y (t). According to the fuzzy representation of Henon map in Example 1 and
Theorem 2, the chaotic transmitter (16) and receiver (17) are designed with
gain vectors L1 = [−2.1384 5.6608]T and L2 = [2.1384 5.6608]T. Note that
the parameter of the decay rate is solved as β = 0.1. For simplicity, we set the
output masking key as Mo = 1. Figure 4 shows the chaotic coupling signal;
scaled ciphertext m (·), m̂ (·) (dotted line); encrypting function E (·), Ê (·)
(dotted line); and chaotic phase portrait, respectively. In Figs. 5a–b, u1 ∼ u4
are the first four user plaintext transmitted (total of eight users) and error
between the recovered plaintext and original plaintext of users u1 ∼ u4.

5 DSP-Based Experiments

To verify the theoretical results, we carry out DSP-based experiments on the
chaotic cryptosystem. Here, the hardware used is the DSpace DS1102 single
board system which is based on Texas Instruments TMS320C31 DSP. Note
that a minimum bit rate of the DSP is necessary to avoid quantization errors.
In other words, we must have at least a bit rate of 12 to ensure that the signal
generated by the DSP maintains chaotic characteristics. This is an important
feature in order to achieve synchronization and generate the superincreasing
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Fig. 4. (a) Chaotic coupling signal; (b) encryption function E(·), Ê(·) (dotted line);
(c) scaled ciphertext m(t), m̂(t); and (d) phase portrait
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Fig. 5. (a) Plaintext transmitted my users 1 to 4 (total eight users); and (b) error
between original message and recovered message of user 1 to 4
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sequence. To increase the performance, the step size of t may be set to a
small value. But for simplicity, the step size of t is set as 1 s. The coupling
signal is externally connected from the output of the drive system through
D/A channel to the A/D channel leading to the response system. The chaotic
system structure and parameters are same as the numerical simulations. First,
let the ciphertext masked by state as Examples 1, then we obtain the results
as shown in Fig. 6, where we illustrate the scaled ciphertext (ξ(t)×10), chaotic
coupling signal, the synchronization of x1 (t) and x̂1 (t), and the message of
user 2 along with the error of recovered message. Next, let the ciphertext
masked by output as Examples 2, we obtain the results as shown in Fig. 7.
From the oscilloscope images, after the transient responses, the plaintext is
recovered exactly. Note here that the recovering of ciphertext and decoding
into plaintext is implemented in a real-time sense. Therefore comparing the
numerical and experimental results, we are able to conclude the consistency
of the theoretical derivation.

(a)  (b) 

(c)   (d) 

Fig. 6. Oscilloscope images of (a) scaled ciphertext (ξ(t)×10); (b) chaotic coupling
signal; (c) synchronization of x1 (t) and x̂1 (t); and (d) the message of user 2 along
with the error of recovered message
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(a)  (b) 

(c)   (d) 

Fig. 7. Oscilloscope images of (a) scaled ciphertext (ξ(t)×10); (b) chaotic coupling
signal; (c) synchronization of x1 (t) and x̂1 (t); and (d) the message of user 2 along
with the error of recovered message

6 Conclusions

In this study, we have proposed a systematic but flexible design for a chaotic
cryptosystem based on TS fuzzy models. Extending the properties of syn-
chronization, chaotic communications have been proposed in the sense of
signal masking and encryption. In addition, the ciphertext may be embed-
ded in the state or output of the drive system which again enhances the
flexibility of design. Compared to traditional signal masking based chaotic
communications, this cryptosystem provides message transmitting for multi-
users, whereas a basic encrypting algorithm makes the channels more secure.
Moreover, numerical simulations and DSP-based experiments are consistent
with the theoretical results.
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Evolution of Complexity

Pavel Ošmera

Abstract. The strength of physical science lies in its ability to explain phenomena
as well as make prediction based on observable, repeatable phenomena according
to known laws. Science is particularly weak in examining unique, nonrepeatable
events. We try to piece together the knowledge of evolution with the help of biology,
informatics, and physics to describe a complex evolutionary structure with unpre-
dictable behavior. Evolution is a procedure where matter, energy, and information
come together. Our research can be regarded as a natural extension of Darwin’s
evolutionary view of the last century. We would like to find plausible uniformitarian
mechanisms for evolution of complex systems. Workers with specialized training in
overlapping disciplines can bring new insights to an area of study, enabling them
to make original contributions. This chapter describes evolution of complexity as a
basic principle of evolutionary computation.

1 Introduction

Optimization is an important aspect of many scientific and engineering prob-
lems. Recent optimization techniques model principles of natural evolution.
Evolutionary algorithms apply selection and mutation operators to a popula-
tion of states to guide the population to an optimal solution of the objective
function.

Classic optimization methods often lead to unacceptably poor perfor-
mance when applied to real-world circumstances. A more robust optimization
technique is required. Applying the logical aspects of the evolutionary process
to optimization offers several distinct advantages. There exists a large body
of knowledge about the process of natural evolution that can be used to
guide simulations. This process is well suited for solving problems with un-
usual constraints where heuristic solutions are not available or generally lead
to unsatisfactory results. Often revolution has an interdisciplinary character.
Its central discoveries often come from people straying outside the normal
bounds of their specialties.

Naturalistic explanations of life’s origin are speculative [1]. But does this
mean that such inquiries are impotent or without value? The same criticism
can be made of any attempt to reconstruct unique events of the past. We
cannot complete our knowledge without answering some of the fundamental
questions about nature. How does life begin? What is turbulence? Above
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all, in a universe ruled by entropy, it had been drawing inexorably toward
greater and greater disorder, how does order arise? Although the various
speculative origin scenarios may be tested against data collected in labora-
tory experiments, these models cannot be tested against the actual events in
question, i.e., the origin. Such scenarios, then, must ever remain speculation,
not knowledge. There is no way to know whether the results from these ex-
periments tell anything about the way life itself originated. In a strict sense,
these speculative reconstructions are not falsifiable; they may only be judged
plausible or implausible. In the familiar Popper’s sense of what science is,
a theory is deemed scientific if it can be checked or tested by experiment
against observable, repeatable phenomena. Behavior of complex nonlinear
systems with unpredictable behavior can be explained by a relatively simple
and transparent system—a magnetic pendulum (see Fig. 1). The idea is to
set the pendulum swinging and guess which attractor will win. Even with
just three magnets placed in a triangle, the pendulum’s motion cannot be
predicted. The unexpected behavior can be extended to physiological and
psychiatric medicine, economic forecasting, and perhaps the evolution of so-
ciety. A physicist could not truly understand turbulence or complexity unless
he understood pendulums. The chaos began to unite the study of different
systems. A simulation brings its own problem: the tiny imprecision build into
each calculation rapidly takes over, because this is a system with sensitive
dependence on initial conditions. But people have to know about disorder if
they are going to deal with it. Classical scientists want to discover regulari-
ties. It is not easy to find the grail of science, the Grand Unified Theory or
the “theory of everything.” On the other hand, there is a trend in science
toward reductionism, the analysis of system only in terms of their constituent
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Fig. 1. Magnetic pendulum
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parts: quarks, chromosomes, or neurons. Some scientists believe that they are
looking for the whole.

In the pendulum, energy is transformed between potential energy and ki-
netic energy. Assuming that we have removed all magnets from the platform,
the pendulum will eventually stop swinging and come to rest in a perfectly
vertical plane. When we pull the pendulum up off that vertical axis, we cre-
ate potential energy. When we release the pendulum from our grip (from an
initial state), this potential energy converts into kinetic energy. The first law
of thermodynamics is the conservation of energy that states that energy may
neither be created nor be destroyed—it is simply transformed from one state
to another. In the magnetic pendulum, the forces of gravity and magnetism
act on the pendulum to convert back and forth between potential and kinetic
energy in a wild form. The second law of thermodynamics states that the
entropy (disorder) of a closed system must always increase. There is friction
on the pendulum when it pushes through the air (air resistance). This friction
prevents anything from having perpetual motion. The potential and kinetic
energies of the pendulum will transform into heat until the pendulum stops
swinging. By placing varying numbers of magnets in varying positions on
the base plate, we can create different movements and patterns in the swing
of the pendulum. By flipping the magnets so that the north or south poles
face up further creates different movements and patterns in the swing of the
pendulum. By using the combination of varying the positions of the mag-
nets on the plate, varying the number of magnets on the plate, and varying
the upfacing poles, we can create virtually an endless pattern of crazy and
unpredictable swings of the pendulum.

Magnetic fields are most easily understood in terms of magnetic field lines.
These field lines define the direction and strength of the magnetic field at any
location in 3D nonlinear space. These magnetic lines have both direction and
strength—the closer we are to a magnetic source, the stronger the field lines.
The magnetic field lines always begin on the north poles of a magnet and end
on the south poles. The magnetic field of a magnetic dipole is approximately
proportional to the inverse cube of the distance from the dipole. Therefore,
if we double the distance from the magnet, then the magnetic field strength
will be reduced by a factor of 8. This magnetic system is very complex. If
we know the initial state we cannot predict the final state. Even with just
three magnets on the base plate, we cannot predict the motion. On the other
hand, if we know the end state we cannot derive the history to the initial
state. The same problem is with life’s origin. There was nobody with a camera
to record life’s history. We may wish that a crack team of scientific observers
had been present to record and detail the origin of life when it occurred. But
since there were no observers, and since we cannot go back to investigate
the primitive earth, we must do what we can to gain after-the-fact evidence
of what may have occurred. Mimicking the early earth is tricky business.
Our conclusion about life’s origin can be only speculative—a hypothesis that
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cannot be confirmed because life is a nonrepeatable event. We should not
expect any meaningful results within laboratory time. Millions of years of
simulation might be required for any detectable progress. This method would
obscure the complex chemical interactions sought for observation by allowing
literally thousands of different reactions to go on simultaneously.

The measure of the amount of information is called entropy. The term
“entropy” was deliberately chosen for the name of the measure of average
information, because of its similarity to entropy in thermodynamics. In ther-
modynamics, entropy is a measure of the degree of disorder of a system, and
disorder is clearly related to information. We can consider the interpretation
of entropy as the amount of information, or equivalently the “degree of sur-
prise,” which is obtained when a particular event has occurred. We expect
that the information will depend on probability of event. If the event is cer-
tain to occur, and there is no surprise when the event is found to occur, then
no information is received. We see that the amount of information is pro-
portional to the logarithm of the probability. This arises essentially because,
for independent events, probabilities are multiplicative, while information is
additive. Information has both qualitative and quantitative aspects. We im-
plicitly assume that the probabilities being considered remained unchanged
with the passage of time. In many applications this assumption is justified but
this stationary approach cannot be accepted to living systems (organisms).

The unit of information is known as the bit. The amount of information
conveyed in an event depends on the probability of the event. For example,
information is more higher if the speaker says “I am very pleased to tell you
that you have just won the lottery” than in the statement “Your name is
Mr. Brown” (if you are Mr. Brown). Quantity of information is proportional
to the amount of recording medium required to store it. Redundancy is the
presence of more symbols in a message than is strictly necessary. Redundancy
is an important concept in information theory.

An autonomous agent is a self-reproducing system able to perform at
least one thermodynamic work cycle. Communities of agents will coevolve
to an edge of chaos between overrigid and overfluid behavior. An evolving
biosphere is all about the coming into existence in the universe of complex,
diversifying, ever-changing initial and boundary conditions that constitute
coevolving autonomous agents. An autonomous agent is necessarily a non-
equilibrium device, which stores energy. Work is the constrained release of
energy. Molecular autonomous agents are parallel processing molecular dy-
namical systems. Species evolve in a chaotic regime, each species changing the
adaptive peaks on its landscape that retreat—due to adaptive moves of other
species—faster than each species can attain the peaks on its own landscape.
There are, in short, dimly understood laws that allow the coevolutionary
construction of accumulating complexity (see Fig. 2).

Shannon’s information theory was developed initially to quantify tele-
phonic traffic and had been greatly extended since then. We know the human
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genome harbors some 30,000 structural genes, each encoding into the linear
sequence of amino acids, thereby constructing a protein. Humans have about
260 different cell types: liver, nerve, muscle, etc. Life cannot be longtime
predicted and leads in unexpected directions [2].

An autonomous agent is a physical system, such as a bacterium, that
can act on its own behalf in an environment. All free-living cells and organ-
isms are clearly autonomous agents. Autonomous agents must be displaced
from thermodynamic equilibrium. Work cycles cannot occur at equilibrium.
In complex chemical reaction systems, self-reproducing molecular systems
form with high probability. Life is an emergent collective behavior of com-
plex chemical networks [1, 3–5]. Enzymes catalyze, or speed up, chemical
reactions. As the molecular diversity of a reaction system increases, a criti-
cal threshold is reached at which collectively autocatalytic, self-reproducing
chemical reaction networks emerge spontaneously.

Darwin’s theory starts with life already here [6]. Darwin assumed gradu-
alism. Most variations would be minor. The no-free-lunch theorem says that,
averaged over all possible fitness landscape, no search procedure outperforms
any other search procedure. In the absence of any knowledge, or constraint,
on the fitness landscape, on average, any search procedure is as good as any
other. But life uses mutation, recombination, and selection. These search pro-
cedures seem to be working quite well. Our universe is vastly nonrepeating
(nonergodic).

Another example of complex system is a sand pile. If we drop the sand
slowly on the table the sand will gradually pile up. We will obtain many small
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avalanches and progressively fewer large avalanches. These huge avalanches
are exactly the signature of the famous “butterfly effect” seen in the weather,
where a small initial change can have large-scale consequences. The spread-
ing avalanches constitute sensitivity to initial conditions. The same body of
theory predicts that most species go extinct soon after their formation, while
some live a long time. The predicted species lifetime distribution is a power
law [4].

The sequence of DNA bases can be arbitrary and can encode “informa-
tion.” The symmetry allows the arbitrariness of bases to be consistent with
the template replication mechanism.

Natural life (n-life) is chemical and is written in the language of chem-
istry. Two chemicals can be separated by a potential barrier. The transition
state occurs at the top of the energy barrier between the two energy wells.
Chemical reactions always tend, spontaneously, to proceed toward chemi-
cal equilibrium. Human emotions are conscious manifestations of the brain’s
chemistry.

Some processes occur spontaneously, some conceivably do not. Heat spon-
taneously diffuses from the hot to the cold object, cooling the former and
warming the latter. The classical thermodynamic concepts of temperature,
pressure, and entropy were reduced to statistical features of idealized sets of
gas particles: temperature becoming the average kinetic energy of the par-
ticles, pressure the momentum transferred to the walls of the vessel, and
entropy a measure of the number of microstates per macrostate. The com-
pact description of the equilibrium is about as compact as you can get. A
few macroscopic variables (temperature, pressure, and volume) suffice.

One modern example of a compact description of something is a computer
program. Then the concept of a compact description becomes the concept of
shortness of the program. In order to maximize compression, we must get
all redundancy out of both the input symbol string and the symbol string
representing the program. But as the length of the most compact descrip-
tion increases, bit by actual bit, its information content increases, bit by bit.
This is a quite different approach to compare with Shannon’s information
theory. Thus, for each bit in reduction of the entropy of the system by our
measurement, the information content of the most description increases, on
average, exactly as rapidly. The sum of the entropy of the system plus the
observer’s knowledge about that system is a constant for an equilibrium sys-
tem. We have to record the information about the system somewhere, say,
in the memory. To erase a memory-stored bit has a minimal energy cost
that exactly balances the work we could get from the system by using the
stored information about the system. The complexity of the record is related
to the reduction in entropy of the measured system. So evolution is a pro-
cedure where matter, energy, information, and indeed, work, come together
(see Fig. 3). We suspect that the triad of matter, energy, and information is
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insufficient. But we lack a coherent concept of organization, its emergence,
and self-constructing propagation and self-elaboration.

2 Self-Organization and Adaptation
of Complex Systems

In dynamical systems, transition can be found: order, complexity, and chaos.
Analogously, water can exist in solid, transitional, and fluid phases [5, 6]. In
nonlinear systems, a chaos theory tells us that the slightest uncertainty in
our knowledge of initial conditions will often grow inexorably, and our predic-
tions are nonsense. Complex adaptive systems share certain crucial properties
(nonlinearity, complex mixture of positive and negative feedback, nonlinear
dynamics, emergence, collective behavior, spontaneous organization, etc.).
In the natural world, such systems include brains, immune systems, ecology,
cells, developing embryos, and ant colonies. In the human world, they include
cultural and social systems. Each of these systems is a network of a number
of “agents” acting in parallel. In a brain, the agents are nerve cells; in ecology,
the agents are species; in a cell, the agents are organelles such as the nucleus
and the mitochondria; in an embryo, the agents are cells; and so on. Each
agent finds itself in the environment produced by its interactions with the
other agents in the system. It is constantly acting and reacting to what the
other agents are doing. There are emergent properties, the interaction of a
lot of parts, the kinds of things that the group of agents can do collectively,
something that the individual cannot. There is no master agent, for example,
a master neuron in the brain. Complex adaptive systems have a lot of levels
of organization (hierarchical structures), with agents at any level serving as
building blocks for agents at a higher level. The immune system is governed
by local interaction between cells and antibodies; there is no central controller
in distributed control. Similar behavior can be found in the development of
the Internet. We can use biological laws to describe the development of the
Internet.
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It is no wonder that complex adaptive systems (with multiple agents,
building blocks, internal models, and perpetual novelty) are so hard to ana-
lyze using standard mathematics. We need mathematics and computer sim-
ulation techniques (a whole new mathematical art: programming) that em-
phasize internal models, emergence of new building blocks, and a rich web of
interactions between multiple agents. Parallel evolution of agents can explain
the origin of the eye. The Darwin’s theory with its gradual process is not
wrong, but it is incomplete to explain all complex structures. Evolution is
working in a parallel way. Every part has a Darwinian development, but due
to positive feedback, the complex structure can be changed by an avalanche
jump. This can explain why paleontologists have not found the missing links
of species. The development of the mobile phone proceeded in the same way.
In the beginning, it was a parallel independent development of the phone and
the radio. Relatively late they were joined together by a massive avalanche
jump to create the mobile phone.

We now have a good understanding of chaos and fractals showing how
simple systems with simple parts can generate very complex behaviors. The
edge of chaos is a special region onto itself, the place where you can find
systems with life-like, complex behavior (see Figs. 2 and 4). Living sys-
tems are actually very close to this edge-of-chaos phase transition, where
things are much looser and more fluid. A natural selection is not an an-
tagonist of self-organization. It is a force that constantly pushes emergent,
self-organizing systems toward the edge of chaos from a chaos area. A muta-
tion and a crossover are opposite forces pushing the systems from an order
to chaos areas. Evolution always seemed to lead to the edge of chaos. The
complex evolutionary structure has been described in [2, 7–9]. A random ge-
netic crossover or mutation may give a species the ability to run much faster
than before. The agent starts changing, then it induces changes in one of its
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neighbors, and finally you get an avalanche of changes until everything again
stops changing. Systems get to the edge of chaos through adaptation: each
individual (agent) tries to adapt to all the others. Coevolution can also get
them there; the whole system coevolves to the edge of chaos. In ecosystems
or ecosystem models, three regimes can be found: ordered regime, chaotic
regime, and edge of chaos like a phase transition. When the system is at the
phase transition, then, of course, order and chaos are in balance. There is an
evolutionary metadynamics, a process that would tune the internal organiza-
tion of each agent so that they all reside at the edge of chaos. The maximum
fitness occurs right at the phase transition.

The original DNA would have been coding for a living creature; but if
errors then accumulate in it, it will soon be coding for a nonliving creature.
Errors (mistakes) can be divided into three classes: advantageous mistakes,
which make things better; neutral mistakes, which make no difference; and
harmful mistakes, which make things worse. The first two kinds of mistake
underlie all evolutionary changes in the world. If selection removes more
errors than mutation introduces, the quality of life improves. Life has many
methods of dealing with error. Errors can be prevented from happening to
begin with; they can be corrected; they can be disguised; they can be purged
by natural selection.

3 Basic Principle of Evolutionary Computation

Scientific discussion of evolution dates back to 200 years [1]. Jean Baptiste
de Lamarck wrote extensively about evolution. Lamarck was the first person
to support the idea of evolution with logical arguments and was also the first
person to put forth an hypothesis concerning the mechanisms of evolution-
ary change. He suggested that living organisms have the ability to change
gradually over many generations by the inheritance of structures that have
become larger and more highly developed as a result of continued use or,
conversely, have diminished in size as a result of disuse. Only a part of evolu-
tionary changes has been related with the mechanisms proposed by Lamarck
(see Fig. 5).

Darwin suggested that slight variation among individuals significantly af-
fects the change that a given individual will survive and reproduce. He called
this differential reproductive success of varying individuals natural selection.
Darwin recognized that the reproductive rates of organisms are so high that
they would result in enormous population increases if all the offspring sur-
vived. Therefore, Darwin reasoned, mortality must increase as population
density increases and competition for space, food, shelter, and other environ-
mental necessities becomes severe, and predation and disease become more
prevalent. Individuals affect future generation not only through their own
offspring but also by helping the survival of relatives who contain the same
genes as a result of descent from a common ancestor.
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Gregor Mendel (1822–1884) accurately observed patterns of inheritance
and proposed a mechanism to account for some of the patterns. Genes deter-
mine individual traits. Various kinds of offspring appear in proportion that
can be predicted from Mendel’s laws. We often use the term Mendelian genet-
ics (see memory I in Fig. 5) to refer to the most basic patterns of inheritance
in sexually reproducing organisms with more than one chromosome. Mendel
gave his classic paper Experiments in Plant Hybrids for Natural Science So-
ciety in Brno in 1865. Mendel observed that the spherical seed trait was
dominant, being expressed over the dented seed trait, which he called reces-
sive. The physical appearance of a character is its phenotype, which Mendel
correctly supposed to be the result of the genotype, or genetic constitution,
of organism showing the phenotype. Genetics after Mendel: alleles and their
interaction.

In diploid organisms, chromosomes come in pairs (memory Ia and memory
Ib in Fig. 5). One of each chromosome pair derives from each parent; it does
not matter whether, for example, the dominant allele was contributed by the
mother or the father. Sex is determined by differences in the chromosomes;
but such determination operates in a bewildering variety of ways. Normal
human females carry two X chromosomes, normal males carry one X and one
Y chromosome. Persons who have some other number of sex chromosomes
may develop abnormally.

Fifty years after Darwin, the American psychologist James Baldwin [3]
said that nature selection was not merely a law of biology but applied to all
the sciences of life and mind, and he coined the term “social heredity” to
describe the way individuals learn from society by imitation and instruction.
Baldwin explained how intelligent behavior, imitation, and learning can affect
selection pressure on the genes (Baldwin effect). There is no Lamarckian
“inheritance of acquired characteristics” in the sense of passing the result of
learning onto the next generation through genes (memory II in Fig. 5). The
Baldwin effect creates new kinds of creatures that are capable of adapting to
change far more quickly than their predecessors.

In some ways it is obvious that ideas and cultures evolve. Changes are
gradual and build on what went on before. Inventions do not spring out of
nowhere but depend on previous inventions, and so on. If I invent a brilliant
new recipe for a new meal, I can pass it on to you and you can pass it on to
your granny and she can pass it to her best friend. Also, this is not inheritance
in the biological sense and genes are not affected. There is difference between
“copy the product” and “copy the instructions.” Let us suppose that you
play a beautiful piece of music for your friends and one of them wants to
learn it too. You could either play it many times until your friend can copy
it accurately (copy the product) or simply hand him the written music in a
book (copy the instructions). In the second case, the individual playing styles
of each pianist will not affect because copies of the written music are passed
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on. In the first case the process appears Lamarckian but in the second case
it does not.

The term “meme” first appeared in 1976, in Richard Dawkin’s best-selling
book The Selfish Gene [3]. The term “selfish” here means that the genes
act only for themselves; their only interest is their own replication; all they
want is to be passed on to the next generation. Many memes are passed
from parent to child. Parents teach their children many of the rules of their
own society. Children get their first language from their parents and usually
their religion too. Where memes are transmitted horizontally they can travel
quite independently of the genes. Modern industrial life is a world of hor-
izontal transmission. Our main sources of information are sources that did
not exist in our long evolutionary past: schools, radio, television, newspapers,
books and magazines, Internet, and lots and lots of friends and acquaintances
widely spread around the city, the country, and even the world. Dawkins also
introduced the important distinction between “replicators” and “vehicles.”
Memes are stored in human brains (or books or inventions) and passed on
by imitation. Memes are copied from one person to another and spread by
imitation. Dawkins discussed their propagation by jumping from brain to
brain via a process which in the broad sense can be called imitation. Every-
thing that is passed from a person to another person in this way is a meme.
This includes all the words in your vocabulary, the stories you know, the
skills and habits you have picked up from others, and the games you like
to play. It includes the songs you sing and the rules you obey. Memes and
genes are not the same. Genes are instructions for making proteins, stored
in the cells of the body and passed on in reproduction. Their competition
drives the evolution of the biological world. Memes are instructions for car-
rying out behavior, stored in brain—memory II (or other memories)—and
passed on by imitation. Their competition drives the evolution of the mind.
Both genes and memes are replicators and must obey the general principles
of evolutionary theory. Genes are instructions encoded in molecules of DNA;
memes are instructions embedded in human brains, or in artefacts as books,
pictures, Internet, WWW pages, etc. People are different. Their ability to im-
itate creates a second replicator that acts in its own interests and can produce
behavior that is memetically adaptive but biologically maladaptive. People
will pick up their memes from films, radio, books, Internet, and television
long before they have even produced any children. There are many indirect
measures of horizontal transmission such as literacy rates, or the availability
of telephones, mobile phones, radios, hi-fi systems, fax machines, compact
disks, audiotapes and videotapes, and computers.

If this religious behavior helped people acquire more mates, then any
genes that inclined them to be more religious in the first place would also
flourish. In this way genes for religious behavior would increase because of
religious memes. Religions also dictate sexual practices, promote certain kinds
of cooperative behavior, and regulate aggression and violence. Religions build
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theories about the world and then prevent them from being tested. Religions
provide nice, appealing and comforting ideas, and cloak them in a mask of
“truth, beauty, and goodness.” The theories can then thrive in spite of being
untrue, ugly, or cruel. Some religions positively encourage murder and war
against people of other faiths [3].

In the biological world, sexual species work by copying the instructions.
The genes are the instructions that are copied, the phenotype is the result and
is not copied. Dawkins [3] described organisms as vehicles for the genes, built
to carry them around and protect them. Pictures, books, tools, and buildings
are meme vehicles (memory III in Fig. 5). In our own bodies, thousands of
genes cooperate to produce muscles and nerves, liver and brain, and to result
in a machine that effectively carries all genes around inside it.

Many people seem to hate the idea that human sexuality can be explained
in terms of genetic advantage. All sexual behavior is culturally determined.
The modern sexual behavior is meme-driven. We enjoy sex because animals
that enjoyed sex in the past passed on their genes. But evolution has also
given us intelligence, which has enabled us to work out the function of sex
and manipulate things so as to get pleasure of sex without the cost of child
care. On this view, birth control and sex for fun, and many other aspects
of modern sexual life, are mistakes which the genes have not eliminated. We
know that women prefer to mate with high-status men, and that these men
leave more offsprings, either by having more wives or by fathering children
by women who are not their wives.

Meme evolution is faster then gene evolution. Sexual memes have influence
in our lives in ways that have little or nothing to do with genes. Catholicism’s
taboo against birth control has been extremely effective in filling the world
with millions of Catholics who bring up their children to believe that condoms
and pills are evil, and that God wants them to have as many children as
possible. Birth rates are highest in the developing countries and lowest in
the technologically advanced ones. All the great religions of the world began
as small-scale cults, usually with a charismatic leader, and over the year a
few of them spread to take in billions of people all across the planet. The
Catholic God is watching at all times and will punish people who disobey
His commandments with most terrible punishments—burning forever in hell,
for example. These threats cannot easily be tested because God and hell are
invisible, and the fear is inculcated from early childhood.

For most of the past two or three million years memes have evolved slowly.
Our sexual desires still follow the dictates of genetic evolution while memetic
evolution changes the rules. The consequences of memetic evolution is that
humans can be more altruistic than their genes alone would dictate. Altru-
ism is defined as behavior that benefits another creature at the expense of
the one carrying it out. In other words, altruism means doing something
that costs time, effort, or resources, for the sake of someone else. This might
mean providing food for another animal, giving a warning signal to protect
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others while putting yourself at risk, or fighting an enemy to save another
animal from harm. Many animals live social and cooperative lives, parents
lavish devotion on their offspring, and many mammals spend hours every day
grooming their friends and neighbors.

Humans are uniquely cooperative and spend a great deal of their time
doing things that benefit others as well as themselves. They have moral sen-
sibilities and strong sense of right and wrong. They are altruists. Their be-
havior is controlled by rules. Among many versions of the rules are “Be good
to those who imitate you,” “Be good to children,” “Be good to your cultural
ancestors” or more generally, “Be good to your close cultural relatives,” and
so on. These rules can be stored by “fuzzy rules” (left part of memory II
in Fig. 6). People who come close to death and survive are often changed
by the experience, becoming more caring of others and less concerned with
themselves. The altruism trick permeates religious teachings. Many believers
are truly good people. In the name of their faith they help their neighbors,
give money to the poor, and try to live honest and moral lives. As Dawkins
points out [3], good Catholics have faith; they do not need proof. Indeed, it is
a measure of how spiritual and religious you are that you have faith enough
to believe in completely impossible things without asking questions. The reli-
gious memes were just behaviors, ideas, and stories that were copied from one
person to another in long history of human attempts to understand the world.
They were successful because they happened to come together into mutually
supportive gangs that included all the right tricks to keep them safely stored
in millions of brains, books, and buildings, and repeatedly passed on to more.
That is why they are still with us, and why millions of people’s behavior is
routinely controlled by ideas that are false or completely untestable. Religious
memes have therefore played an important role in the development of human
societies. Language provides a good example of cultural evolution. The evolu-
tionary history of various languages can be accurately traced. Family trees of
languages have been constructed that are comparable with the genetic family
trees based on differences in DNA.

The environment itself is constantly changing because of all these devel-
opments, and so the process is never static. Artificial neural networks (right
part of memory II in Fig. 6) have demonstrated that many of the features
of human memory can be simulated in computers. Effective memes will be
those that cause high-fidelity, long-lasting memory. Memes may be successful
at spreading largely because they are memorable rather than because they
are important or useful. Apart from that, effective transmission of memes
depends critically on human preferences, attention, emotions, and desires
(desire for sex, for food, for avoiding danger, and for excitement and power).

In 1989 the World Wide Web (WWW) was invented. The Internet had
already been expanding for many years. Memes can now be stored on the
hard disk of a computer. For robots to become like humans to have human-
like artificial intelligence and artificial consciousness—they would need to
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have memes. Our bodies and brains have been designed by natural selection
acting on both genes and memes over a long period of evolution. Some sci-
entists prefer to keep their scientific ideas and their ordinary lives separate.
Some can be biologists all week and go to church on Sunday, or be physi-
cists all their life and believe they will go to heaven. The main problem is
that everybody needs to believe in something. Everybody needs to have the
faith, for example, in surviving the nature in future. Gene evolution is slow;
thus, it cannot follow and adapt to explosive increase of meme-information;
it reflexes in a stress. The stress decreases the power of immunity system and
opens the possibility to catch illness (there are plenty of viruses and bacteria).
Emotions and thought are intimately linked in other ways. There are rather
few hormones, such as adrenaline and noradrenaline, that control emotional
states.

One of the most highly developed skills in contemporary Western civiliza-
tion is the capability to split up problems into their smallest possible com-
ponents. But we often forget to put the pieces together again. In this way we
can ignore the complex interaction between our problems and the rest of the
universe. We are trying “to put the pieces back together again”—the pieces
in this case being biology, informatics and physics, necessity and change, sci-
ence, and humanity. In hundreds of different ways, scientists have expressed
that the puzzle fits together. It must construct a consistence that can ac-
commodate all dimensions of experience, whether they belong to physics,
physiology, psychology, biology, ethics, etc. [1–9].

A traditional science in the Age of the Machine tended to emphasize
stability, order, uniformity, and equilibrium. It concerned itself mostly with
closed systems and linear relationships in which small inputs uniformly yield
small results. Generally they center on the basic conviction that—at some
level—the world is simple and is governed by time-reversible fundamental
laws. What makes the new paradigm especially interesting is that it shifts at-
tention to those aspects of reality that characterize today’s accelerated social
change: disorder, instability, diversity, disequilibrium, nonlinear relationships
(in which small inputs can trigger massive consequences), and temporality—
a heightened sensitivity to the flow of time. Most phenomena of interest to us
are, in fact, open systems, exchanging energy or matter (and, one might add,
information) with their environment. All systems contain subsystems, which
are continually “fluctuating.” At times, single fluctuations or a combination
of them may become so powerful, as a result of positive feedback, that they
shatter the preexisting organization. Kauffman [4] and Prigogine [5] call it
“a singular moment” or “a bifurcation point.” It is inherently impossible to
determine in advance which direction a change will take: whether the system
will disintegrate into “chaos” or leap to a new, more differentiated, higher
level of “order” or organization which is called “dissipative structure.”

A living system appears very complex from the thermodynamic point of
view. Certain reactions are close to equilibrium, while others are not. Here
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we have a remarkable case of the convergence of two sciences: biology and
physics. It seems reasonable to assume that some of the first stages mov-
ing toward life were associated with the formation of mechanisms capable of
absorbing and transforming chemical energy. However, it is necessary to em-
phasize that such an evolutionary structure implies a drastic simplification of
the situation defined simply in terms of competition between self-replicating
processes in the environment where only a limited amount of needed resources
exists (for example, a prey–predator interaction).

Today, even physics tells us that irreversible processes play a constructive
and indispensable role. It is generally known that stability and simplicity are
exceptions. Today we are going from deterministic, reversible processes to
stochastic and irreversible ones. Certain events go only one way—not because
they cannot go the other way, but because it is extremely unlikely that they
go backward. Initial conditions corresponding to a single point in unstable
systems correspond to infinite information and are therefore impossible to
find or observe. No equilibrium brings “order out of chaos.” However, as it
was already mentioned, the concept of order (or disorder) is more complex
than it was thought to be. Open systems evolve to higher and higher forms
of complexity (see Fig. 4). Molecular biology shows that not everything in
a cell is alive in the same way. Some processes reach equilibrium, others are
dominated by regulatory enzymes far from equilibrium.

Evolution always seemed to lead to the complexity. The complex evolu-
tionary structure in Fig. 5 that was described in [7, 8] can be transformed to
the structure of the computational intelligence (see Fig. 6).

Life is clearly a chemical phenomenon, and only molecules can sponta-
neously undergo a complex chemical reaction with one another. The first
source of chemistry’s power is a simple variety. The second source of power is
reactivity: the structure A can manipulate the structure B to form something
new—a structure C. A growth of complexity really does have something to
do with far-from-equilibrium systems building themselves up, cascading to
higher and higher levels of organization. Once they have accumulated a suf-
ficient diversity of objects at the higher level, they go through a kind of
autocatalytic phase transition and get an enormous proliferation of things at
that level. Life is a natural expression of complex matter. It is a very deep
property of chemistry and catalysis and is far from equilibrium [4].

4 Biologically Inspired Computing

Among all of natural computing approaches, biologically inspired systems are
the oldest and may be the most popular ones. It is the field of investigation
that draws upon metaphors or theoretical models of biological systems in
order to design computational tools or systems for solving complex problems.
Adaptation, self-organization, prediction, communication, and optimization
have to be performed by biological organisms, in parallel and in different
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scales and structural levels, in order to survive and maintain life. Nature was
first in the solution of very complicated problems. Our complex problems, in
areas as engineering, computing, and economics, are usually characterized by
the absence of a complete mathematical model of relevant phenomena. There
is the existence of a large number of variables to be adjusted and conditions to
be simultaneously satisfied, the presence of high degrees of nonlinearity, and
formulation of multipurpose tasks with a combinatorial explosion of candidate
solutions.

An evolution of information in memory I (see Fig. 5) can be simulated by
genetic algorithms (GAs) with diploid chromosomes and limited lifetime or
sexual reproduction [10]. Diploid chromosomes increase the efficiency and ro-
bustness of GAs, and they can better track optimal parameters in a changing
environment. The sex is distinguished by a two-bit value stored in the chro-
mosome [9]. It can be demonstrated that standard GAs with haploid chro-
mosomes are unable to correctly locate optimal solutions for time-dependent
objective functions. The adaptation of GAs depends on the speed of land-
scape changes through time. Results of different GAs with sexual reproduc-
tion given in [9] are very promising. For simple problems GAs with limited
lifetime can be used. They prefer a shorter lifetime and many new generations.
There is an optimal lifetime where almost all individuals in the population
have high fitness. This strategy is used in nature by viruses and bacteria. The
sexual reproduction is typical for complicated creatures. This phenomenon
can be explained by a need for a higher age to start the reproduction (the
learning time).

In [3] two different meme transformation processes were described. The
first transformation process is called the copy, where a given meme is simply
copied into itself with allowed mutation. The second transformation process
is the migration. This strategy consists in looking for a fitness meme in neigh-
boring compartments. If the fitness of such a meme is greater by a threshold
than the fitness of the current meme, then the fittest meme is copied to the
current compartment with allowed mutation. Neural networks (part of mem-
ory II in Fig. 6) are adapted by a prescribed number of epochs. The basic
capability of neural networks is to learn patterns from examples. When such
a learned neural network gets an input similar to the learned one, it is able
to give a similar output, which means classifying unknown input patterns.

A learning process should represent a quality of learning ability by a size
of neighborhood search around a chromosome. The concept of chromosome
(memory I) is supported with memes (memory III). Both of them (memes
and chromosomes) determine an integrated fitness. A message (idea) is broad-
casted throughout a subpopulation of the so-called recipients. These recip-
ients incorporate the broadcasted message into their memes. The Dawkins’
theory of memes [3] was considered as an extension of Baldwin effect. An
application of Dawkins’ theory of memes represents a plausible possibility of
how to explain and interpret many features of social behavior of animals. Each
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population chromosome is automatically accompanied by a meme (memory
I and III). The memes are carriers of information about best solutions that
have already been achieved.

Employing of memes is very important in the evolution process as a fur-
ther source of information about the best solution that should be found. At
the beginning of evolution the memes are empty (there is no information).
During the evolution process they can receive an information by so-called
memetic interaction. In the reproduction process, created offspring obtain
memes from one of two parental chromosomes (generally offspring are edu-
cated by mothers). Many different strategies can be used in the process of
evaluation of meme and chromosome. It seems that memes might be very im-
portant for permanent adapting of the best evolutionary solution when the
goal of evolution (or environment where populations live) is slowly changing.
In [9] was observed that GA only with learning has a great inertia; it is un-
able to well adapt to a new evolution goal. The alternative approach based
on expert system (fuzzy rules—memory II in Fig. 6) is not applied widely be-
cause of similar difficulties of creation and development of knowledge bases.
A transition from one application to another requires replacement of rules
set (heuristics) and algorithm of fitness function calculation. Furthermore,
an exactness of received solution often is not a satisfactory one.

5 Order vs. Complexity in the Question of Information

It is widely held that in physical sciences the laws of thermodynamics have
had a unifying effect similar to that of the theory of evolution in the biological
sciences [1]. What is intriguing is that the predictions of one seem to contra-
dict the predictions of the other. The second law of thermodynamics suggests
a progression from order to disorder, from complexity to simplicity, in the
physical universe. Yet biological evolution involves a hierarchical progression
to increasingly complex forms of living systems, seemingly in contradiction
to the second law of thermodynamics. Thermodynamics is an exact science,
which deals with energy. Our world seethes with transformations of matter
and energy. The concept of entropy S gives us a more quantitative way to
describe the tendency for energy flow in a particular direction. The entropy
change for a system is defined mathematically as the flow of energy divided
by the temperature:

∆S ≥ ∆Q
T

(1)

where ∆S is the change in entropy, ∆Q is the heat flow into or out of the
system, and T is the absolute temperature in Kelvin. From the first law of
thermodynamics we derive that the change of energy of system ∆E is equal
to the work done on (or by) the system ∆W and the heat flow into (or out
of) the system ∆Q: ∆E = ∆Q + ∆W . There is another way to view entropy.
The entropy of a system is a measure of probability of given arrangement of



546 Pavel Ošmera

mass and energy within it. The energy of universe is constant; the entropy
of the universe tends toward a maximum. But the earth is not an isolated
system, since it is open to energy flow from the sun. It seems safe to conclude
that systems near equilibrium (whether isolated or closed) can never produce
the degree of complexity intrinsic in living systems. The possibilities that a
configurational entropy works are more promising, however, if one considers
a system subjected to energy flow which may maintain it far from equilib-
rium, and its associated disorder. The formation and maintenance of complex
systems at energy levels well removed from equilibrium requires continuous
and configurational work to be done on the system [1]. This continuous work
requires energy and/or mass flow through the system, apart from which the
system will return to an equilibrium condition (lowest Gibbs free energy, see
Fig. 4), with the decomposition of complex molecules into simple ones. Mass,
such as water and carbon dioxide, also flows through plants, providing nec-
essary raw materials, but not energy. In collecting and storing useful energy,
plants serve the entire biological world. While the maintenance of living sys-
tems is easily rationalized in terms of thermodynamics, the origin of such
living systems is quite another matter. Thus, it is thermodynamically possi-
ble to develop complex living forms, assuming that the energy flow through
the system can somehow be effective in organizing the simple chemicals into
the complex arrangement associated with life. In existing living systems, the
coupling of the energy flow to the organizing “configurational work” occurs
through the metabolic function of DNA, enzymes, etc.

Only recently has it been appreciated that the distinguishing feature of
living systems is complexity rather than order (see Fig. 4). For example crys-
tals are very orderly, spatially periodic arrangements of atoms (or molecules)
but they carry very little information. By definition then, a periodic struc-
ture has order. An aperiodic chemical structure (in an organism) can have
complexity if the temperature of the structure is approximately between 0
and 100◦C. Informational molecules have a low degree of order but a high
degree of specified complexity. It should be noted that aperiodic polypeptides
or polynucleotides do not necessarily represent meaningful information or bi-
ologically useful function. A random (chaotic) arrangement of DNA bases
is aperiodic but contains little, if any, useful information since it is devoid
of meaning. Thus, informational macromolecules may be described as being
aperiodic and in a specified sequence. The information content in a given
sequence of unit, be they digits in a number, letters in a sentence, or amino
acids in a polypeptide or protein, depends on the minimum number of in-
structions needed to specify or describe the structure. Many instructions are
needed to specify a complex, information-bearing structure as DNA. Only a
few instructions are needed to specify an ordered structure as a crystal. In
this case we have a description of the initial sequence or unit arrangement,
which is then repeated.
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Now consider the components of the Gibbs free energy [Eq. (2)], where the
change in enthalpy ∆H = ∆E + P∆V is principally the result of changes in
the total bonding energy ∆E, with the P∆V term assumed to be negligible
(P is pressure and ∆V is volume change) [1].

∆G = ∆H − T∆S − T∆Sc

Gibbs Chemical Thermal Configurational
free energy work entropy work entropy work

(2)

We will refer to this enthalpy component ∆H as the chemical work. The
change in the entropy ∆S that accompanies the polymerization reaction may
be divided into two distinct components which correspond to the changes
in the thermal energy distribution ∆St and the mass-structure distribution
∆Sc. The change in configurational entropy “coding” goes from a random
arrangement to a specified sequence. Configurational entropy Sc is concerned
only with the arrangement of mass in the system. We shall be especially
interested in the sequencing of amino acids in polypeptides (or proteins) or
of nucleotides in polynucleotides (e.g., DNA). The entropy S of a system is
given by

S = k ln ΩtΩc = St + Sc (3)

where k is Boltzmann’s constant and Ωt and Ωc refer to the number of ways
energy and mass, respectively, may be arranged in a system. If we want to
convert a random polymer into an informational molecule, we can determine
the increase in information I by finding the difference between the configu-
ration entropy with states Ωcr for initial random polymer and informational
molecule with coding states Ωci:

I = Rmax − R = k ln Ωcr − k ln Ωci (4)

where Rmax is the greatest possible value of the randomness R under given
conditions. Information I is a measure of order. Order can be defined as ab-
sence of randomness. We are trying to find the general principles underlying
the emergence of order from chaos. In thermodynamics, entropy is a measure
of disorder of a system, and disorder is clearly related to information. It is
not easy to define a measure of complexity. Complexity is the place where
matter, energy, and information come together. Maybe the measure of com-
plexity has something to do with minimum of matter, energy, and information
that are necessary to create a complex thing. In this case, information can be
described in the minimal length of algorithm that is necessary in a creative
procedure of work to be done. One modern example of a compact description
of something is a computer program. In order to maximize compression, we
must get all redundancy out. We can use the automatic generation of pro-
grams with grammatical evolution [11]. In the beginning, presumably, the
universe was simple, homogeneous, featureless, and almost isotropic. Now it
is vastly complex. The fact that a biosphere builds up astounding complex-
ity and diversity suggests that our current knowledge is missing something
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fundamental. Because the biosphere is a part of the universe, the universe
becomes complex too. The heart of the mystery concerns a proper under-
standing of terms as order or organization, disorder, chaos, information, and
entropy.

Arranging a pile of bricks into the configuration of a house requires work.
One would hardly expect to accomplish this work with energy of dynamite or
hurricane, however. Not only must energy flow through the system, it must
be coupled with procedure of work to be done. We must have instructions
(e.g., information in a “a cookery book”) of how to build the house. Regular-
ity or order cannot serve to store the large amount of information required
by complex and living systems. A highly irregular, but specified, structure is
required rather than an ordered structure. Coupling the energy flow through
the system to do the chemical and thermal entropy work is much easier than
doing the configurational entropy work. The uniform failure in literally thou-
sands of experimental attempts to synthesize protein or DNA demonstrates
the difficulty in achieving a high degree of information content, or specified
complexity from undirected flow of energy through a system without evolu-
tion of information content. Thermal entropy, however, seems to be physically
independent from the information content of complex systems which we have
analyzed and called configurational entropy.

However, when we examine a biological cell or an organism, the situation
is quite different: not only are these systems open, but they exist only because
they are open. The feed of the flux of matter and energy is coming to them
from the outside world. The free energy E can create P different organisms
(species), every species with Ni copies that are created by DNA information
Ii, where Qin i is the metabolic heat inside of an organism released by its
activities and Qout is the metabolic heat that is lost. Ti is the temperature,
mi is the mass, Vi is the volume,W is a scrap (waste), and c1, c2 are constants
[7, 8]:

E = Estructure + Eheat =
p∑

i=1

(c1NiVioi +Qin i) +W +Qout (5)

where Qin i = c2NimiTi and oi is the measure of energy order (defined
by the energy density = Estructure i/Vi). On the earth there appeared a
complex biosphere with the food chains that must satisfy (5). An increase
of energy ∆E is covered by sun or earth activity. In a far-from-equilibrium
condition, various types of self-organization processes may occur. Evolution
(with fitness Fe) has a tendency to maximize the accumulated energy in living
systems with a complex evolution structure (see Fig. 5):

Fe = maxthrough evolution

{
c1 ·

p∑
i=1

NiVioi

}
(6)

In open systems evolution increases the measure of complexity. There is an
increase of an accumulated energy, information, and a complex matter.
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A living system appears very complex from the thermodynamic point of
view. Certain reactions are close to equilibrium, while others are not. Open
systems evolve to higher and higher forms of complexity. Molecular biology
shows that not everything in a cell is alive in the same way. Some processes
reach equilibrium and others are dominated by regulatory enzymes far from
equilibrium [5].

6 Overview of Evolutionary Algorithms

Evolutionary computation is generally considered as a consortium of ge-
netic algorithms (GA), genetic programming (GP), and evolutionary strate-
gies (ES). There are new GPs: grammatical evolution [11], grammatical
swarm [12], and chemical genetic programming [13].

One model of social learning that has attracted interest in recent years
is drawn from a swarm metaphor. Two popular variants of swarm models
exist: those inspired by studies of social insects such as ant colonies and
those inspired by studies of the flocking behavior of birds and fish. The
essence of these systems is that they exhibit flexibility, robustness, and self-
organization [12]. Although the systems can exhibit remarkable coordination
of activities between individuals, this coordination does not stem from a
“center of control” or a “directed” intelligence, rather it is self-organizing
and emergent. Social “swarm” researchers have emphasized the role of social
learning processes in these models. In the context of particle swarm optimiza-
tion (PSO) [12, 14], a swarm can be defined as a population of interacting
elements that is able to optimize some global objective through collaborative
search of a space. These elements (particles) move (fly) in an n-dimensional
search space, in an attempt to uncover ever-better solutions to the problem
of interest. In essence, social behavior helps individuals to adapt to their en-
vironment, as it ensures that they obtain access to more information than
that captured by their own senses. It is interesting to note that this approach
of PSO is completely devoid of any crossover operator characteristic of GAs.
Each particle has a memory of the best location in the search space that
it has found so far (pbest). Each particle knows the best location found to
date by all the particles in the population (or in an alternative version of the
algorithm, a neighborhood around each particle) (gbest). At each step of the
algorithm, particles are displaced from their current position by applying a
velocity vector to them. The velocity size and direction are influenced by the
velocity in the previous iteration of algorithm (simulates “momentum”) and
the location of a particle relative to its pbest and gbest [12]. Therefore, at
each step, the size and direction of each particle’s move are functions of its
own history (experience), and the social influence of its peer group.

Differential evolution (DE) [15] is a rather unknown approach to numeri-
cal optimization, which is very simple to implement and requires little or no
parameter tuning. After generating and evaluating an initial population the
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solutions are refined by a DE operator as follows. Choose for each individual
genome j three individuals k, l, and m randomly from the population. Then
calculate the difference of the chromosomes in k and l, scale it by multipli-
cation with a parameter f , and create an offspring by adding the results to
the chromosome of m. The only additional twist in this process is that not
the entire chromosome of offspring is created in this way, but that genes are
partly inherited from individual j.
There are other soft computing methods [9]:

Multiagent evolutionary algorithms
Agent-based multiobjective optimization
Ant colony optimization, team optimization, culture algorithms [16]
Fuzzy logic, neural networks, fuzzy-rough sets, fuzzy-neural modeling
Hybrid learning, intelligent control, cooperative coevolutionary algorithms
Parasitic optimization, bacterial evolutionary algorithms (BEA)
Artificial immune algorithms [17], artificial life systems
Parallel hierarchical evolutionary algorithms [18]
Meta-heuristics, evolutionary multiobjective optimization [14, 19]
Evolvable control [9], embryonic hardware
Human–computer interaction, molecular-quantum computing
Data mining, chaotic systems, scheduling, etc.

7 Parallel Grammatical Evolution with Sexual Selection

Grammatical evolution (GE) [11] can be considered to be a form of grammar-
based GP. In particular, Koza’s GP has enjoyed considerable popularity and
widespread use. Unlike a Koza-style approach, there is no distinction made
at this stage between what he describes as function (operator in this case)
and terminals (variables). Koza originally employed Lisp as his target lan-
guage. This distinction is more of an implementation detail than a design
issue. Grammatical evolution can be used to generate programs in any lan-
guage, using Backus-Naur Form (BNF). BNF grammars consist of terminals,
which are items that can appear in the language, i.e., +, −, sin, log, etc.,
and nonterminal, which can be expanded into one or more terminals and
nonterminals. A nonterminal symbol is any symbol that can be rewritten
to another string, and conversely a terminal symbol is one that cannot be
rewritten. The major strength of GE with respect to GP is its ability to
generate multiline functions in any language. Rather than representing the
programs as parse trees, as in GP, a linear genome representation is used. A
genotype–phenotype mapping is employed such that each individual’s vari-
able length byte strings contain the information to select production rules
from a BNF grammar. The grammar allows the generation of programs in
an arbitrary language that are guaranteed to be syntactically correct. The
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users can tailor the grammar to produce solutions that are purely syntacti-
cally constrained, or they may incorporate domain knowledge by biasing the
grammar to produce very specific forms of sentences.

The GE system in [11] codes a set of pseudorandom numbers, which are
used to decide which choice to take when a nonterminal has one or more out-
comes. Because the GE mapping technique employs a BNF definition, the
system is language independent, and, theoretically, can generate arbitrarily
complex functions. There is quite an unusual approach in GEs, as it is possi-
ble for certain genes to be used two or more times if the wrapping operator is
used. BNF is a notation that represents a language in the form of production
rules. It is possible to generate programs using the grammatical swarm opti-
mization (GSO) technique [12] with a performance similar to the GE, given
the relative simplicity of GSO, the small population sizes involved, and the
complete absence of a crossover operator synonymous with program evolu-
tion in GP or GE. Grammatical evolution was one of the first approaches to
distinguish between the genotype and phenotype. GE evolves a sequence of
rule numbers that are translated, using a predetermined grammar set into a
phenotypic tree.

There is a new method of GP [13], named chemical genetic programming
(CGP), which enables evolutionary optimization of the mapping from geno-
typic strings to phenotypic trees. In biological cells information is derived
from DNA to give each cell its functionality. This process is called transla-
tion. A series of metabolic reactions, catalyzed by several enzymes, translate
genetic information into proteins. Each amino acid is a biochemical building
block, so together the amino acids form the fundamental set of functional
units in a cell. In the CGP a cell is evolved, and includes a DNA string that
codes genetic information and smaller molecules for the mapping from DNA
code to computational functionality. Genetic modification of a cell’s DNA
allows the DNA code and genotype-to-phenotype translation to coevolve.
Building an optimal translation table enhances evolution within a population
while maintaining the necessary diversity to explore the entire search space.
The collection of grammatical rewriting rules, or translations, is stored in
each cell’s translation table. Using the breeding techniques of conventional
GP, GE or CGP is an effective alternative. In CGP however, the translation
relation is dynamic, and the system is allowed to optimize both the combi-
nation of symbols in the genotypic string as well as the use of the translation
set to create a cell’s phenotypic tree. CGP can create good programs with a
higher probability. Artificial cells in CGP are represented with a numerical
string (DNA), transcription units (tRNAs), a rule set (amino acids), and a
translation table (aminoacyl-tRNAs), enabling coevolution between the codes
on DNA and their functionality. Cells are evolved using mutation, crossover,
and molecular exchange operations. Unlike conventional GP, CGP operators,
such as * and ∧, are treated as terminal symbols. Each amino acid in the
initial set is syntactically valid, which ensures that all amino acids created by



552 Pavel Ošmera

translating elements from this set are also valid. The CGP is able to ignore
the entire class of solutions that do not form executable structures. Through
evolution, beneficial amino acids will be propagated throughout the popula-
tion, while destructive amino acids will be eliminated. The diversity of amino
acids will gradually decrease, while the diversity of translations will increase.
The complexity of translation will grow in time, as productive combinations
of amino acids can be merged into a single translation. The CGP is a suit-
able method for solving symbolic regression problems. CGPs use feedback
to determine the optimal content of the translation table, and CGP has an
adaptive cell in which the final functional tree is created by the translation of
symbol sequences in DNA using a set of evolved amino acid rewriting rules.

The genotype-to-phenotype mapping is a critical point in designing an
evolutionary system. This mapping provides the building blocks that a system
is allowed to work with progressing toward its objective.

Our approach uses a parallel GE (PGE) [20, 21]. A population is divided
into several subpopulations that are arranged in the hierarchical structure.
Every subpopulation has two separate parts: a male group and a female
group. Every group uses quite a different type of selection. In the first group
a classical type of GA selection is used. In the second group only different
individuals can be included. It is similar to a harem arrangement. This strat-
egy increases an inner adaptation of PGE. The following text explains why
we used this approach. It is a biologically inspired computing. Analogy would
lead us one step further, namely, to the belief that the combination of GE
with sexual selection will occur. On the principle of the sexual reproduction
we can create a PGE with a hierarchical structure.

Gene numbers are related to complexity because, generally speaking, a
more complex life form uses more instructions than a simpler life form. Sexual
life form could evolve to be more complex than clonal life forms [24]. Complex
life is a problem to be explained. It is something of a puzzle. The double helix
is not the only form of redundancy in the system of Mendelian inheritance
that we and other complex life forms use. We carry two sets of double-helical
molecules, one inherited from our father and the other from our mother. This
condition is called diploidy. Ploidy refers to the number of DNA sets that an
individual inherits. Maternal errors could be corrected using paternal codes,
and paternal errors using maternal codes. Why do we have two DNA sets?
It is not logically inevitable. Sex does require a doubling and halving of the
gene numbers through the cycle of life and reproduction. Sex is not the same
as reproduction. It is any process that mixes genes from different individuals.
The offspring would be fine as long as it did not inherit errors in the same
bit of DNA from both its mother and its father. Many proteins involved in
reproduction are evolving unusually rapidly. The champion is lysin, a protein
that determines whether a sperm can enter an egg. It is evolving as much as
25 times faster than gamma interferon, a protein important in the immune
systems of mammals.
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The code in an RNA virus is very economically written. It has no junk and
contains overlapping genes in which the same bit of code is used in more than
one gene. Modern RNA viruses are parasites and depend on more complex
creatures. The RNA viruses may only be able to survive by running off a
huge number of offsprings. It is known to make over 1,000 offspring copies
from each parent [24].

Scientists are unable to perform the reverse translation, from body to
DNA code, except in one or two easy cases. It seems that biological mecha-
nisms have been unable to do it either. Cloning is simpler than sex, in which
genes of two parents are combined and shuffled, and some of them then dis-
posed of. DNA is routinely copied, without sex, in the cells of our bodies. Sex
is indeed expensive. It halves the rate of reproduction. Ironically, successful
clones are the cause of their own demise. As the clone increases in frequency,
it becomes more vulnerable to disease. A disease can spread easily between
members of the same clone, and as the clone becomes more common, the
disease has more changes to evolve to infiltrate the target.

Bacteria are mainly clonal, but they also use mock-sexual processes from
time to time. They are swapping components of DNA at random. Bacterial
sex is not connected with reproduction. There were two bacteria before the
sex act, and two after it. Maybe there is a compensating advantage that
can increase the quality of the offspring. Sex is a puzzle that has not yet
been fully explained. There are two theories at present. One is that sex helps
us in our evolutionary battle against parasites. The other plausible theory
is that sex helps to remove bad genes. The trick of sex is to combine errors
from different individuals and create some error-free offsprings. The evolution
helps organisms in the struggle of complex life against copying error. The
overriding copy is known as dominant, the overridden copy as recessive. When
a recessive gene is rare, however, it can persist unseen because most of the
individuals who harbor it will have only one copy. Because family members
are genetically more similar to one another than they are to strangers, sex in
the family raises the odds of uniting two copies of a harmful recessive gene.
Problems with incest are due to recessive genes [25].

In the animal branch of the tree of life, it is indeed the most complex forms
that rely on sex. Sex has become a reproductive process as the complexity
of life has advanced from the single-celled to the many-celled stage. If sex
is a powerful force to purge error, life can evolve to be more complex by
existing biological processes. Is the complexity of life on earth limited? Can
new gene technologies increase the complexity of life? Why are slime molds so
oversexed? Slime molds have 13 sexes, which are determined by three genes.
But there is some power that strongly constrains the number of sexes. Maybe
two sexes are optimal.

The formalities of Mendelian inheritance were needed when sex became
associated with reproduction. Paternal care was an another step up in the
evolution of complexity, because life with parental care is more complex than



554 Pavel Ošmera

life without it. Evolution does not obey human notions of morality, nor is hu-
man morality a reflection of some natural law. Parents can pass nongenetic
information (an experience as meme) to the offspring. There are human cul-
tural rules that preempt the possibility of social conflict (see memory III in
Fig. 5). In humans, males choose among females as well as females among
males. Mate choice in favor with error-free members of the opposite sex also
increases the efficiency of the purge. Many organisms compete for territories,
and only the organisms that successfully occupy a territory may manage to
breed. Infection diseases or meteoric agencies, for example, can make or break
our future. A limited lifetime is evolutionary tuned to provide an acceptable
error rate with a sufficient adaptability to the changing environment. Dar-
winian natural selection was synthesized in a theory capable of explaining how
the environment controls gene combinations. Natural selection can act only
by the preservation and accumulation of infinitesimally small and inherited
modifications, each profitable to the preserved being. A further modification
can possibly be produced through natural selection by the slow and gradual
accumulation of numerous, slight, yet profitable, variations. Instincts vary
slightly in a state of nature too. They are of the highest importance to each
animal (see memory II in Fig. 5).

Full advantage of sex is seen at the biochemical level. Individuals who are
able to scramble and recombine their genes with a mate can maintain a per-
petual genetic flux. Two separate mating strategies are underway: monogamy
and the current strongly polygamous arrangement. A population can only
evolve from promiscuity to monogamy if incorruptible couples consistently
have more surviving children then libertines do. Humans, taken as species,
cannot be described as exclusively monogamous. Divorce rates and extra-
marital affairs attest to that. The males of many species are larger and more
irascible than their mates. To help them in their battle against rivals, war-
rior males throughout the animal kingdom have often become heavy weights,
equipped with weapons enabling them to stab, ram, kick, or wrestle. For
those, which compete for harems, the reward for being a successful male is
proportionately high and so the conflict become that more serious. Competi-
tion between the lusty males is therefore intense, and success will favor only
the heaviest and most belligerent of them. The association between sex and
symmetry has been discovered in several other kinds of animals. Parasites and
diseases are causing deviations in the host’s development. Such abnormalities
may not be corrected and will be carried into adulthood as, for example, a
slightly deformed body or a badly configured tail.

The conflicts of interests between males and females have been resolved
with a whole spectrum of parental relationships. Sex creates more variability
in each generation, and organisms practising sexual reproduction in a chang-
ing and unpredictable environment would have great advantages in the battle
to be able to survive. The most vigorous individuals, or those who have most
successfully struggled with their conditions of life, will generally leave most
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progene. But success will often depend on having special weapons or means
of defense, or the charms of the males, and the slightest advantage will lead to
victory. There is little doubt that the sexual process has been responsible for
creating this fantastic treasury of living things, including us humans with our
powerful brains. If adult and ageing individuals faithfully passed on copies of
their DNA to their offspring, after a few generations the accumulated errors
would make life untenable. Sex is most prevalent in species, which live in
the complex and very variable environments where microbes and parasites
abound. Species are defined as groups that cannot interbreed. From time to
time organisms evolve to give up sex, reproducing asexually instead. When
this happens, any genetic differences between a parent and child are, by defi-
nition, due to mutation only. But, in fact, most mutations are neutral. They
have no effect. They change the DNA sequence of a gene, but they do not
affect the information.

For reasons that remain mysterious, the loss of sex is almost followed
by swift extinction. An organism does not necessarily have to reproduce to
spread his genes. Instead, he can devote himself to helping his relations spread
theirs. Such a support often explains apparently altruistic behavior, such as
that of the ants, bees, and wasps which slave away for the good of the colony
and never reproduce themselves. With animals having separated sexes there
will be in most cases a struggle between the males for possession of the
females.

8 Origin of Complexity

Matter has an innate tendency to self-organizing and generating complex-
ity. This tendency has been at work since the birth of the universe, when a
pinpoint of featureless matter budded from “nothing” at all [20]. Irreversibil-
ity and nonlinearity characterize phenomena in every field of complexity.
Nonlinearity causes small changes on one level of organization to produce
large effects (anomalies) at the same or higher levels. The smallest of events
can lead to the most massive consequences. For example, the slightest shift
in the position of the attractor leads to a different trajectory (see Fig. 1). We
can see an emergent property, which manifests as the result of positive and
negative feedback. But global features of the system cannot be understood
only by analyzing the parts separately. Deterministic chaos arises from the
infinitely complex fractal structure. A fractal’s form is the same no matter
what length scale we use. By using the techniques of parallelism and massive
parallelism in computer simulations we come a little closer to explaining the
basic principles of complex systems. Our attention is directed to the most
efficient algorithms of turbulence simulation, which can help us understand
a behavior of very complex fractal objects as a whirl. Chaotic systems are
exquisitely sensitive to initial conditions, and their future behavior can only
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be reliably predicted over a short time period. Moreover, the more chaotic
system, the less compressible its algorithmic representation.

Turbulence is regarded as one of the “grand challenge” problems in con-
temporary high-performance computing [22, 23]. Despite this astonishing
progress during the 50 years since the visionary work of von Neumann, simu-
lating turbulent fluid flow in realistic way is still largely beyond the capability
of today’s computers. In essence, the common underlying theme linking com-
plexity of nature with computation depends on the emergence of a complex
organized behavior from many simpler cooperative and conflicting interac-
tions between the microscopic components, irrespective of whether they are
spinning electrons, atoms, etc.

Earthquakes, avalanches, and financial crashes do have a common finger-
print: the distribution of events follows a single power law [4, 26]. This power
law means that the physics of small avalanches is the same as that of large
ones. Self-organization is a natural consequence of time evolution of vast ag-
gregates of simple agents. By making these agents interact in a more complex
way we could create an even greater variety of behavior, such as spiral struc-
tures reminiscent of galaxies, hurricanes, tornadoes, and particles of matter.
Nonliving things, for instance crystals, are capable of self-reproduction dur-
ing growth. Evolution on the edge of chaos (see Fig. 2) can be extended for
nonliving systems. The negative forces are caused by negative fluctuation
and positive forces are caused by positive fluctuation and by selection as an
influence of boundary conditions.

Fractals seem to be very powerful in describing natural objects on all
scales. Fractal dimension and fractal measure are crucial parameters for such
description [26, 27]. Many natural objects have self-similarity or partial self-
similarity of the whole object and its part. Different physical quantities de-
scribing properties of fractal objects in E-dimensional Euclidean space with a
fractal dimension D were defined in [26]. Fractal dimension D depends on the
interrelation between the number of repetition and reduction of individual ob-
ject. There is relationship between the dimensionality and fractal properties
of the matter, which contains the constant of golden mean φ = (

√
5 – 1)/2 =

0.6180339887. Constant φ is a special case of fractal dimension D defined by
the condition D(D − E + 2) = 1 for E = 3 [26]. Links between inverse cou-
pling constants of various interactions (gravitational, electromagnetic, weak,
and strong) in the three-dimensional Euclidean space are discussed in [27].
Different properties of particles (and interactions between them) correspond
to the specific values of a fractal dimension. The values D = 0, E – 2, E – 1,
E play the most important role in such analysis [27].
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9 Parallel Evolutionary Optimization of Controllers
with a System’s Identification

A very strong trend to digital computer control is evident in most areas of ap-
plication. Large process applications are found in power plants, paper mills,
refineries, chemical plants, steel mills, etc. Aircraft control, manufacturing,
machine tools and robots, environmental control, and transportation are but
a few of an expanding list of applications. Digital control offers important
advantages in flexibility of modifying controller characteristics or of adapt-
ing the controller in the case when plant dynamics change with operating
conditions. In multivariable systems, with more than one input and output,
modern techniques for optimizing system performance or reducing interac-
tions between feedback loops can be implemented.

Many approaches to the control of a plant or a process rely on the iden-
tification of model of the plant or process to be controlled. As the need for
control is extended to systems of increasing complexity which are also often
highly nonlinear, the ability to produce a plant model which is adequate over
all operating conditions becomes a more and more demanding task. A dif-
ferent approach to the problem is provided by PID controllers or rule-based
fuzzy control in which the plant model is replaced by a certain number of
control rules, given by experts or deduced by observation. Controlling of the
plant then turns into a process of plant state observation and invoking of
appropriate rule from a stored rule base. At the heart of this process is an
inference mechanism, by which the correct control action is inferred from the
observed state. A key step in the application of fuzzy methods to process
control is the inference mechanism. Essentially, this means that given, the
plant-state as a fuzzy set, it is necessary to infer the correct control action
from a rule base.

An advantage of fuzzy systems is that they are based on linguistic rules,
and therefore it is often easy to understand the underlying functionality of
the systems. The process for designing fuzzy systems is usually heuristic.
Also, approximate position and shape of the membership functions may be
determined by common sense, but exact (optimal) position and shape are
unknown. An automatically designed fuzzy system can sort out important
features from insignificant ones and also discover new relationships.

Automatic design of fuzzy controllers should optimize membership func-
tion and the rule base at the same time. A parallel genetic algorithm (PGA) is
an extremely powerful optimization technique that could be used to optimize
the parameters of controllers. To increase the efficiency of a GA the influence
of migration in a multilevel distributed GA (MDGA) can be added. MDGAs
use the power of the computers better than one-level distributed GAs [18].

PGAs are used to optimize both the structure and the associated parame-
ters of controllers. Intelligence should emerge from mutual interaction among
competence modules.
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Fig. 7. Two-level structure of the MDGA

We must consider the mechanisms linking GA to the solved problem.
There are two such mechanisms: encoding solutions to the problems on chro-
mosomes, and evaluating function that returns a measurement of the worth
of chromosome to the context of the problem. The evaluation function is the
link between the GA and the problem to be solved. Most of the computer
time in GAs is spent on evaluating objective functions. The initial popula-
tion for traditional GA is usually chosen randomly. We used a real number
encoding scheme instead of a traditional binary one [18]. It is very useful to
restrict the range of each gene (parameter). This action makes the GA much
more effective, because it does not waste its time looking through a statistic’s
range or searching on a scale that is insignificant with respect to the statistic.
To increase the efficiency of a GA, the influence of migration in hybrid and
distributed GAs was tested [9, 18].

To increase the efficiency of GAs, a fourth operator was introduced—
migration. Several small separate populations that are on an individual PC in
a computer network create new individuals, from which the best are included
in one common population on a master PC. The best strings are passed to the
master population when subpopulation reaches some local minimum. This
seems better than copying the best strings to neighboring subpopulations
at regular intervals. In the second-level structure, we can create a cluster
of independent subpopulations [clusters of PID controllers (PIDCs), fuzzy
controllers (FCs), and neural controllers (NCs)] running on the first level (see
Fig. 7), from which information is sent to a higher level (to master controller
MC). With this structure, we must solve the following questions: what is
sent, when it is sent, where it is sent, and whether the direction of data flow
is only from a lower level to higher level or in both directions (independent
or dependent development of subpopulations).

GAs are highly parallel procedures, therefore allowing for fairly simple im-
plementations on any kind of machine architecture. However, as we observed
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earlier, there is a disadvantage of using small distribution populations, as
usually done on distributed-memory machines, whenever centralized organi-
zation can deliver the best search results for the problem at hand. The way
of resolving this search quality performance trade-off is by distributing the
population through the processors and performing periodic exchanges of indi-
viduals between subpopulations. Another way of approaching this trade-off: a
“semidistributed” population is a distribution that, by organizing processors
in clusters, achieves some centralization without generating much contention
or excessive communication. The initial population of the MDGA is ran-
domly generated. Members of the population are sorted according to the
cost function values, and the population is split into the two parts (not the
same rise). The group containing the best solutions is called “elite.” The elite
group stays unchanged during iteration, and the members of the other group
are regenerated. The algorithm guarantees that every new created member
is originated by using parents with better value of the cost function than
the substituted member. This modification is described in [24]. Genetic al-
gorithms in hierarchical structures run independently, but each GA (except
the “top master”) occasionally sends its best solution to the upper level of
master GA. The GA periodically checks its master’s best solution. When the
GA has a better solution than its upper-level master, it sends this solution
to the upper level. The period of checking is given in a number of iterations,
and its value depends on the level the GA is working in. The master GA
(e.g., every GA except the bottom level) checks periodically contributions of
the lower levels and adds them to its elite.

One possible representation of a hierarchical structure in the chromosome
is shown in Fig. 8.

NC parametersFC parametersPID parametersprobability of
mutation

description of
hierarchical structure

Fig. 8. Chromosome representation of hierarchical structure

9.1 An Artificial Immune System

The immune system is a complex, self-organizing and highly distributed sys-
tem that has no centralized control and which uses learning and memory when
solving particular tasks. An artificial immune system (AIS) fully exploits
self-organizing properties of the vertebrate immune system. The biological
immune system is an efficient natural protection system whose primary func-
tion is to generate multiple antibodies from the antibody gene libraries and
to keep it alive even if the unknown foreign pathogen infects the body. The
AIS has several desired features for optimization purposes, like robustness,
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flexibility, learning ability, and memory. The AIS is self-organizing, since it
determines survival of newly created clones, and it determines its own size.
This is referred to as meta-dynamics of the system. These characteristics are
often useful for description of hierarchical systems.

Two distinct algorithms have emerged as successful implementation of
AIS: the immune network model described by Jerne and the negative selec-
tion algorithm developed by Forrest. The immune system implements two
types of selection [28]: negative selection and clonal selection. These two
processes have to be dealt with separately by researchers. Negative selection,
which operates on lymphocytes maturing in thymus (called T-cells), ensures
that these lymphocytes do not respond to self-proteins. This is achieved by
killing any T-cell that binds to a self-protein while it is maturing. The sec-
ond selection process, called clonal selection, operates on lymphocytes that
have matured in the bone marrow (called B-cells). Any B-cell that binds to
a pathogen is stimulated to copy itself. The copying process is subject to
high probability of errors (hypermutation). The combination of copying with
mutation and selection amounts to an evolutionary algorithm that gives rise
to B-cells that are increasingly specific to the invading pathogen. If the same
or similar pathogens invade in the future, the immune system will respond
much more quickly because it maintains a memory of successful responses
from previous infections. A constrain-handling approach based on emulation
of an immune system (particularly, using the negative selection model) can
be incorporated into parallel GA [17].

9.2 Design of Evolvable Controllers

In recent years, there has been growing interest in using intelligent ap-
proaches such as fuzzy, neural network, evolutionary methods, and their
combined technologies for the Proportional-Integral-Derivative (PID) con-
troller [9, 28, 29]. The PID controller has been widely used owing to its
simplicity and robustness in chemical processes, power plants, and electrical
systems. Its popularity is also due to its easy implementation in hardware and
software. However, with only PID parameters, it is very difficult to control a
plant with complex dynamics, such as large dead time, inverse response, and
highly nonlinear characteristics. That is, since the PID controller is usually
poorly tuned, a higher degree of experience and technology is required for
tuning in the actual plant. Also, a number of approaches have been proposed
to implement mixed control structures that combine a PID controller with
fuzzy logic or neural networks. We try to adapt the hierarchical structure of
controller modules to dynamic environment [9].

The use of classical PID controllers is preferred whenever nonlinear tech-
niques are not strictly required. A GA is used to optimize both the structure
and the associated parameters of controllers. Intelligence should emerge from
mutual interaction among competence modules.

We tested several versions of GAs:
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Standard GA is one population with the size equal to 40 individuals. Indi-
viduals are sorted by their fitness. The higher the fitness, the higher is the
probability of selecting the individual to be a parent (a roulette wheel). The
second parent is selected in the same manner. Then, the crossover, mutation,
and correction operators are applied. The reproduction is repeated until the
worse half of population is replaced.

GA with two subpopulations. The sexual approach where the male and the
female are distinguished [3]. Every subpopulation has the size = 20 individ-
uals. Individuals are sorted by their fitness. The first parent is selected from
the male subpopulation while the second parent is selected from the female
subpopulation. The selection probability of the first parent is performed with
a uniform distribution function, while the selection probability of the second
parent is different, using a modified roulette wheel approach that more often
preferred a better individual. Crossover, mutation, and correction operators
are then applied [9]. The reproduction is repeated until the worse half of
every subpopulation is replaced.

Parallel GA can have a two-level structure. The first level of hierarchical
structure is created by several populations with different GAs [18, 30]. The
best or random individuals from the first level are sent to the second level.
At this level, the standard GA with the elitism runs. This two-level structure
allows us to find a better solution than that found by GAs in the first level;
the best solution from the first level can never be lost but only overtaken in
the second level.

We used the following modifications of GAs:

Limited lifetime. Any individual is not removed (replaced) until the minimum
lifetime is reached [21]. The minimum lifetime is randomly generated when
the individual is born. Individuals can survive for several generations even if
they are not good. They have an opportunity to improve their fitness during
the lifetime. This approach can slow down the evolution process, but it also
prevents potentially good individuals to be lost.

HC operator uses a hill-climbing approach. In randomly selected individuals
and in randomly selected genes, several small modifications are carried out;
the best modification with the best fitness is retained for further use.

Adaptive version of PGA with AIS is given in [17]. We have used a constraint-
handling approach based on the emulation of the immune system (particu-
larly, using the negative selection model) that was incorporated into a parallel
GA.

Our cost function has three parts [9]:

– the sum of the square control error (LMS),
– the overshoot penalty,
– the oscillation penalty of a control action.
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The computer simulation with an evolutionary optimization helps iden-
tify the nonlinear systems and simultaneously can change parameters of con-
trollers. Parallel GAs with the diploid chromosomes and an AIS can increase
the efficiency and robustness of systems, and thus they can track better opti-
mal parameters in a changing environment. From the experimental session it
can be concluded that modified standard GAs with two subpopulations can
design controllers much better than classical versions of GAs.

Fig. 9. The dependence of computation-time on the number of slaves

The HC modification of standard GA can improve the speed of the con-
vergence, but the lifetime modification can support the higher variety of
population. In the beginning, the HC modifications have better results in
most cases, but the lifetime modifications have slower convergence; in the
end, they can find better solutions than the HC modifications. The depen-
dence of computation-time and generations on the slaves in parallel GA is in
Fig. 9 and Fig. 10.

It can be demonstrated that standard GAs with haploid chromosomes
are unable to correctly locate optimal solutions for time-dependent objective
functions. An interesting fact was found, namely that sexual reproduction
(SR) and the immune system (IS) use two types of selections working in
parallel (IS: clonal and negative selection; SR: female and male selection [9,
21]). Every selection mechanism solves one task (for example, convergence or
adaptation). The system as a whole has then both desired features.
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Fig. 10. The dependence of the number of generations on the number of slaves

10 Parallel Grammatical Evolution
with Backward Processing

Our approach uses a PGE [11, 12]. A population is divided into several sub-
populations that are arranged in the hierarchical structure. Every subpopu-
lation has two separate parts: a male group and a female group. Every group
uses quite a different type of selection. In the first group a classical type of
GA selection is used. In the second group only different individuals can be
included. It is a biologically inspired computing similar to a harem arrange-
ment. This strategy increases an inner adaptation of PGE. The following text
explains why we used this approach. Analogy would lead us one step further,
namely, to the belief that the combination of GE with a sexual reproduction.
On the principle of the sexual reproduction we can create a PGE with a
hierarchical structure.

10.1 Backward Processing of the GE

The PGE is based on the GE [11], where BNF grammars consist of terminals
and nonterminals. Terminals are items which can appear in the language.
Nonterminals can be expanded into one or more terminals and nonterminals.
Grammar is represented by the tuple {N ,T ,P ,S}, where N is the set of
nonterminals, T the set of terminals, P a set of production rules which map
the elements of N to T , and S is a start symbol which is a member of N . For
example, below is the BNF used for our problem:
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N = {expr, fnc}
T = { sin, cos,+,−, /, ∗, X, 1, 2, 3, 4, 5, 6, 7, 8, 9}
S = <expr>

and P can be represented as four production rules:

1. <expr> := <fnc><expr>
<fnc><expr><expr>
<fnc><num><expr>
<var>

2. <fnc> := sin
cos
+
∗
−
U−

3. <var> := X
4. <num> := 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

The symbol U− denotes a unary minus operation. The production rules and
the number of choices associated with each are given in Table 1.

There are notable differences when compared with [11]. We do not use two
elements <pre op> and <op>, but only one element <fnc> for all functions
with n arguments. There are no rules for parentheses; they are substituted
by a tree representation of the function. The element <num> and the rule
<fnc><num><expr> were added to cover generating numbers. The rule
<fnc><num><expr> is derived from the rule <fnc><expr><expr>. Using
this approach we can generate the expressions more easily. For example when
one argument is a number, then +(4, x) can be produced, which is equivalent
to (4 + x) in an infix notation. The same result can be received if one of
<expr> in the rule <fnc><expr><expr> is substituted with <var> and
then with a number, but it would need more genes.

There are not any rules with parentheses because all information is in-
cluded in the tree representation of an individual. Parentheses are automat-
ically added during the creation of the text output.

Table 1. The number of available choices for each production rule

Rule no. Choices

1 4
2 6

3 1

4 10
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10.2 Reduction of the Search Space

If the GE is not restricted anyhow, the search space can have infinite number
of solutions. For example, the function cos(2x) can be expressed as cos(x+x),
cos(x+ x+ 1− 1), cos(x+ x+ x− x), cos(x+ x+ 0 + 0 + 0 + . . .), etc. It is
desired to limit the number of elements in the expression and the number of
repetitions of the same terminals and nonterminals.

In our system every application of an element from the set will decrease
its number of possible uses (see Table 2). In this case, when this counter is 0,
the element is removed from the set. It means that the number of production
rules is decreased and the gene value will have quite a different influence on
the result.

Table 2. Number of available choices for each production rule

Rule All choices Availabe

choices
A 2 0

B 5 3

C 6 3

D 3 3

Consider two genes with values 20 and 81; without reducing the space the
results would be

20 mod 4 = 0 => A
81 mod 4 = 1 => B

When rule A is temporarily removed from the set:

20 mod 3 = 2 => D
81 mod 3 = 0 => B

When a rule is removed from the set the result of modulo operation codes
a different rule. Result 0 codes rule A before reduction and rule B after
reduction. Therefore it is better to have a sorted list of rules (see Table 3).
Using the sorted list without reduction the results would be

20 mod 4 = 0 => C
81 mod 4 = 1 => B

When rule A is removed from the sorted list:

20 mod 3 = 2 => D
81 mod 3 = 0 => C
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Table 3. Sorted table of available choices for each production rule

Rule All choices Availabe

choices
C 6 3

B 5 3

D 3 3

A 2 0

The same result of modulo operation 0 codes the same rule C. The probability
that rule C is removed before rule A is low because the number of all choices
for rule C is higher. When the number of available choices for rule C is
zero then the result of modulo operation has still a different mapping from
genotype to phenotype. The use of a list sorted by available choices simplifies
analysis of genotype or phenotype.

10.3 Grammatical Evolution

The chromosome is represented by a set of integers filled with random values
in the initial population. Gene values are used during chromosome translation
to decide which terminal or nonterminal to pick from the set. When selecting
a production rule there are four possibilities; we use gene value mod 4 to
select a rule. However, the list of variables has only one member (variable X)
and gene value mod 1 always returns 0. A gene is always read; no matter if a
decision is to be made, this approach makes some genes in the chromosome
somehow redundant. Values of such genes can be random, but genes must be
present.

Figure 11 shows the genotype–phenotype translation scheme. Body of
the individual is shown as a linear structure, but in fact it is stored as a
one-way tree (child objects have no links to parent objects). In the diagram
we use abbreviated notations for nonterminal symbols: f, <fnc>; e, <expr>;
n, <num>; v, <var>.
The column description in Fig. 11 is as follows:

A. Objects of the individual’s body (resulting trigonometric function),
B. Genes used to translate the chromosome into the phenotype,
C. Modulo operation, divisor is the number of possible choices determined

by the gene context,
D. Result of the modulo operation,
E. State of the individual’s body after processing a gene on the corresponding

line,
F. Blocks in the chromosome and corresponding production rules,
G. Block marks added to the chromosome.



Evolution of Complexity 567

Fig. 11. Relations between genotype (column B) and phenotype (column A)

Since operation modulo takes two operands, the resulting number is in-
fluenced by gene value and by gene context (Fig. 11C = Fig. 11 column C).
Gene context is the number of choices determined by the currently used list
(rules, functions, variables). Therefore, genes with same values might give
different results of modulo operation depending on what object they code.
On the other hand, one terminal symbol can be coded by many different gene
values as long as the result of modulo operation is the same (31 mod 3) = (34
mod 3) = 1. In the example given (Fig. 11A), the variables set has only one
member X. Therefore, the modulo divider is always 1 and the result is always
0; a gene which codes a variable is redundant in that context (Fig. 11D). If
the system runs out of genes during phenotype–genotype translation then
the chromosome is wrapped and genes at the beginning are reused.

10.4 Processing the Grammar

The processing of the production rules is done backwards—from the end of
the rule to the beginning (Fig. 12). For example, production rule<fnc><expr1>
<expr2> is processed as <expr2><expr1><fnc>. We use <expr1> and
<expr2> at this point to denote which expression will be the first argument
of <fnc>.

The main difference between <fnc> and <expr> nonterminals is in the
number of real objects they produce in the individual’s body. Nontermi-
nal <fnc> always generates one and only one terminal; on the contrary,
<expr> generates an unknown number of nonterminal and terminal sym-
bols. If the phenotype is represented as a tree structure then a product of
the <fnc> nonterminal is the parent object for handling all objects gener-
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Fig. 12. Proposed backward notation of a function tree structure

ated by <expr> nonterminals contained in the same rule. Therefore the rule
<fnc><expr1><expr2> can be represented as a tree (Fig. 13).

Fig. 13. Production rule shown as a tree

To select a production rule (selection of a tree structure) only one gene
is needed. To process the selected rule a number of n genes is needed and
finally to select a specific nonterminal symbol again one gene is needed. If
the processing is done backwards the first processed terminals are leafs of
the tree and the last processed terminal in a rule is the root of a subtree.
The very last terminal is the root of the whole tree. Note that in a forward
processing (<fnc><expr1><expr2>) the first processed gene codes the rule,
the second gene codes the root of the subtree, and the last are leafs.

When using the forward processing and coding of the rules described
in [11] it is not possible to easily recover the tree structure from geno-
type. This is caused by <expr> nonterminals using an unknown number
of successive genes and the last processed terminal being just a leaf of the
tree. The proposed backward processing is shown in Fig. 11E.

10.5 Phenotype-to-Genotype Projection

Using the proposed backward processing system the translation to a pheno-
type subtree has a certain scheme. It begins with a production rule (selecting
the type of the subtree) and ends with the root of the subtree (in our case
with a function) (Fig. 11F). In the genotype this means that one gene used to



Evolution of Complexity 569

select a production rule is followed by n genes with different contexts, which
are followed by one gene used to translate <fnc>. Therefore, a gene coding a
production rule forms a pair with a gene-coding terminal symbol for <fnc>
(root of the rule). Those genes can be marked when processing the individual.
This is an example of a simple marking system:

BB: Begin block (a gene coding a production rule)
IB: Inside block
EB: End block (a gene coding a root of a subtree)

The EB and BB marks are pair marks and in the chromosome they define
a block (Fig. 11G). Such blocks can be nested but they do not overlap (the
same way as parentheses). The IB mark is not a pair mark, but it is always
contained in a block (IB marks are presently generated by <num> nontermi-
nals). Given a BB gene a corresponding EB gene can be found using a simple
LIFO method.

A block of chromosome enclosed in a BB–EB gene pair then codes a sub-
tree of the phenotype. Such a block is fully autonomous and can be exchanged
with any other block or it can serve as a completely new individual.

Only BB genes code the tree of an individual’s body, while EB and IB
genes code the terminal symbols in the resulting phenotype. The BB genes
code the structure of the individual; changing their values can cause change of
the applied production rule. Therefore, change (e.g., by mutation) in the value
of a structural gene may trigger change of context of many or all following
genes.

This simple marking system introduces a phenotype feedback to pheno-
type; however, it does not affect the universality of the algorithm. It is not
dependent on the used terminal or nonterminal symbols; it only requires the
result to be a tree structure. Using this system it is possible to introduce a
progressive crossover and mutation.

10.6 Crossover

When using GE the resulting phenotype coded by one gene depends on the
value of the gene and on its context. If a chromosome is crossed at random
point, it is very probable that the context of the genes in the second part will
change. This way crossover causes destruction of the phenotype, because the
newly added parts code a different phenotype than in the original individual.

This behavior can be eliminated by using a block marking system.
Crossover is then performed as an exchange of blocks. The crossover is made
always in an even number of genes, where the odd gene must be a BB gene
and the even gene must be a EB gene. The starting BB gene is presently
chosen randomly; the first gene is excluded because it encapsulates (together
with the last used gene) the whole individual.
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The operation takes two parent chromosomes and the result is always two
child chromosomes. It is also possible to combine the same individuals, while
the resulting child chromosomes can be entirely different.

Given the parents,

1. cos(x+ 2) + sin(x ∗ 3)
2. cos(x+ 2) + sin(x ∗ 3)

the operation can produce children

3. cos(sin(x ∗ 3) + 2) + sin(x ∗ 3)
4. cos(x+ 2) + x

This crossover method works similar to direct combining of phenotype
trees; however, this method works purely on the chromosome. Therefore, phe-
notype and genotype are still separated. The result is a chromosome, which
will generate an individual with a structure combined from its parents. This
way we receive the encoding of an individual without backward analysis of
his phenotype. To perform a crossover the phenotype has to be evaluated (to
mark the genes), but it is neither used nor known in the crossover operation
(also it does not have to exist).

10.7 Mutation

Mutation can be divided into mutation of structural (BB) genes and mutation
of other genes. Mutation of one structural gene can affect other genes by
changing their context. Therefore, the structural mutation amount should be
very low. On the other hand, the amount of mutation of other genes can be
set very high and it can speed up searching an approximate solution.

Given an individual

sin(2 + x) + cos(3 ∗ x)

and using only mutation of nonstructural genes, it is possible to get

cos(5− x) ∗ sin(1 ∗ x)

Therefore, the structure does not change, but we can get a lot of new combi-
nations of terminal symbols. The divided mutation allows using the benefits
of high mutation while eliminating the risk of damaging the structure of an
individual.

10.8 Population Model

The system uses three populations forming a simple tree structure (Fig. 14).
There is a master population and two slave populations which simulate dif-
ferent genders. The links among the populations lead only one way—from
bottom to top.
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Fig. 14. The population model

10.8.1 Female Population

When a new individual is to be inserted in a population a check is performed
whether it should be inserted. If a same or similar individual already ex-
ists in the population then the new individual is not inserted. In a female
population every genotype and phenotype occurs only once. The population
maintains a very high diversity; therefore the mutation operation is not ap-
plied to this population. Removing the individuals is based on two criteria.
The first criterion is the age of an individual—length of stay in the popu-
lation. The second criterion is the fitness of an individual; using the second
criterion a maximum population size is maintained. Parents are chosen using
the tournament system selection.

10.8.2 Male Population

New individuals are not checked so duplicate phenotypes and genotypes can
occur; also the mutation is enabled for this population. Mutation rate can
be safely set very high (30%) provided that the structural mutation is set
very low (less then 2%). For a couple of best individuals the mutations are
nondestructive. If a protected individual is to be mutated, a clone is created
and added to the population. If the system stagnates in a local solution the
mutation rate is raised using a linear function depending on the number of
cycles for which the solution was not improved. Parents are chosen using a
logarithmic function depending on the position of an individual in a popula-
tion sorted by fitness. A histogram of selections (Fig. 15) shows that the best
individuals (X = 0) are chosen three times; that is, each of them has three
children. For every selected male parent a new selection of female parent is
made.

10.8.3 Master Population

The master population is superior to the male and female populations. Pe-
riodically the subpopulations send over their best solutions. Moreover, the
master population performs another evolution on its own. Parents are se-
lected using the tournament system. The master population uses the same
system of mutations as the male population, but for removing individuals
from the population only the fitness criterion is used. Therefore, the master
population also serves as an archive of best solutions of the whole system
(Fig. 16).
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Fig. 15. A histogram of selections of parents depending on a position in sorted
population

Fig. 16. Example of a maximum fitness history of the three-population system;
circles mark the master population, squares mark the two subpopulations, and full
circles indicate the same fitness for both the master and F and M subpopulations
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10.9 Fitness Function

Around the searched function there is defined an equidistant area of a given
size. Fitness of an individual’s phenotype is computed as the number of points
inside this area divided by the number of all checked points (a value in 〈0, 1〉).
This fitness function forms a strong selection pressure; therefore the system
finds an approximate solution very quickly.

10.10 Results

Given a sample of 100 points in the interval [0, 2π] and using the block mark-
ing system described in Sect. 10.5, PGE has successfully found the searched
function sin(2 ∗ x) ∗ cos(2 + x) on the majority of runs. The graph of Fig. 17
shows maximum fitness in the system for ten runs and an average (in bold).
The system also found a function with fitness better then 0.8 in less then 40
generations using three populations with size of 100 individuals each (Fig. 18).
On the other hand, the same system with phenotype-to-genotype projection
disabled (Fig. 19). The majority of runs did not find the searched function
within 120 generations.
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Fig. 17. Convergence of the PGE using backward processing (average in bold)

We have simplified the generation of numbers by adding a new produc-
tion rule, thus allowing the generation of functions containing integer con-
stants. The described parallel system together with phenotype-to-genotype
projection improved the speed of the system. The progressive crossover and
mutation eliminates destroying partial results and allows us to generate more
complicated functions (e.g., sin(2 ∗ x) ∗ cos(2 + x)).

We have described a parallel system, parallel grammatical evolution
(PGE), that can map an integer genotype onto a phenotype with the back-
ward coding. PGE has proved successful for creating trigonometric identities.
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Fig. 18. A generated function with fitness 0.81−sin(sin(−9+x)) ∗ cos(−11+2∗x)
(light) and searched function sin(2 ∗ x) ∗ cos(2 + x) (bold)
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Fig. 19. Convergence of the PGE using forward processing (average in bold)

Parallel GEs with the sexual reproduction can increase the efficiency and
robustness of systems, and thus they can track better optimal parameters in
a changing environment. From the experimental session it can be concluded
that modified standard GEs with two subpopulations can design PGE much
better than classical versions of GEs.

The PGE algorithm was tested with the group of 6 computers in the
computer network (see Fig. 21). Five computers calculated in the structure
of five subsystems MR1, MR2, MR3, MR4, and MR5 and one master MR.
The male subpopulation M of MR in the higher level follows the conver-
gence of the subsystem. In Fig. 20 is presented 10 runs of the PGE-program.
The shortest time of computation is only 10 generation. All calculation were
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Fig. 20. Convergence of the PGE with 5 PC using backward processing (average
in bold)

Fig. 21. The parallel structure of PGE with 6 computers

finished before 40 generation. This is better to compare with backward
processing on one computer (see Fig. 17). The forward processing on one
computer was the slowest (see Fig. 18).

The parallel grammatical evolution can be used for the automatic gener-
ation of programs. We are far from supposing that all difficulties are removed
but first results with PGEs are very promising.
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11 Conclusions

Regardless of whether the particular theory of evolution is Darwinian, neo-
Darwinian, or something else, an evolutionary preamble to the biological
phase of evolution is clearly required. Maybe a new information theory of
evolution can help us. Chemical evolution, then, is the prebiological phase of
evolution in which the very earliest things came into being. Over the past sev-
eral decades, our growing understanding of the early earth has added crucial
insight to theories of chemical evolution. Workers with specialized training in
overlapping disciplines can bring new insights to an area of study, enabling
them to make original contributions. Only chemical evolution is a speculative
reconstruction of a unique past event, and cannot therefore be tested against
recurring nature. It can present the ways life’s origin could have arisen. An
open question remains: what is a relation between Shannon’s description of
information and a procedure description with the shortest algorithm and
without redundancy?

The computer simulation helps identify the conditions under which the
evolution of the living world is running forever. Parallel GAs can increase the
efficiency and robustness of systems, and thus they can track better optimal
parameters in a changing environment. It is not easy to say which individ-
ual modifications in parallel and hierarchical structure are the best. If we
join them together by the parallel GA, then—in the higher level—it is not
important which method will contribute more to the final solution.

The increased awareness from other scientific communities, such as biol-
ogy and mathematics, promises new insights and new opportunities. There is
much to accomplish and there are many open questions. Interest from diverse
disciplines continues to increase and simulated evolution is becoming more
generally accepted as a paradigm for optimization in practical engineering
problems.

The PGE can be used for the automatic generation of programs. This can
help us to find information as a part of complexity. I am far from supposing
that all difficulties are removed but first results with PGEs are very promising
[21].

Finally, I would like to present my very speculative origin scenario. It is
possible that all very complex systems exist in anomalous states, as turbu-
lence with a whirl’s structure. These anomalous states have a hierarchical
structure. Maybe 3D matter is a first anomalous stage after a collision of the
12D “superstring” spaces. At the second level is the origin of living systems.
At the third level is a brain with a consciousness. There is no greater anomaly
in nature than matter that can live and can have a consciousness.

If a fractal description with the fractal dimension is plausible for us,
we can imagine that all objects of the universe are fractal whirls with
a different fractal dimension. If we see whirl structures in a macro-world
(as spiral galaxies) and a real world (as tornado, whirlpools, and hurri-
canes), it can be probable that particles in a micro-world have the same
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fractal-whirl structure [22, 23]. To create a fractal whirl we need a mini-
mum value of energy—a quantum of energy. There can be a relation between
Planck’s constant and the fractal dimension of the whirl (a special kind of
turbulence). The value of frequency of a whirl’s vibrations increases the ac-
cumulated energy of a whirl in coincidence with physical law for photon’s
energy. Photons can be whirls with a very small mass. Perhaps our universe is
not a superstring space but a superwhirl space. Whirl structures can explain
magnetism, gravity, etc [22, 23]. Whirls can attract each other using their
different polarities. Whirls with their rotation have inertia, which explains
what the mass of matter can be. We can see, for example, the fractal-whirl
structure on Jupiter’s weather. Perhaps it will be a plausible speculation but
research is needed to test it.
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Problem Solving via Fuzziness-Based Coding
of Continuous Constraints Yielding Synergetic
and Chaos-Dependent Origination Structures

Osamu Katai, Tadashi Horiuchi, and Toshihiro Hiraoka

Abstract. Based on the comparison of artificial systems with natural systems to
elucidate the differences of their characteristics, we will propose a framework of a
double-layered architecture of a problem solving system for constraint satisfaction
problems, where the upper layer has characteristics corresponding to the artifi-
cial systems and the lower layer has characteristics corresponding to the natural
systems. These two layers are derived by “fuzzy coding” (coding by fuzziness) in
order to “decompose” continuous constraints for problem reduction. Thereafter,
two different approaches to problem solving by the layered system architecture are
proposed. One way of problem solving is to make use of the synergetic and tacit
of the known layered structure. The other way is to focus on the chaotic phenom-
ena through the interaction between the two layers. Moreover, considerations are
made on the cause and meaning of these chaos phenomena in order to suggest some
directions to make good use of it.

1 Introduction

Recently, it has become more and more difficult for the artificial systems
based on traditional system methodologies to cope with real world problems
which are very complex and large-scaled. Hence, it is important to realize
symbiotic ways of constructing systems by integrating the “self-organizing
and diversity-generating” characteristics in redundant and complex natural
systems and the “rationality & logicality” oriented characteristics in artificial
systems.

In this research, we first focus on the essential differences of these charac-
teristics between artificial systems and natural systems; while “centralized,
sequential and logic-based” processes play the main role in the artificial sys-
tems; “distributed, concurrent and self-organizing” processes play the main
role in the natural systems.

Then we focus on the constraint satisfaction problems involving contin-
uous variables and introduce fuzziness as coding schema for these variables
to reduce the complexity of constraints, which results in a layered problem
solving system architecture that consist of the following two kinds of layers,
either of which corresponds to artificial systems or natural systems, respec-
tively “differentiated layer” and “homogeneous layer”. Between these two

O. Katai et al.: Problem Solving via Fuzziness-Based Coding of Continuous Constraints Yield-
ing Synergetic and Chaos-Dependent Origination Structures, StudFuzz 187, 579–601 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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layers, we introduce an emergence mechanism based on the notion of “tacit
knowing” by Polanyi [1] and the principle of “synergetics” by Haken [2].

That is, not only the “bottom up” interaction from a homogeneous layer to
a differentiated layer but also the “top down” interaction from a differentiated
layer to a homogeneous layer are set between these layers.

From the viewpoint of emphasizing the process of problem solving rather
than its result, two different approaches are proposed, that is, “distributed
concurrent approach” and “centralized sequential approach”. Especially, in
the latter approach (centralized sequential approach), while it is shown by
Brouwer’s fixed point theorem in topology in mathematics that the con-
straint propagation dynamics without coding via fuzziness illustrates simple
and stable (periodic) behavior, it is clarified that the “hybrid” systems con-
sisted of the differentiated layer (“symbolic layer”), and the homogeneous
layer (“continuous layer”) illustrates quite complex behavior caused by the
“chaotic” structure (“fuzzy symbolic dynamics”) involved in the two layers.

Finally, we discuss construction of more flexible constraint satisfaction
problem solving system architectures which are capable of adapting in a self-
organizing manner to the changes of the problem structures and the envi-
ronments by integrating the above two approaches “symbiotically” so as to
utilize the meaning of the chaotic phenomena in the hybrid system.

More concretely, we note the system characteristics that various solu-
tion sequences satisfying the constraints locally are produced along with the
temporal progress of the fuzzy symbolic dynamics (centralized sequential ap-
proach), and then the possibility of making use of the above characteristics
to the distributed concurrent approach is examined on the basis of the poten-
tiality to search for a wide variety of solutions in the centralized sequential
approach.

2 Artificial Systems and Natural Systems

In this research, we first focus on the essential differences of the characteristics
between artificial systems and natural systems in order to consider symbiotic
ways of constructing systems by integrating characteristics of natural systems
and those of artificial systems; while “centralized, sequential and logic-based”
processes play the main role in artificial systems, “distributed, concurrent and
self-organizing” processes play the main role in natural systems.

In general, in traditional artificial systems usually developed in engineer-
ing field, we pursue goal-oriented function formation with a special emphasis
on rationality and logicality where high efficiency and cost performance are
given priority over flexibility and redundancy.

From the viewpoints of problem solving systems, these systems can be
considered to consist of functionally differentiated elements which aim to
solve the subproblems.
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On the other hand, in natural systems such as biological systems essen-
tially involving rich redundancy, adaptive and self-organizing processes play
an important role. And goals are regarded not to be set in advance but to be
formed through pattern formation processes based on the emergence princi-
ples such as synergetics [2].

Hence, flexibility and adaptability to environmental changes are given
priority over efficiency and cost performance. From the viewpoints of prob-
lem solving systems, it can be considered that these systems are composed
of homogeneous elements which have self-organizing ability related to rich
redundancy.

3 Layered Problem Solving System Architecture Based
on Fuzzy Coding of Continuous Constraints

Based on the above discussions about the differences of the characteristics
between artificial systems and natural systems, we will propose a framework
of the hybrid problem solving system by integrating the characteristics of
natural systems and those of artificial systems in a symbiotic way without
losing both merits.

In this research, we focus on the constraint-oriented problem solving as
a framework of problem solving, and we propose a system architecture for
solving constraint satisfaction problems involving not only discrete variables
but also continuous variables.

From constraint-oriented perspectives on problem solving, a fuzzy set
can be interpreted as a set of intervals (constraint intervals), and we call
it “constraint-interval fuzzy set” [3]. As shown in Fig. 1a, it is given as an
ordered collection of “crisp” intervals on the universe of discourse each of
which represents a constraint called “constraint interval.” The grade axis (in
the traditional fuzzy set theory) is now regarded to be an “ordinal” scale axis.
Such a constraint-interval fuzzy set can be represented on two-dimensional
Cartesian coordinates by its lower and upper bounds as shown in Fig. 1b
which we call MinMax graph.

By introducing this notion of fuzzy set, a continuous variable can be coded
by fuzzy sets (fuzzy labels). This coding by fuzziness has more flexibility
than the usual crisp coding which divides the domain of variable (universe of
discourse) into distinct (exclusive) intervals, because in this “fuzzy coding”
there remains a room for the choice of fuzzy labels and also for the selection
of constraint interval form the selected fuzzy label.

The types of using fuzziness for coding continuous variables can be listed
as follows:

1. fuzziness on ambiguous concepts (words) in natural language expressions;
2. fuzziness on operational variables in fuzzy control rules acquired by experts

through their experience;
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Fig. 1. A constraint-interred fuzzy set and its MinMax graph representation

3. fuzziness originated from constraints imposed on the problem in question;
(a) fuzziness originated from “crisp constraints”;
(b) fuzziness originated from “fuzzy constraints”.

Here, a “fuzzy constraint” means a constraint which is given as a “multi-
level” constraint ranging from a loose level (low-constraint level) to a strict
level (high-constraint level), and thus there remains a room to select an ap-
propriate constraint level suitable for solving problems. In this case, we think
that fuzziness in each variable is derived by decomposing a constraint (“joint
constraint”) on the combination of several variables (whenever it is crisp or
fuzzy) into componential (marginal) constraints through “projection” of the
joint constraint onto componential variables.

Namely, if we have a crisp constraint relation C on a pair of variables, say
x and y, we can approximate the constraint C by introducing appropriate
constraint interval fuzzy sets imposed on x and y, respectively. This decompo-
sition is then translated to coding of C into the label correspondence relation
between fuzzy sets and the link correspondence relation between constraint
intervals as shown in Fig. 2.

In the case where the constraint C itself is fuzzy, i.e., when it is given as a
multi-level constraint, we can encode it into the label correspondence relation
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Fig. 2. Decomposition by coding of “crisp” constraint

between fuzzy sets and the link correspondence relation between constraint
intervals by a similar approximation method as shown in Fig. 3.

This “fuzzy coding” which decomposes the constraint into two kinds of
correspondence relations (i.e. those between fuzzy sets and those between
constraint intervals) enables us to solve constraint satisfaction problems in-
volving continuous variables in the double-layered system where symbolic
(discrete) variables are treated on the upper layer and continuous variables
are treated on the lower layer.

That is, by introducing such a fuzzy coding between the upper layer and
the lower layer, we propose a double-layered system architecture as shown
in Fig. 4 for solving constraint satisfaction problems involving continuous
variables.

The upper layer is called “differentiated layer”, and this corresponds to
artificial systems and consists of heterogeneous elements, where “symbolic,
goal-oriented, highly efficient” computation corresponding to the informa-
tion processing on the left side of human brain (“L-mode computation”) is
performed.

On the other hand, the lower layer is called “homogeneous layer”, and
this corresponds to natural systems and consists of a large number of homo-
geneous elements, where “continuous, bottom up, adaptable” computation
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Fig. 3. Decomposition by coding of a “fuzzy” constraint

Fig. 4. A double-layered problem solving system architecture consisting of two
layers of different functionalities

corresponding to the information processing on the right side of human brain
(“R-mode computation”) is executed.

Between these two layers, we introduce an emergence mechanism based
on the notion of “tacit knowing” by Polanyi [1] and the principle of “syner-
getics” by Haken [2]. That is, not only the “bottom up” interaction from the
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homogeneous layer to the differentiated layer but also the “top down” inter-
action from the differentiated layer to the homogeneous layer are set between
these layers.

4 Two Approaches in the Proposed System Architecture

From the viewpoint of emphasizing the process of problem solving rather
than its result, two different approaches are proposed as follows.

Distributed concurrent approach [4]: In this approach, the constraint sat-
isfaction processes are executed in a multiple and concurrent manner
by introducing the principle of “synergetics” in the homogeneous layer.
More details of this approach and an application to design problems will
be explained in Sect. 4.1.

Centralized sequential approach [5]: In this approach, the sequential con-
straint propagations are performed repeatedly as a method of constraint
satisfaction in the homogeneous layer. We will discuss this approach in
detail including the simulation results in Sect. 4.2.

Especially, in the latter approach (centralized sequential approach), while
it is shown by Brouwer’s fixed point theorem in topology in mathematics that
the constraint propagation dynamics without coding via fuzziness illustrates
simple and stable (periodic) behavior, it is clarified that the “hybrid” systems
consist of the differentiated layer (“symbolic layer”) and the homogeneous
layer (“continuous layer”) illustrates quite complex behavior caused by the
“chaotic” structure (“fuzzy symbolic dynamics”) involved in the two layers.

Both of the above approaches are regarded as process-oriented problem
solving approaches. In the former approach of “distributed concurrent ap-
proach”, problem solving will be considered to be an order formation process
based on the principle such as synergetics, and the global patterns obtained
through the process correspond to the solutions (convergent solutions).

In the latter approach of “centralized sequential approach”, we will con-
sider problem solving by constraint propagation process which changes the
focus variable (constraint) from one to another, and the derived solutions
through the process can be considered as a new notion of process-oriented
solutions including traditional solutions as convergence solutions.

In such solutions, global consistencies are not always satisfied but local
consistencies which we focus on are satisfied at a moment, and the focus
point is moved to another variable successively through constraint propaga-
tion process.

Hence, the solution itself will change to have a dynamic meaning from
a static one. In other words, this means not to relax the problem side but
to relax the notion of solutions at a meta level, and this kind of relaxation
seems to happen frequently in our real world.



586 O. Katai et al.

4.1 Double-Layered Architecture
for Autonomous Decentralized Problem Solving

4.1.1 Double-Layered Architecture Derived
from Decomposition of Constraints

When the constraint regions become more complex, we have to approximate
them with several combinations of fuzzy sets. In this case, the problem of
constraint satisfaction is reduced to the following two parts (steps): first, to
search for the pair of fuzzy sets (fuzzy labels) for each (joint) constraint, and
second, to search for the constraint interval (constraint level) in each fuzzy
set.

The above way of treating crisp and fuzzy constraints by the combination
of qualitative (discrete) labels and quantitative (continuous) interval con-
straints results in the double-layered architecture for problem solving shown
in Fig. 5.

The upper layer treats the qualitative part of constraint satisfaction prob-
lems, and the lower layer treats the quantitative part. That is, on the upper
layer, the structural (hard and global) constraints are treated, and on the
lower layer, the elastic (soft and local) constraints are treated.

On the upper layer, the global consistency of the solution should be
maintained. Thus, we will use a logic-based approach for this constraint

Fig. 5. A double-layered problem solving system architecture of an autonomous
decentralized system
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satisfaction. More precisely, we will use an invasion process to search the
fuzzy sets (fuzzy labels) by regarding the problem as a “consistent labeling
problem (CLP)” [6, 7].

On the lower layer, the processing of constraints is done in a decentral-
ized and autonomous manner. We regard each constraint-interval fuzzy set
as a “holon,” a term which Koestler used to stand for a processing unit
(subsystem) which can self-organize the interrelationship among other units
(holons [8]). Each constraint interval (in each holon) makes local judgement
to change its activation level by referring to those of other neighboring holons.
Each constraint interval in each holon receives an external activation input
which is dependent on the level of preference on the interval constraint.

However, it is merely a trigger to holon activation, and the final configura-
tion of the activation levels of holons is ruled by a complex interrelationship
among all the holons. Namely, each holon is dependent on all other holons,
and vice versa.

4.1.2 Introduction of the Synergetic Approach

It should be noted that the “macro order” is not necessarily attained merely
through local (micro) processing of constraints. Concerning this macro order
formation, Haken’s famous slaving principle, the leading principle in Syner-
getics [8], is extremely suggestive, for it says that the macro order is derived
from the collective behavior of primitive components of the system, and that
it rules the behavior of each primitive component (primitive behavior).

Due to this “feedback loop” between the macro order and the primitive
(micro) behavior, it may be the case that only the most dominant macro
order will survive among the existing macro orders.

Here, the following should be noted: it is not the case that once the macro
order is organized by the collective micro behavior of holons, the macro order
then governs the micro (primitive) behavior; rather the organization of the
macro order and the governing of micro behavior proceed “simultaneously”
(concurrently) by interacting with each other through the above feedback
loop.

According to the general observations on holonic systems (decentralized
autonomous systems) given above, we arrive at the architecture for the mu-
tual interaction between the upper (structural) and the lower (elastic) layers
as follows.

1. Each holon on the lower layer interacts only with its neighboring holons,
and if its activation level exceeds a certain threshold value, the degree
of activation is transmitted to the upper layer through linkage relations
between the two layers.

2. On the upper layer, the invasion procedure starts at the unit which has
labels with high-activation levels.
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3. The labels with low-activation levels are eliminated from the upper layer
before the synthesis procedure starts. This operation is sometimes called
“filtering” in constraint satisfaction problem solving.

4. After the application of each synthesis procedure, we temporally terminate
the activities of the inconsistent labels corresponding to the redundant
units that will never be referred to in the future synthesis procedure.

5. After each synthesis procedure (calculation of the labels on the new front
by eliminating inconsistent label pairs), we decrease the threshold values
attached to the links between the two layers that are associated with the
labels appearing on the current front.

6. If a label pair is eliminated from the upper layer, the corresponding link
weight (of activation transmission linkage) is decreased.

4.1.3 Application to Structural Design Problems

Let us consider the case of structural design problems. In many cases, struc-
tural design problems include both continuous variables and “discrete vari-
ables”. For example, size and amount of displacement of parts, stress on
parts, etc. are usually continuous variables, whereas materials, manufacturing
methods, joint styles among parts, etc. are regarded to be discrete variables
relating to “structural selection.” In this section, we will consider an appli-
cation of the proposed system to such a structural design problem including
both continuous variables and discrete variables.

As an illustrative example, we consider a simple beam design problem
shown in Fig. 6.

Fig. 6. A beam design problem
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The design parameters are the cross-sectional area A1 of beams A and C,
the cross-sectional area A2 of beam B, and two discrete variables representing
the material of beam B and that of beams A and C. The maximum weight
W to be supported at point P and the length L of beam A are given. As the
objective functions, we consider the horizontal displacement lx, the vertical
displacement ly, the stress on each beam, the total weight, and also the total
cost.

Suppose that we select the material of beams from among three kinds of
metals listed in Table 1. Here we consider the situation where the material
of beam B and that of beams A and C should preferably be different.

Table 1. Candidate materials and their properties of the beams

Material Soft iron Cast iron Aluminum

Young’s modulus E (Gpa) 210 100 72
Cost function C ($ m−3) 18 14 12
Specific gravity ρ (g cm−3) 7.86 7.18 2.69

We have seven constraint equations on these parameters listed in Table 2.
We approximated the constraint region by three groups of rectangles, each

of which consists of three-leveled interval constraints as shown in Fig. 7.
Even if the variables which appear in constraint expressions correspond

to the same physical quantity, these variables are dealt as being different.
Fig. 8 shows the constraint network on the upper layer and the advancement
of invasion process.

Here we will explain the treatment of discrete variables in the proposed
system. Once we set the candidate value of a discrete variable (e.g. E2: the

Table 2. Constraint equations on the beam design problem

Displacement: λx = WL
E2A2

; λy = WL

{
1

E1A1
+ 1

E2A2

(
1 +

√
2

4

)}
Stress: σAC = W

A2
; σBC =

√
2W
A2

; σAB = W
A1

Total weight : M = ρ1A1L + ρ2A2L(1 +
√

2)

Total cost: C = α1A1L + α2A2L(1 +
√

2)

Given parameters: W : maximum weight to be supported
L: length of beam A

Design parameters:
A1: cross-sectional area of beams A and C A2: cross-sectional area of beam B
E1: Young’s modulus of beams A and C E2: Young’s modulus of beam B
ρ1: specific gravity of beams A and C ρ2: specific gravity of beam B
α1: cost function of beams A and C α2: cost function of beam B
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Fig. 7. Decomposition by coding of a fuzzy constraint

?

? ?

??

?
? ?

??

Fig. 8. A constraint network on the upper layer and an advancement of the invasion
process
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Fig. 9. The upper and the lower layers obtained by coding a constraint on the
combination of continuous variables A2 and l2 and discrete variable E2 and also by
coding a constraint on the combination of discrete variables E2 and C2

young modulus of beam B), the constraint region consisted of the continuous
variables (e.g. λ,A2) is determined, as shown in Fig. 9.

This has the same structure as that of the “fuzzy constraint” where the
multi-leveled constraint is considered according to the constraint level (the
choice of a decision maker), as shown in Fig. 3. Therefore, the relation be-
tween continuous variables can be treated in the same way as in Fig. 3. Each
candidate value of the discrete variables can be regarded as a specialized fuzzy
set where the “constraint interval” is given as a “point”; the lower and the
upper bound of the constraint interval and the relating continuous variables
can be treated in the same way as in Fig. 3. Finally, the relation between
discrete variables (e.g. E2, λ2) can be treated as the constraint on the upper
layer as shown in Fig. 9.

By executing the system implemented on transputers, we finally obtained
11 different solutions on the upper layer. For each of the solutions, we have
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relevant activated constraint intervals on the lower layer. For each variable,
we can select an activated constraint interval as a permissible solution of the
constraint satisfaction problem.

In the case you have different variables corresponding to the same phys-
ical quantity, you can select the consistent interval as the common part of
the selected intervals on these variables. One of the final precise solutions
obtained by this method is shown in Table 3.

Table 3. One of the resultant solutions by the proposed system

Design parameters Tolerance

A1 (cm2) 21.0–24.0
A2 (cm2) 22.0–28.0
Material of beam B Soft iron
Material of beams A&C Cast iron

4.2 Problem Solving by Constraint Propagation

4.2.1 Constraint Propagation Dynamics

Constraint propagation is one of the methods for solving constraint satisfac-
tion problems. In this method, an input value on a variable is at first locally
propagated to another variable via a joint constraint on these variables and
then such a local propagation is executed successively until a globally consis-
tent solution is obtained.

Considering the constraint region C(x, y) as a constraint relation, we sup-
pose that an interval (constraint interval) instead of a value is locally prop-
agated one after another. Since the output interval (propagated interval) is
computed from the input interval I and the function f derived from the con-
straint region C(x, y), the process of interval propagation can be regarded
as a dynamical process. Hence, we call it “constraint propagation dynamics”
(Fig. 9).

First we take note of “inverse monotone relation” of the constraint prop-
agation, i.e.,

I ′ ⊆ I ⇒ f(I) ⊆ f(I ′)
Here “⊆” means the inclusion relation between intervals. By one operation of
constraint propagation, the inverse monotone relation is realized, and by two
operations of constraint propagation, the monotonous relation is realized.

Constraint intervals in constraint-interval fuzzy set are represented on
two-dimensional Cartesian coordinates by its lower and upper bounds. On
this MinMax graph, we consider the area (set of intervals) where the con-
straint propagation can be executed endlessly and we call it “eternally recur-
rent area”.
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By the above relation, we can now show that the eternally recurrent area
is a closed area surrounded by right up curves and horizontal or vertical line
segments. Hence, using Brouwer’s fixed point theorem [9] given below, we can
now prove the existence of at least one fixed point I satisfacting f(I) = I.

Brouwer’s fixed point theorem: If X is a simplex |σn|, an arbitrary contin-
uous mapping f : |σn| → |σn| has at least one fixed point.

We mainly mentioned the case when the constraint network consisted of
a single loop of variables as illustrated in Fig. 10.

Fig. 10. Constraint propagation dynamics

But in general, constraint networks consist of multiple loops of variables
sharing some common variables.

In such a case as shown in Fig. 11, when two different intervals xl, xm

come to a common variable x through different loops, we decide to take an
average value (interval) of xl and xm as a compromise value for the input
interval to x.

It is expected that such constraint propagation systems do not in gen-
eral show complex but stable behavior that converges to periodic solutions,
because those systems are basically composed of loops each of which has a
stable property as explained above.

And we confirmed it by carrying out the computer simulation of constraint
propagations for some cases when the constraint network consists of two loops
as shown in Fig. 11.
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Fig. 11. A constraint network consisting of two loops

4.2.2 Derivation of Pareto Optimal Solutions
by Constraint Propagation Dynamics

We think that the wider the constraint interval, the more preferable it is,
since wider constraint intervals have more possibilities of obtaining solutions.
Hence, it can be said that the obtained fixed point gives a solution which is
Pareto optimal.

For example, we consider the constraint propagation among four crisp
constraints in one loop, which converges to an orbit as shown in Fig. 12.

In this case, if the input interval on a variable is changed to be wider, the
input interval to the next variable is changed to be narrower because of the
“inverse monotone relation” of the constraint propagation. Therefore, if the

Fig. 12. Derivation of Pareto optimal relations
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propagation converges to an orbit, the resultant constraint intervals mean a
set of Pareto optimal solutions.

If the constraint region has a simple shape, the fixed point is usually given
as a stable equilibrium point of the dynamical system. Thus, in such a case,
Pareto optimal solutions can be obtained simply by a series of successive
constraint propagations.

4.2.3 Fuzzy Symbolic Dynamics

When fuzziness (constraint-interval fuzzy set) is introduced to the constraint
propagation dynamics for coding the variables, we have a more complex con-
straint propagation with “coding” (selection of a fuzzy label) and “filtering”
(selection of a constraint level) by fuzziness.

More precisely, we assume that several fuzzy sets (fuzzy labels) are set
up on a variable, say x, as fuzziness inherent to the variable. When an input
interval is given to the variable x, one of the fuzzy sets and also one of the
constraint intervals belonging to the fuzzy set are selected by employing cer-
tain rules for these selections. This constraint interval selected in this way is
then used as an input interval to the next constraint propagation illustrated
in Sect. 4.1. That is, the output interval is obtained by the approximation of
the constraint region using the input interval, and such a constraint propa-
gation will be continued by regarding the output interval as an input interval
to next variable (Fig. 13).

Fig. 13. Fuzzy symbolic dynamics
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In such a constraint propagation dynamics, we can analyze the structure
of this dynamical system by pursuing the labels (fuzzy sets) selected at each
stage of constraint propagation. This characterization of the dynamics is
similar to the notion of “symbolic dynamics” [10] since fuzzy label can be
regarded as a symbol for coding the value of variables. Therefore, we call
such a constraint propagation dynamics “fuzzy symbolic dynamics”.

As mentioned in the previous section, the constraint propagation dynam-
ics without “coding” and “filtering” by fuzziness shows rather simple behav-
ior, since it has a stable property to converge to a stable equilibrium point.
On the other hand, a fuzzy symbolic dynamics with the mechanism of “cod-
ing” (selection of a fuzzy label) and “filtering” (selection of a constraint level)
by fuzziness are expected to show quite complex behavior due to a kind of
“fluctuations” caused by the coding and the filtering.

4.2.4 Occurrence of Chaotic Behavior

In order to examine the fundamental nature and structure involved in the
fuzzy symbolic dynamics, we carried out the computer simulation of con-
straint propagations for the cases of some simple settings such as (1) con-
straint network consisting of a single loop of variables as shown in Fig. 10
and (2) constraint network consisting of multiple loops of variables as shown
in Fig. 11.

Analysis of Constraint Level

In the fuzzy symbolic dynamics shown in Fig. 13, an example of time series of
the constraint level shown in Fig. 14 is obtained by executing the constraint
propagation from a certain initial input interval on variable x, where the grey
lines show that the fuzzy label “small” is selected while the black lines stands
for the label “large” in Fig. 13. By calculating (1) the autocorrelation, (2) the
power spectrum, (3) the Lyapunov number of this time series, this dynamical
system is judged to have chaotic behavior [11].

Fig. 14. Time series data of the selected constraint level
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Fig. 15. Bifurcation diagram of fuzzy symbolic dynamics (loop1)

Moreover, in order to know the nature of this dynamics, we calculated
the bifurcation diagram in order to elucidate the way how behavior of the
dynamics is changed as we change the parameter values of fuzzy sets which
correspond to the control parameters of this dynamics. The results is shown
in Fig. 15, where the grey points and the black points, respectively, reflect
the distinction of “small” and “larege” fuzzy labels.

In this bifurcation diagram, we can readily see the appearance of various
and quite different patterns of behavior dependent on the values of parameters
such as (1) the periodic solution area, (2) the transition area, (3) the chaotic
area, and so on.

Analysis of Label Sequence

In order to know the cause of these chaos phenomena, we examine their qual-
itative behavior by observing the selected label sequence (symbol sequence)
when the fuzzy symbolic dynamics shows chaotic behavior.

More concretely, we derived a state transition diagram as shown in Fig. 16
by defining qualitative states such as ‘a-small’, ‘b-big’, etc. where ‘a’ or ‘b’
means fuzzy label ‘small’ or ‘large’ in Fig. 13, respectively.

In this diagram, there are two main loops (such as unstable attractors)
in which the state transits for a while in one loop and sometimes the state
switches from one loop to another due to slight differences of input intervals.

Hence, it is considered that chaos phenomena are produced through the
repetition of the state transition between these two loops due to a fluctuation
by selection of fuzzy labels.
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Fig. 16. A state transition diagram based on the analysis of a label sequence

It is quite interesting to note that such a structure is similar to that of
the Lorenz model which is one of the typical examples of chaos phenomena.
And in both time series data, it is observed that two unstable fixed points
exist and that the value of the data switches to another fixed point nearby
after diverging from a fixed point.

In other words, the chaotic behavior in fuzzy symbolic dynamics is con-
sidered to be caused by the activity in the upper layer (namely, the selection
of fuzzy labels) involving a fluctuation that is added to the stable behavior
in the constraint propagation dynamics in the lower layer.

The effect of loop structure on the constraint propagation can also be
examined by referring to the bifurcation diagram. We analyzed the case of
loop structure in Fig. 11. For the case of a single loop, we obtained the
diagram in Fig. 17. The double loop case yielded the bifurcation diagram in
Fig. 18.

5 Discussion and Conclusion

In this paper, based on the differences of the characteristics between artifi-
cial systems and natural systems, we have proposed a framework of double-
layered architecture of a problem solving system for constraint satisfaction,
where the upper layer called “differentiated layer” has characteristics corre-
sponding to artificial systems and the lower layer called “homogeneous layer”
has characteristics corresponding to natural systems.

This dual view of the world (problem) seems to be deeply related to the
interesting research on “consciousness-only doctrine” of “Vijnapti-matrata
school” in Buddhism done by Toshihiko Izutsu [12]. This doctrine says that
everything is created and ceases to hold just in our mind such as “conscious-
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Fig. 17. A bifurcation diagram in a constraint network composed of a single loop
of variables (loop1)

ness only”. He interpreted the distinction between the two forms of “Vijnapti”
(information or intimation) such as

1. Vagvijnapti (verbal intimation or expression)
2. Kayavijnapti (corporal intimation or gesticulation)

as

1. entities on the differentiated layer
2. entities on the homogneous layer.

Moreover, two different approaches called “distributed concurrent ap-
proach” and “centralized sequential approach” were proposed from a process-
oriented point of view, and the former approach was applied to a structural
design problem and the behavior of the latter approach was analyzed through
computer simulations.

In the former approach by “distributed concurrent processing”, problem
solving is regarded to be an order formation process and the global patterns
obtained through the process correspond to the solutions (convergence solu-
tions). Different global patterns, however, may be formed due to the difference
between initial conditions or fluctuations.

On the other hand, the latter approach by “centralized sequential ap-
proach” through a constraint propagation process is expected to explore a
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Fig. 18. A bifuraction diagram in a constraint network composed of multiple loops
of variables (loop1 and loop2)

variety of solutions successively where global consistencies are not always sat-
isfied but local consistencies which we focus on are always satisfied. In such
solutions, the solution concept itself will have a dynamic meaning compared
with the traditional one, and hence it may reach a new notion of process-
oriented solutions including traditional solutions.

Finally, we discuss how to construct more flexible constraint satisfaction
problem solving system architectures which are capable of adapting in a self-
organizing manner to the changes of problem structures and the environments
by integrating the above two approaches “symbiotically” so as to utilize the
meaning of the chaotic phenomena in the hybrid system.

It seems natural to choose a better approach from the above two ap-
proaches properly depending on the situations. For instance, we can propose
a hybrid method where the former approach can derive more and more solu-
tions (global patterns) by making use of the ability of the latter approach to
continue exploring a variety of solutions successively.

More concretely, we note the system characteristics that various solu-
tion sequences satisfying the constraints locally are produced along with the
temporal progress of the fuzzy symbolic dynamics (centralized sequential ap-
proach), and then the possibility of making use of the above characteris-
tics to the distributed concurrent approach is examined on the basis of the
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potentiality to search for a wide variety of solutions in the centralized se-
quential approach.

When taking note of the above comments on “consciousness-only doc-
trine” in Buddhism, the notion of “Engi” (“Pratitya-samutpada”, dependent
origination), one of the most basic notions in Buddhism will be focused on in
this context. Dependent origination or conditioned co-arising emphasizes the
interdependence of all things. It says that no beings or phenomena exist on
their own but they exist or occur due to their interrelationships with other
beings or phenomena [13].
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Some Applications of Fuzzy Dynamic Models
with Chaotic Properties

Alexander Sokolov

Abstract. In this paper an approach to recording and restoring of information
is proposed. For this purpose the method for recording and information storing of
nonlinear dynamic system trajectories is used. Such systems are based on Takagi–
Sugeno recurrent models. Principles of recording, which allow us to reconstruct an
arbitrary piece of the bit series, are proposed. Another application belongs to mod-
eling of weak-formalized systems such as economic dynamic processes. We propose
to consider the models of multiproject systems as a net of Mamdani rule-based
recurrent models. The described approaches are implemented in a Matlab soft-
ware environment. We investigate the chaotic properties of Mamdani recurrent rule
bases as well. The result of investigation of the proposed algorithms are given and
analyzed.

1 Introduction

There are many interesting investigations into using fuzzy models, which were
proposed in past decades. Among them there are such researches as system
analysis with variable structure models, applications of fuzzy recurrent mod-
els as chaos generators, fuzzy cluster analyzers, and fuzzy controllers. There
are good reasons for using fuzzy control: first, there is no mathematical model
available for the process, and, secondly it can satisfy nonlinear control, which
can be developed empirically, without complicated mathematics [7]. Chaos
control is based on the sensitivity to initial conditions and to the disturbance
which is inherent to chaos as a means to stabilize unstable periodic orbits
within a chaotic attractor. There are many methods of chaos control [8–10].
Fuzzy controllers are often used for controlling conventional control methods
as an extra layer of control in order to improve the effectiveness of the control.

The past few years have been witnessing a sharp growth of interest toward
processing, memorizing and storing information in alive systems. Unlike the
addressed memory which is now used in computers for writing and reading-
out of information the memory of humans and animals is associative, i.e.,
both ‘writing’ and ‘reading-out’ of information are based not only on the
number of a memory but also on the content aspect of information [11].

A good number of concepts of realization of the association principle
are known to some extent. One of the most popular among them is based
on model of dynamic systems and the memorized or recognized objects are

A. Sokolov: Some Applications of Fuzzy Dynamic Models with Chaotic Properties,
StudFuzz 187, 603–625 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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related to basic attractors. The attraction basin of each of the attractors de-
fines the limits of recognition of one image of another. Using a fuzzy recurrent
model can describe such iterated mappings.

In this paper we propose two different applications but combined into one
part over their closeness to the problem of chaos identification.

2 Reconstruction of Chaotic Orbits
with Takagi–Sugeno Recurrent Rule Bases

Let us consider the recurrent Takagi–Sugeno (TS) fuzzy rule base of 0th
order [1]

R1: If xk = L1 then xk+1 = A1 ,

R2: If xk = L2 then xk+1 = A2 (1)
. . .

RN : If xk = LN then xk+1 = AN ,

where x ∈ I = [0, 1] is a scalar state variable, Li are linguistic variables
(terms), and Ai ∈ [0, 1] are constants. The transition function f(x) : I → I
can be written in the form

f : xk → xk+1 . (2)

In Chap. 13 it was proved that three rules such as (1) are necessary and
sufficient conditions for producing a chaos mapping (if normality conditions
hold for membership functions). Then mapping (2) is chaotic in the sense of
Li–Yorke [2]. When we have triangular membership functions mapping (2) is
isomorphic to the well-known tent mapping. In such a case we can rewrite
mapping (2) as the slopping tent mapping f(x) : I → I, I = [0, 1]

xk+1 =

⎧⎪⎨⎪⎩
f1(xk) =

1
λ
xk, if 0 ≤ xk ≤ λ ,

f2(xk) =
1

λ− 1
xk +

1
1− λ, if λ ≤ xk ≤ 1 ,

(3)

where xk ∈ [0, 1], λ ∈ (0, 1) (Fig. 1).
Let us consider the following bit sequence:

C = {ci}N
i=1

(4)

with length N, ci ∈ {0, 1}.
It is necessary to restore the source sequence (4) as a bit sequence

C̃ = {c̃i}N
i=M

(5)

according to the rule
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Fig. 1. Slopping mapping

c̃i =
{

1, if xi ≥ λ ,
0, if xi ≥ λ , (6)

for i = M,N, M ≤ N .
Namely, it is necessary to find such a value of xM that gives the same val-

ues for restoring sequence as these in the source one. Besides, it is important
to find such a value of λ that gives the maximum member of the restored se-
quence. The best case is when M = 1. The novelty of the proposed approach
consists in substitution of chaotic bit series by the initial value xM which can
reconstruct the original orbit with mapping (3). Underlying methodology is
based on the so-called backward interval mapping. We propose the following
solution of this problem. First of all we propose to use the so-called backward
interval mapping.

Let us consider
g(x) = f−1(x) . (7)

Mapping (7) is a contracting mapping if f(x) is chaotic.
For the (k − 1)th step we can write

xk−1 = g(xk) . (8)

Definition (Wigging and Devaney [3, 4]) Mapping f(x) : I → I is chaotic if

1. it is topologically transitive, i.e., if there exists a k > 0 such that fk(U)∩
V �= Ø, where fk(U) = {fk(x)|x ∈ U}, for any pair of open sets, U, V ⊆ I.

2. it is sensitive to the initial conditions, i.e., if there exists a δ > 0 such that
x ∈ I and any neighborhood N of x there exists a y ∈ N and n > 0 such
that |fn(x)− fn(y)| > δ.

3. The periodic points of fare dense in I.
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According to this definition we have to find the topological transitivity for
inverse mapping (8) as

g−n(U)
⋂
V �= Ø . (9)

We use the interval mapping instead of point mapping, namely, we con-
sider the mapping

g(I) =

{
g1(I) = I1 ⊂ I

·
g2(I) = I2 ⊂ I

(10)

Because g(x) is contracting mapping,

I1
⋃
I2 = I and I1

⋂
I2 = Ø . (11)

The second step of the backward mapping is

g2(I) =

⎧⎪⎪⎨⎪⎪⎩
g1(g(I)) =

{
g1(g1(I)) = I11 ⊂ I1,
g2(g1(I)) = I21 ⊂ I2,

g1(g(I)) =
{
g1(g2(I)) = I12 ⊂ I1,
g2(g2(I)) = I22 ⊂ I2,

(12)

Lemma. Let g(x) = (g1(x), g2(x)) is given, where gi, i = 1, 2 are monoto-
nous and continuous mapping on g(x) : I → I and g(x) is constructed in the
form (10) and it is a contracting mapping ((11) is satisfied), then we have

gk+1(I) =

{
g1

(
gK(I)

)
= I1{K}

g2
(
gK(I)

)
= I2{K} ,

(13)

where {K} = {11 . . . 1, 11 . . . 2, . . . , 22 . . . 2} is a set of indexes of length K
which were used for marking subset of I on the Kth step, and the following
conditions are fulfilled:

gK+1
1 (I) ⊂ gK

1 (I),K = 0, 1, . . . ,
gK+1
2 (I) ⊂ gK

2 (I),K = 0, 1, . . . ,
gK
2 (I) �= Ø,K = 0, 1, . . . ,

then

I1{K}
⋃
I2{K} = I,⎛⎝⋂

{K}
I1{K}

⎞⎠⋂⎛⎝⋂
{K}

I2{K}

⎞⎠ = Ø ,

and g(x) = (g1(x), g2(x)) is a contracting mapping for the set I and all of its
subsets.

If g(x) = (g1(x), g2(x)) satisfies the lemma conditions then f(x) = g−1(x)
is chaotic in the sense of the definition of Wigging and Devaney.



Some Applications of Fuzzy Dynamic Models with Chaotic Properties 607

Fig. 2. Backward slopping mapping

For slopping tent mapping (3) we have the following backward mapping [5]
(Fig. 2):

xk =
{
g1(xk+1) = λxk+1 ,
g2(xk+1) = (λ− 1)xk+1 + 1 . (14)

Let us consider the action of this mapping when the argument of function
g is interval (Fig. 3). For the initial interval I we have

g(I) =
{
g1(I) = I1 = [0, λ] ⊂ I
g2(I) = I2 = [λ, 1] ⊂ I . (15)

The following iterative procedure for the backward interval mapping takes
place. Let us choose the initial interval according to the rule

IN =
{

[λ, 1], if cN = 1 ,
[0, λ], if cN = 0 . (16)

Then define the possible transitions with the backward interval mapping

ĨN−1 = g(IN ) =
{
g1(IN ) ⊂ [0, λ] ,
g2(IN ) ⊂ [λ, 1] . (17)

The following interval is more precise with respect to the value CN−1:

IN−1 =
{
g2(IN ), if CN−1 = 1 ,
g1(IN ), if CN−1 = 0 . (18)

Procedure (17), (18) is repeated until we reach the limit of accuracy

diam(IM−1) = ε . (19)
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Fig. 3. Backward interval slopping mapping

Then any value xM ∈ IM restores the source sequence (4) with forward
mapping (3) from the number of sequence M . Parameter ε is the machine
accuracy. In general, it is ε = 10−15 (in MatLab, Delphi programming envi-
ronment, and so on). So we cannot restore a sequence arbitrary with backward
methods (only for instant when the interval becomes ε-length). To increase
the quantity of restoring numbers we have to find the optimal value of λ.

According to (14) the total coefficient of contraction of iterative procedure
for the backward interval mapping is determined as

K = λn(λ− 1)m , (20)

where n is the number of ‘zeros’ in the source sequence and m is the number
of ‘ones’ (Fig. 4).

The following statement is true:

arg
λ∈(0,1)

minλn(λ− 1)m = n . (21)

Proof. We will find the extremum of function K(λ).

K ′(λ) = nλn−1(λ− 1)m + λnm(λ− 1)m−1

= λn
(n
λ

(λ− 1)m +m(λ− 1)m−1
)
.

We have λ �= 0, λ �= 1 and the expression in brackets is equal to zero in
the case λ = n.

Indeed
K ′(n) = nn

(
(n− 1)m +m(n− 1)m−1

)
.

With n+m = 1 we have
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Fig. 4. Coefficient of contraction in the iterative mapping procedure for a special
case sequence

K ′(n) = nn((n− 1)m + (1− n)(n− 1)m−1)
= nn((n− 1)m − (n− 1)m) = 0 .

Statement (21) is proved.
Thus, it is possible to decrease the speed of contraction of intervals for

the iterative backward mapping procedure.
Hence, we have a {0,1} sequence and a “machine” which is able to re-

produce this sequence starting from certain real x0. Thus we have to store
only x0 (and the “machine”, i.e. the tent mapping). If we use the slopping
tent map we need an extra store λ and number of elements in series as well.
If we use a simple tent mapping it is necessary to store only x0 because the
maximum elements that can be restored by this method is 48 (in the case of
the simple tent). The initial sequence {0,1} is restored according to the algo-
rithm; if chaos of (0,1) sequence is greater then λ we write “one” else “zero”.
In the simple tent map lambda is equal to 0.5. Parameter λ is the power of
slopping. It is used for increasing the number of restoring elements. Labmda
is calculated by counting percent of “zeros” and “ones” in the sequence.

Let us consider an application of the described approach to the coding
and restoration of the bitmap image (Fig. 5).

Let dark pixels of bitmap be encoded by “ones” and light pixels by “ze-
ros”. This bitmap was transformed into a one-dimensional sequence with the
length N = Col*Row by reading all lines from top to bottom.

Thus we have the following example of bit sequence (4):

C = {111110010001010001011110010100110011} . (22)
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Fig. 5. Graphic presentation of the letter “R”

Let us define the numbers of “zeros” and “ones” in (15) to construct an
optimum slopping tent mapping:

n = 17/36 = 0.472222222222222 ,

m = 19/36 = 0.527777777777778 .

Thus in (3) we will have

λ = 0.472222222222222 .

According to rule (16) the initial interval I36 is defined as

I36 = [λ, 1] = [0.472222222222222, 1] .

In accordance with iterative rules (17) and (18) the next interval is

I35 = g2(I36) = [0.472222222222222, 0.750771604938272] .

The next step of the iterative procedure gives

I34 = g(I35) = g1(I35) = [0.222993827160494, 0.354531035665295].

The final result of the implementation of our iterative procedure is

I1 = [0.672604526057511, 0.672604526072895] .

As we can see
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Fig. 6. Graph of chaotic mapping

diam(I1) = 1.53835832961136e− 011 > ε = 1e− 15 ,

that is why in our example M = 1.
Now if we choose any x1 ∈ I1 we can restore a bit sequence (22) using the

chaotic mapping (3) and rule (6). For example if x1 = 0.67260452606 then
the slopping tent mapping (3) gives the chaotic sequence shown in Fig. 6.
The value of λ is now known, and according to rule (6) we can restore all
members of the target sequence (22).

The proposed approach can be used for coding and data compression as
well. We can increase the number of encoded elements for the bit sequence
with a few “ones” or “zeros” in it, because reduction of the total coefficient
of contraction takes place in such a case. Obviously that critical factor of
the algorithm is the accuracy of software and hardware. It depends on the
sensitivity of the chaotic mapping to the initial conditions.

3 Business–Cycles Modeling in Multiproject Systems
Based on Recurrent Mamdani Models

One of the most widespread models of the study of the dynamic processes
in an economic system and system project management are different equa-
tions or a set of such equations. The logistic equation, baker equation and
tent mapping are widely used for such a description [6]. By means of such
structures one can research business-cycles — a time sequences, defining dif-
ferent features of the models. Many dynamic economic models are simulated
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by such structures in order to investigate the business-cycles (time series) .
The business-cycles are researched in terms of the mappings which link, for
instance, profit and its rate in the current and future time under investiga-
tion business. The several models, which reflect these intercoupling, are often
presented as fuzzy recurrent rule models with linguist variables. A special
interest is to study the stability of the time sequences, generated by means of
such models. The subject of the recurrent models analysis is the determina-
tion of the time series behavior, which can be converging, divergent, periodic,
or carry the chaotic nature.

The presence of the chaotic nature in a dynamic model does not allow us to
use it in a long-term forecast and makes such a model suitable only for a short-
period study of the business. That is why it is important to determine chaotic
characteristics in the economic dynamic models. A given problem becomes
particularly urgent for studying multi-project systems, under restrictions of
facility conditions, when the contradictions in purpose project take place.

The dynamics of any system is described by a mathematical model, which
reflects the dependences between three sets of variable—input, output and
state ones. The main characteristic of any dynamic system is in that its
behavior depends upon not only the variable acting on it at a given time,
but also on the variable acted on it in the past. From well-known knowledge
models of 70th—logical, rule-based, frames, neuron and semantic sets—the
most convenient ones are rule-based models which are widely used for weak-
formalized processes description. These models can naturally describe the
individual experience, intuition and behavior. The linguistic variables are
very often used for a rough description of objects and processes when their
exact description cannot be obtained. At the same time it is necessary to take
into account that many weak formalized categories, described by linguistic
variables, are not less informative, than an exact description.

A fuzzy recurrent mapping is described by the set of rules R = {r1, r2 . . . ,
rN}, which links the state variables(x1, . . . , xN ) of dynamic systems in the
current step τ and in the future instant t:⎛⎜⎜⎝

x1

x2

. . .
xN

⎞⎟⎟⎠
t

=

⎛⎜⎜⎝
r1
r2
. . .
rN

⎞⎟⎟⎠ ◦

⎛⎜⎜⎝
x1

x2

. . .
xN

⎞⎟⎟⎠
τ

. (23)

Rule sets (23) can be written as

ri :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
If x1 = A1

1 and x2 = A1
2 · · · [and xK = A1

K ] · · ·xN = A1
N |τ then xi = B1|t

If x1 = A2
1 and x2 = A2

2 · · · [and xK = A2
K ] · · ·xN = A2

N |τ then xi = B2|t
· · · · · · · · ·

If x1 =AKi
1 and x2 = AKi

2 · · · [and xK = AKi
K ] · · ·xN = AKi

N |τ then xi = BKi |t
(24)
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where Ki is the number of rules in the set ri; the elements in square brackets
are optional; Ai, B are the values of linguistic variables from the suitable
term-sets. It is easy to see that the number of rules is in the range 0 ≤
Ki ≤

∏N
i=1 card(S(xi)), where the card (S(xi)) is a power of the term-set of

linguistic variable xi.

Remark. The mapping R usually describes the one time-delay mapping.

It is obvious that analysis of models (23),(24) in a general form is diffi-
cult since we deal with a non-linear mapping. The linguistic description of a
dynamic model has usually the following form of rules:

If Xk = (x1 = nb, x2 = pm, . . . , xn = ze) and Uk = (u1 = pm,
u2 = nb, . . . , um= nm) ,

then Xk+1 = (x1=pb, x2 = ps, . . . , xn=pb) ,

which maps the relations with current and future states depending on the
control variables.

Let us rewrite such a mapping as

Xk+1 = Xk
◦Uk , (25)

where Xk = (x1, x2, . . . , xn)k is a generalized state vector of the system,
Uk = (u1, u2, . . . , um)k is a generalized control vector, whose values belong to
linguistic variables from suitable term-sets S = {nb,nm, . . . , ze, . . . ,pm,pb},
and nb is negative big, nm is negative middle, ze is zero, pm is positive middle,
pb is positive big; they all are fuzzy sets with defined membership functions.

Mapping (25) can be represented as a net of transition (Fig. 7) of general-
ized linguistic states (nodes of the graph) under the action of the generalized
linguistic control (ribs of graph).

x1=nb,x2=pm,...,xn=ze x1=pb,x2=ps,...,xn=pb

x1=pb,x2=pb,...,xn=pb

x1=nb,x2=ze,..,xn=nb

x1=ze,x2=ps,...,xn=ze

u1=pm,u2=nb,...,um=nm

Fig. 7. Fuzzy net of transition
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Table 1. Table of linguistic rulesXk+1 = Xk
◦Uk

Uk\Xk nb nm ze pm pb

nb nb Nb nb nm ze

nm nb Nb nm ze pm

ze nb nb ze pb pb

pm nm ze pm pb pb

pb ze pm pb pb pb

If N is the dimension of the state vector X, P is the dimension of the
control vector U, M is the power of the term-set S, then the maximum number
of nodes is MN , and the number of ribs is MN (MN − 1)/2MP .

It is obvious that a direct analysis of such systems is difficult. One of the
modern approachs uses the simulation models. In practice instead of general
mapping (25) we use its particular forms when vectors X, Y, U are scalar
linguistic variables. In this case we can represent the model by the table of
linguistic rules. The example of linguistic rules is shown in Table 1.

Let us use these rules for describing of multi-project business system dy-
namic. Let the project be described as a system of change of one stage to
another

ST : Sk → Sk+1 . (26)

Mapping (26) is a set of rules as follows.

If Stagek is Investment and Human Resource = 0.9 and Active Money = 0.4
Then Stagek+1 = Working up

This rule defines the conditions under which the transaction from one stage
to another can occur. The human resources and active money are described
in percents.

In this case the rule set can be specified as

ST : Sk, Pk, Rk → Sk+1 , (27)

where Pk is the number of workers and Rk is the amount of money.

Remarks

1. The premises of rules can contain additional conditions, for example,
favourable conditions for business, and so on.

2. The rules are defined by an expert and reflect his/her point of view on the
project evolution.

3. Some variables are considered as a control part, another parts are consid-
ered as external disturbances.
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4. Some of stages are fictitious ones. They are rejections of project. Any stage
can cross to these stages.

The property of some stages is deliverance of resources P and R after
their using. So we can use another rules such as

resourse : Sk → Pk (28)
profit : Sk → Rk . (29)

Besides each stage needs in resources:

personal : Sk → Rk

resourse : Sk → Rk .

Of course, there are general restrictions on the resources amount—total
workers and total money. We can present the dependences between variables
as the net shown in Fig 7.

Smulation is a very convenient instrument for investigation of the pro-
posed models. We use for this Fuzzy Logic Toolbox of MatLab/Simulink.
First of all let us describe the main parameters of the model.

The Variable Stage

The number of the stage is 7 (stage 8 is the rejection of project).
The membership functions are triangular—mf1, . . . ,mf8.

Stage

Total
workers

Total
money

Money

Wokers

ST

ST

ST

Personal

Resourse

Resourse Money

Resourse People

Rescue

Profit

Fig. 8. Net of project description
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The Variable Money

The number of values is 3 (not enough, so-so, and enough). The membership
functions are triangular—mf1, . . . ,mf3.

The Variable People

The number of values is 3 (not enough, so-so, enough). The membership
functions are triangular—mf1, . . . ,mf3.

The type of model is Mamdany (because we have linguistic variables in con-
sequents).

The full rule set consists of 3× 3× 7 = 63 rules. This mapping is shown
in Fig. 9.

The same approach is used for the rest of mappings.
The Matlab scheme for one project modeling is shown in Fig. 10. Red

blocks are used for description of the project. These are rule bases and main
restrictions. Yellow blocks are the dynamic model for calculating total workers
and orange blocks are the dynamic model for calculating money. Sum blocks
show that the resource inflow and outflow is defined with the total amount of

Fig. 9. Rule base
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Fig. 10. Project representation

the resource in the previous step plus the amount of resource after finishing
the current stage of the project according to rules (28), (29).

The result of simulation is given in Figs. 11, 12.
As can be seen from Fig. 11, after stage 2 we have the rejection of the

project due to incorrect resources allocation or a lack of total resources in
the system. In Fig. 12 we have the case of correct, fulfilling of all stages.

Simulation of two and more complex projects is the most interesting case.
Figs. 13 and 14 show the appropriate models for a two-project system and a
three-project system, respectively.

The main feature of these models is common resource supplying. The
purpose of investigation is to find the correct distribution of resources under
projects. Because we deal with Mamdani models in the project investigation
let us add general rules of the chaotic behavior identification in Mamdani
recurrent rule bases.

Let us consider the following Mamdani recurrent model:

R1 : If xk is L1 then xk+1 is L2 ,

R2 : If xk is L2 then xk+1 is L3 , (30)
R3 : If xk is L3 then xk+1 is L1 .

According to [1] we have the chaotic behavior in such a model. In this
investigation we are planning to find more precise conditions when this model
produces the chaos.



618 A. Sokolov

Fig. 11. Stage dynamic

Fig. 12. Executable project

Let a1, a2, a3 be the core positions of the linguistic variables L1, L2, L3,
respectively.

For the sake of simplicity let us consider the membership functions of
linguistic variables as shown in Fig. 15, and the conditions described in paper
[1] are fulfilled.

Each rule in (30) can be considered as a set of fuzzy inference mappings:
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Fig. 13. Two-project system

Fig. 14. Three-project system
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Fig. 15. Membership functions

R1(xk, xk+1) = T (µL1(xk), µL2(xk+1)) ,
R2(xk, xk+1) = T (µL2(xk), µL3(xk+1)) , (31)
R3(xk, xk+1) = T (µL3(xk), µL1(xk+1)) .

where T is any T -norm.
According to the FITA principle we could aggregate rule base (31) after

performing the inference.
Thus the result mapping for rule base RB is as follows:

RB(xk, xk+1) = S (T (µL1(xk), µL2(xk+1)) , T (µL2(xk), µL3(xk+1)) ,
T (µL3(xk), µL1(xk+1))) , (32)

where S is any S-conorm.
If the membership functions fulfil the conditions mentioned above we

could represent mappings (31) in the following tables:
Here each cell has the value of the appropriate mapping. The result map-

ping (32) can be represented as follows:
The output of model (30) has a crisp value which is obtained after defuzzi-

fication process. We show below some examples of the mapping RB(xk, xk+1)
for some fixed input values x∗k as a function of xk+1.
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Table 2.

R1(xk, xk+1) = T (µL1(xk), µL2(xk+1))

xk+1 ∈ [a3, 1] 0 0 0 0

xk+1 ∈ [a2, a2]
a3 − xk+1

a3 − a2
T

(
a2 − xk

a2 − a1
,
a3 − xk+1

a3 − a2

)
0 0

xk+1 ∈ [a1, a2]
xk+1 − a1

a2 − a1
T

(
a2 − xk

a2 − a1
,
xk+1 − a1

a2 − a1

)
0 0

xk+1 ∈ [0, a1] 0 0 0 0

xk ∈ [0, a1] xk ∈ [a1, a2] xk ∈ [a2, a3] xk ∈ [a3, 1]

Table 3.

R2(xk, xk+1) = T
(
µL2 (xk), µL3 (xk+1)

)
xk+1 ∈ [a3, 1] 0

xk − a1

a2 − a1

a3 − xk

a3 − a2
0

xk+1 ∈ [a2, a3] 0 T

(
xk − a1

a2 − a1
,

xk+1 − a2

a3 − a2

)
T

(
a3 − xk

a3 − a2
,

xk+1 − a2

a3 − a2

)
0

xk+1 ∈ [a1, a2] 0 0 0 0

xk+1 ∈ [0, a1] 0 0 0 0

xk ∈ [0, a1] xk ∈ [a1, a2] xk ∈ [a2, a3] xk ∈ [a3, 1]

Table 4.

R3(xk, xk+1) = T (µL3(xk), µL1(xk+1))

xk+1 ∈ [a3, 1] 0 0 0 0

xk+1 ∈ [a2, a2] 0 0 0 0

xk+1 ∈ [a1, a2] 0 0 T

(
xk − a2

a3 − a2
,
a2 − xk+1

a2 − a1

)
a2 − xk+1

a2 − a1

xk+1 ∈ [0, a1] 0 0
xk − a2

a3 − a2
1

xk ∈ [0, a1] xk ∈ [a1, a2] xk ∈ [a2, a3] xk ∈ [a3, 1]

Analyzing Table 5 and Fig. 16 we can conclude that the maximum value
after defuzzification will be obtained when xk = a2. It is easy to see that we
have in this case membership function for the linguistic variable L3.
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Table 5.

RB(xk, xk+1) = S
(
T (µL1 (xk), µL2 (xk+1)), T (µL2 (xk), µL3 (xk+1))

T (µL3 (xk), µL1 (xk+1))
)

xk+1 ∈ [a3, 1] 0
xk − a1

a2 − a1

a3 − xk

a3 − a2
0

xk+1 ∈ [a2, a2]
a3 − xk+1

a3 − a2
S

⎛⎜⎜⎜⎝
T

(
a2 − xk

a2 − a1
,

a3 − xk+1

a3 − a2

)

T

(
xk − a1

a2 − a1
,

xk+1 − a2

a3 − a2

)
⎞⎟⎟⎟⎠ T

(
a3 − xk

a3 − a2
,

xk+1 − a2

a3 − a2
,

)
0

xk+1 ∈ [a1, a2]
xk+1 − a1

a2 − a1
T

(
a2 − xk

a2 − a1
,

xk+1 − a1

a2 − a1

)
T

(
xk − a2

a3 − a2
,

a2 − xk+1

a2 − a1
,

)
a2 − xk+1

a2 − a1

xk+1 ∈ [0, a1] 0 0
xk − a2

a3 − a2
S(0, 1)

xk ∈ [0, a1] xk ∈ [a1, a2] xk ∈ [a2, a3] xk ∈ [a3, 1]

10,kx a 1 2,kx a a

Result mapping 
Result mapping 

2 3,kx a a 3 ,1kx a

Result mapping 
Result mapping 

Fig. 16. Mapping RB x∗
k, xk+1
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Thus we can write

RB(a1, xk+1) = µL2(xk+1) ,
RB(a2, xk+1) = µL3(xk+1) , (33)
RB(a3, xk+1) = µL1(xk+1) .

Crisp output can be obtained as a procedure of defuzzification applied to
expressions (33).

Now after defuzzification we can comment on the transition function of
rule base (30). We understand that according to T - and S-norm properties—
boundary, monotonicity, commutativity and associativity—we can represent
the transition function as a convex function with the maximum value at the
point xk = a2. This value is dF (µL3(xk+1)), where dF is the defuzzification
method. According to proved statements for TS models we can claim that
the Mamdani recurrent model is chaotic if conditions of Theorem 4 (Chap. 3)
hold for coefficients

A1 = dF (µL2(xk+1)) ,
A2 = dF (µL3(xk+1)) , (34)
A3 = dF (µL1(xk+1)) .

If µLj
(x) is isosceles triangles then all methods of defuzzifications give

the core positions of appropriate membership functions. In this case we have
A1 = a2, A2 = a3, A3 = a1 and we do not need to use Theorem 6 (Chap. 3)
to recognize if this mapping is chaotic. We can use the appropriate theorem
in these conditions, from [1]. If µLj

(x) is an arbitrary triangle (this happens
when location of core positions on axe X is arbitrary) the defuzzification
procedure gives a point that differs from appropriate core position. In this
case we need to use Theorem 4 (Chap. 3) as well in order to recognize if this
mapping is chaotic.

Remarks

1. In the paper [5] we dealt with not only triangle membership function, but
also with trapezoidal one. So we cannot demand that the defuzzification
procedure gives the core position for all membership functions.

2. In the proposed approach we do not restrict the type of membership func-
tions. We demand only finiteness. Using Theorem 4 (Chap. 3) we need
to change the definitions of the mapping f : I → I in the case of TS
model to mapping dF (RB‘(xk, xk+1)). The parts of the mapping f1, f2 in
the new mapping are not straight lines but monotonically increasing and
decreasing curves of dF (RB(xk, xk+1)).

So we can formulate the following theorem
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Theorem. A rule base (30) with the mapping f : I → I is chaotic in the
sense of Li and Yorke in the interval Ich = [f2(A2), A2] ⊆ I if the following
conditions are satisfied:

(a) A1 ∈ +0, f−1
2 (a2)),

(b) A2 ∈ (a2, a3], and f2(A2) < (a2),

(c) A3 ∈
{

[a1, a2) if A1 ≥ a1

[Z, a2) if A < a1, where f1(Z) = Z.

The generalization of this theorem can be made for an arbitrary number
of linguistic variables. Thus, if we have a set of linguistic variables Λ =
{L1, L2, . . . , LN} and a rule base with the rules

R1 : if xk is Li then xk+1 is Lj ,

R2 : if xk is Lj then xk+1 is Lm , (35)
R3 : if xk is Lm then xk+1 is Li ,

we can recognize the chaotic behavior using the representation such as (34)
and applying the proposed theorem.

4 Summary

This paper investigates recurrent fuzzy rule bases in chaos-based applications.
We have proposed the algorithm of coding and decoding of bit sequences us-
ing a sloping tent map. This approach allows us to solve the problem of
compression of information that may be a future work. We propose to use
the Mamdani models for simulation of economic dynamic processes. The in-
teresting evolution of such an investigation lies in the construction of unified
approach for identification of chaos as the Takagi–Sugeno and Mamdani dy-
namic systems for design of optimal control systems.
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